

Rapture of the deep : highs and lows of sparsity in a world of depths

Rémi Gribonval - Inria & ENS Lyon - LIP - Ockham team

This project was supported in part by the AllegroAssai ANR project ANR-19-CHIA-0009

Primarily based on joint work with

Quoc-Tung Le

Léon Zheng

Elisa Riccietti

Théo Mary

Antoine Gonon Nicolas Brisebarre

Chaire IA AllegroAssai ANR-19-CHIA-0009

Sparsity - a gift from Example

Audio : time-frequency representations

Images : wavelet transform

Sparsity & frugality

As a natural objective: bits flops

MP3, AAC

Naive matrix multiplication =
$$O(N^2)$$

Fast DWT = $O(N)$

(Deep) sparse matrix product

sparse vector representations

JPEG2000? JPEG !

Sparsity & interpretability

As a useful prior: identification of latent variables Prime example = linear inverse problems

Provably good algorithms, performance guarantees

Sparse know-how

\mathbf{L}^1 minimization induces sparsity

Basis Pursuit / Lasso

$\square L^2$ minimization does not induce sparsity

Tikhonov / Ridge regression

It's the support, stupid »

- Hard = find support (indices of nonzeros)
- Easy = find coefficients on support (least squares)

Greed / thresholding is good

Matching Pursuits

Deep sparsity ?

A gift from nature ?

MDCT coefficients of a sound

Deep sparsity ?

MDCT coefficients of a sound

Many small coefficients

Deep sparsity ?

« Deep » sparse know-how ?

L^1 minimization induces sparsity

Basis Pursun / Lasso

L^2 minimization does not induce sparsity

Tikhonov / Ridge regressie

It's the support, stupid >

- Hard = find apport (indices of nonzeros)
- Easy = find coefficients on support (least square

Greed / thresholding is good

Can break down in deep / multilinear context

« L1 induces sparsity, but L2 does not » ?

Bilinear sparsity: blind deconvolution

Goal = recover sparse signals from a convolution $x = h \star s$

Easy » if one of the signals is known, e.g. with $\min \|\mathbf{s}\|_1$ s.t. $\mathbf{x} = \mathbf{h} \star \mathbf{s}$

« Natural » blind approach ?

 $\min \|\mathbf{h}\|_1 + \|\mathbf{s}\|_1 \text{ s.t. } \mathbf{x} = \mathbf{h} \star \mathbf{s}$

Bilinear sparsity: blind deconvolution

Goal = recover sparse signals from a convolution $x = h \star s$

- Easy » if one of the signals is known, e.g. with $\min \|\mathbf{s}\|_1$ s.t. $\mathbf{x} = \mathbf{h} \star \mathbf{s}$
- Natural » blind approach ?

$\min \|\mathbf{h}\|_1 + \|\mathbf{s}\|_1 \text{ s.t. } \mathbf{x} = \mathbf{h} \star \mathbf{s}$

Not so simple ...

Understanding and evaluating blind deconvolution algorithms

Anat Levin^{1,2}, Yair Weiss^{1,3}, Fredo Durand¹, William T. Freeman^{1,4} ¹MIT CSAIL, ²Weizmann Institute of Science, ³Hebrew University, ⁴Adobe

CVPR 2009

A FUNDAMENTAL PITFALL IN BLIND DECONVOLUTION WITH SPARSE AND SHIFT-INVARIANT PRIORS

Alexis Benichoux¹, Emmanuel Vincent², Rémi Gribonval³

ICASSP 2013

over time [19]. In this paper we analyze the source of the MAP failure. We show that counter-intuitively, the most favorable solution under a sparse prior is usually a blurry image and not a sharp one. Thus, the global optimum of the MAP approach is the no-blur explanation. We discuss so-

Given a mixture x, we show here that the global minima of (P2) and (P1) are trivial reconstructions, in the sense that the estimated filter is equal to a Dirac pulse. Let δ_0 be the Dirac

$$\mathbf{h}^* = \delta_0, \ \mathbf{s}^* = \mathbf{x}$$

Behind the scene (in modern words) scaling ambiguities ~implicit bias

– coming up –

ReLU network training - weight decay

Weight decay = quadratic penalty

« Natural » : nonconvex + promotes flatness (≠sparsity) ?

ReLU network training - weight decay

Weight decay = quadratic penalty

Shallow ReLU-net implements (+variant with biases) $f(\mathbf{x}) = \sum_{\text{neurons } i} \mathbf{u}_i \operatorname{ReLU}(\mathbf{v}_i^{\mathsf{T}}\mathbf{x})$ $\min_{\mathbf{u}_i, \mathbf{v}_i} \operatorname{loss}(f) + \sum_i \left(\|\mathbf{u}_i\|_2^2 + \|\mathbf{v}_i\|_2^2 \right)$

« Natural » : nonconvex + promotes flatness (≠sparsity) ?

Not so simple ...

See e.g.

- ✓ Neural balance » at global minimum ||u_i||₂ = ||v_i||₂, ∀i
 ✓ Solution to (convex) Group Lasso
- Behind the scene (in modern words) scaling ambiguities ~implicit bias

```
– coming up –
```

Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks

ICML 2020

Mert Pilanci¹ Tolga Ergen

Behind the scene

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Yves Grandvalet

ICANN 1998

Blind deconvolution

Scaling ambiguity

 $(\mathbf{h}/\lambda) \star (\lambda \mathbf{s}), \, \forall \lambda \neq 0$

Apparent regularization $\|\mathbf{h}\|_1 + \|\mathbf{s}\|_1$

Effective regularization $\min_{\lambda} \|\mathbf{h}/\lambda\|_1 + \|\lambda \mathbf{s}\|_1 \propto \sqrt{\|\mathbf{h}\|_1 \|\mathbf{s}\|_1}$

+ a consequence:

For every pair such that $\mathbf{x} = \mathbf{h} \star \mathbf{s}$ $\|\mathbf{x}\|_1 \|\delta_0\|_1 = \|\mathbf{x}\|_1 \le \|\mathbf{h}\|_1 \|\mathbf{s}\|_1$

A FUNDAMENTAL PITFALL IN BLIND DECONVOLUTION WITH SPARSE AND SHIFT-INVARIANT PRIORS

Alexis Benichoux¹, Emmanuel Vincent², Rémi Gribonval³

ICASSP 2013

Behin	d the	scene			
Least Absolu Qu	ite Shrinkage is adratic Penaliz	s Equivalent to ation			
	Yves Grandvalet	ICANN 1998			
 Blind deconvolution Scaling ambiguity 		ReLU n	ets & weight decay		
$(\mathbf{h}/\lambda) \star (\lambda \mathbf{s}), \forall \lambda \neq 0$ –		(\mathbf{u}/λ) ReLU $(\lambda \mathbf{v}^{\top}\mathbf{x}), \forall \lambda > 0, \forall \mathbf{x}$			
Apparent regularization $\ \mathbf{h}\ _1 + \ \mathbf{s}\ _1$ –		$\sum_{i} \ \mathbf{u}_{i}\ _{2}^{2} + \ \mathbf{v}_{i}\ _{2}^{2}$			
Effective regularization $\min_{\lambda} \ \mathbf{h}/\lambda\ _1 + \ \lambda \mathbf{s}\ _1 \propto \sqrt{\ \mathbf{h}\ _1 \ \mathbf{s}\ _1} = \frac{1}{2}$		$\sum_{i} \ \mathbf{u}_{i}\mathbf{v}_{i}^{T}\ _{2}$			
+ a consequence:					
For every pair such that $\mathbf{x} = \mathbf{h} \star$	For every pair such that $\mathbf{x} = \mathbf{h} \star \mathbf{s}$		g to Group Lasso		
$\ \mathbf{x}\ _{1} \ \delta_{0}\ _{1} = \ \mathbf{x}\ _{1} \le \ \mathbf{h}\ _{1} \ \mathbf{s}\ _{1}$		See e	.g. survey		
A FUNDAMENTAL PITFALL IN BLIND DECONVOLUTION WITH SPARSE AND SHIFT-INVARIANT PRIORS		Rohul Parthi® and Robert D. Nowak®	Veets		
Alexis Benichoux ¹ , Emmanuel Vincent ² , Rémi Gribonval ³		A signal processing perspectiv			
ICASSP 2013					

Greed is good ?

Train & release ReLU net ResNet 18 on ImageNet Greedy sparsification Prune-out 50% largest weights on layers 2&3 Top1 ≈32% on ImageNet Top5 ≈54%

!&3

Figures thanks to Antoine Gonon

Greed is good ?

Greed is good ?

Régularisation implicite des factorisations de faible rang pénalisées

Jérémy E. COHEN Univ Lyon, INSA-Lyon, UCBL, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69100 Villeurbanne, France

Figures thanks to Antoine Gonon

Train & release ReLU net
 ResNet 18 on ImageNet
 Prune-out 50% largest weights on layers 2&3
 Top1 ≈ 32% on ImageNet
 Top5 ≈ 54%
 Idem
 Prune-out 50% largest weights on layers 2&3
 Top1 ≈ 20%
 Top5 ≈ 40%

« It's the support, stupid » ... really ?

Optimization with support constraints

Linear inverse problem

 $\min \|z - \mathbf{M}x\|_2^2$ X

under contraint on supp(x)

Adaptive Greedy Approximations

G. Davis, S. Mallat, and M. Avellaneda

Constr. Approx. (1997) 13: 57-98

Fixed support Used in Greedy / Iterative methods

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 199

Matching Pursuits With Time-Frequency Dictionaries

Stéphane G. Mallat, Member, IEEE, and Zhifeng Zhang

Bilinear inverse problem

under constraints on $\mbox{supp}(X),\mbox{supp}(Y)$

Sparsity constraint
 covers sparse PCA
 NP-hard

[Magdon-Ismael, **NP-hardness and inapproximability of sparse PCA**, *Information Processing Letters*, 2017]

Optimization with support constraints

Linear inverse problem

$$\min_{x} \|z - \mathbf{M}x\|_2^2$$

under contraint on supp(x)

NP-hard

Adaptive Greedy Approximations

G. Davis, S. Mallat, and M. Avellaneda

Constr. Approx. (1997) 13: 57-98

Fixed support Used in Greedy / Iterative methods

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 199

Matching Pursuits With Time-Frequency Dictionaries

Stéphane G. Mallat, Member, IEEE, and Zhifeng Zhang

Bilinear inverse problem

under constraints on supp(X), supp(Y)

Sparsity constraint
 covers sparse PCA
 NP-hard

[Magdon-Ismael, **NP-hardness and inapproximability of sparse PCA**, *Information Processing Letters*, 2017]

Easy or hard ?

Optimization with support constraints

Linear inverse problem

$$\min_{x} \|z - \mathbf{M}x\|_2^2$$

under contraint on supp(x)

NP-hard

Adaptive Greedy Approximations

G. Davis, S. Mallat, and M. Avellaneda

Constr. Approx. (1997) 13: 57-98

Fixed support Used in Greedy / Iterative methods

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 1993

Matching Pursuits With Time-Frequency Dictionaries

Stéphane G. Mallat, Member, IEEE, and Zhifeng Zhang

Bilinear inverse problem

under constraints on supp(X), supp(Y)

Sparsity constraint
 covers sparse PCA
 NP-hard

[Magdon-Ismael, **NP-hardness and inapproximability of sparse PCA**, *Information Processing Letters*, 2017]

Easy or hard ?

Curses of fixed support factorization $\min_{\mathbf{X},\mathbf{Y}} \|\mathbf{A} - \mathbf{X}\mathbf{Y}\|_{F}^{2}$ Quoc-Tung Le

With « fixed » support $\operatorname{supp}(\mathbf{X}) \subset I$, $\operatorname{supp}(\mathbf{Y}) \subset J$

NP-hard to approximate

Minimizer does not always exist

- Similar to low-rank tensor decompositions ... but also LU factorization
- Requires regularization (e.g. « weight decay » $\|\mathbf{X}\|_F^2 + \|\mathbf{Y}\|_F^2$)
- Phenomenon extends to shallow ReLU nets

Details in:	SPURIOUS VALLEYS, NP-HARDNESS, AND TRACTABILITY OF SPARSE MATRIX FACTORIZATION WITH FIXED SUPPORT	SIMAX 2023	Does a sparse ReLU network training problem always admit an optimum?		raining problem imum?	NeurIPS2023
	QUOC-TUNG LE [*] , ELISA RICCIETTI [*] , AND REMI GRIBONVAL [*]		Quoc-Tung Le	Elisa Riccietti	Rémi Gribonval	

Curses of fixed support factorization $\min_{\mathbf{X},\mathbf{Y}} \|\mathbf{A} - \mathbf{X}\mathbf{Y}\|_{F}^{2}$ Quoc-Tung Le

With « fixed » support $\operatorname{supp}(\mathbf{X}) \subset I$, $\operatorname{supp}(\mathbf{Y}) \subset J$

NP-hard to approximate

Minimizer does not always exist

- Similar to low-rank tensor decompositions ... but also LU factorization
- Requires regularization (e.g. « weight decay » $\|\mathbf{X}\|_F^2 + \|\mathbf{Y}\|_F^2$)
- Phenomenon extends to shallow ReLU nets

Is it really a problem ?

Details in:

SPURIOUS VALLEYS, NP-HARDNESS, AND TRACTABILITY OF SPARSE MATRIX FACTORIZATION WITH FIXED SUPPORT SIMAX 2023

Does a sparse ReLU network training problem always admit an optimum? NeurIPS2023

QUOC-TUNG LE*, ELISA RICCIETTI*, AND REMI GRIBONVAL*

Quoc-Tung Le Elisa Riccietti Rémi Gribonval

Do bad supports occur in practice ?

Experiment

- Shallow ReLU network $f_{\theta}(x) = \mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 x)$
- Random support constraints with various sparsities
- Algorithm to detect bad supports
 - Guaranteed: no false positive (some false negatives are possible)
 - Empirical probability of bad support

Do bad supports occur in practice ?

Experiment

- Shallow ReLU network $f_{\theta}(x) = \mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 x)$
- Random support constraints with various sparsities
- Algorithm to detect bad supports
 - Guaranteed: no false positive (some false negatives are possible)
 - Empirical probability of bad support

How to ensure "nice" supports ?

Promises of *butterfly* supports

"Butterfly" supports

Ubiquitous for fast *linear* transforms (FFT ...)

- solid roots in numerical analysis (multipole methods, hierarchical matrices)
- efficient $O(n \log n)$ implementation instead of $O(n^2)$ + expressivity

Rapidly emerging for (nonlinear) deep learning

see e.g. [T. Dao & al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, ICML, 2022]

Recent results on *linear* butterflies

Quoc-Tung Le

Léon Zheng

Elisa Riccietti

Hierarchical factorization alg.

- Input: a (dense) matrix A
- Output: butterfly factors
- Approach: one factor at a time
 - exploiting structure of sparsity pattern
- Results
 - **Existence** + **Identifiability** of optimum
 - (+ongoing : stability to noise)
 - Frugality of hierarchical approach:
 - efficiency >> gradient descent

log(approximation error) - with two factors

Recent results on *linear* butterflies

Elisa Riccietti

Théo Mary

Efficient quantization alg.

Hierarchical factorization alg.

- Input: a (dense) matrix A
- Output: butterfly factors
- Approach: one factor at a time
 - exploiting structure of sparsity pattern
- Results
 - **Existence** + **Identifiability** of optimum
 - (+ongoing : stability to noise)
 - Frugality of hierarchical approach: efficiency >> gradient descent

log(approximation error) - with two factors

R. GRIBONVAL Journée d'étude AILYS - 26 octobre 2023 - Lyon

Outlook

Outlook (1)

Deep sparsity attractive objective for frugal AI ...

- Interpretability & privacy
- Expected flexible resource-performance tradeoffs

Outlook (1)

Deep sparsity attractive objective for frugal AI ...

- Interpretability & privacy
- Expected flexible resource-performance tradeoffs

... but sparse know-how breaks down with depth

- No global optimum
- NP-hardness

SPURIOUS VALLEYS, NP-HARDNESS, AND TRACTABILITY OF SPARSE MATRIX FACTORIZATION WITH FIXED SUPPORT

QUOC-TUNG LE*, ELISA RICCIETTI*, AND REMI GRIBONVAL*

Does a sparse ReLU network training problem always admit an optimum?

Elisa Ricciett

Quoc-Tung Le

Rémi Gribonya

+Mismatch between explicit & implicit regularization

Outlook (1)

Deep sparsity attractive objective for frugal AI ...

- Interpretability & privacy
- Expected flexible resource-performance tradeoffs

... but sparse know-how breaks down with depth

- No global optimum
- NP-hardness

SPURIOUS VALLEYS, NP-HARDNESS, AND TRACTABILITY OF SPARSE MATRIX FACTORIZATION WITH FIXED SUPPORT QUOC-TUNG LE^{*}, ELISA RICCIETTI^{*}, AND REMI GRIBONVAL^{*}

Does a sparse ReLU network training problem always admit an optimum?

Elisa Ricciett

Ouoc-Tung Lo

+Mismatch between explicit & implicit regularization

Promises & challenges of butterflies

Rémi Gribo

- Stable and tractable learning
- Improved coarse quantization
- Ongoing work
 - approximation guarantees
 - improved GPU-friendliness ?
 - performance vs efficiency tradeoffs within deep nets ?

Efficient Identification of Butterfly Sparse Matrix Factorizations*

Léon Zheng ‡† , Elisa Riccietti † , and Rémi Gribonval †

FAST LEARNING OF FAST TRANSFORMS, WITH GUARANTEES

Ouoc-Tung Le^{*†}. Léon Zheng^{*†*}. Elisa Riccietti[†]. Rémi Gribonval[†]

OPTIMAL QUANTIZATION OF RANK-ONE MATRICES IN FLOATING-POINT ARITHMETIC—WITH APPLICATIONS TO BUTTERFLY FACTORIZATIONS*

RÉMI GRIBONVAL[†], THEO MARY[‡], AND ELISA RICCIETTI[†]

Outlook (2)

Harnessing rescaling-invariance in deep nets ?

Ubiquitous property: ReLU, maxpool, average pool, residual connexions ...

Outlook (2)

Harnessing rescaling-invariance in deep nets ?

Ubiquitous property: ReLU, maxpool, average pool, residual connexions ...

Empirically: wander in equivalence class

- Improved SGD training
- Reused for quantization by [Nagel & al]

EQUI-NORMALIZATION OF NEURAL NETWORKS

Pierre Stock^{1,2}, Benjamin Graham¹, Rémi Gribonval² and Hervé Jégou¹ ¹Facebook AI Research ²Univ Rennes, Inria, CNRS, IRISA E-mail Correspondance: pstock@fb.com

Outlook (2)

Harnessing rescaling-invariance in deep nets ?

Ubiquitous property: ReLU, maxpool, average pool, residual connexions ...

Empirically: wander in equivalence class

- Improved SGD training
- Reused for quantization by [Nagel & al]

EQUI-NORMALIZATION OF NEURAL NETWORKS

Pierre Stock^{1,2}, Benjamin Graham¹, Rémi Gribonval² and Hervé Jégou¹ ¹Facebook AI Research ²Univ Rennes, Inria, CNRS, IRISA E-mail correspondance: pstock@fb.com

Path-embedding of weights/biases

- Rescaling-invariant embedding
 - valid for general DAG architecture
 - combinatorial dimension (#paths)
- Some consequences
 - identifiability analysis
 - statistical generalization bounds
 - + conservation laws during training
- Ongoing work
 - provably good/optimal pruning and quantization ?
 - from theoretical tool to computational one ?

Thank you for your attention !

Direct contributors

Quoc-Tung Le

Léon Zheng

Elisa Riccietti

Théo Mary

Antoine Gonon Nicolas Brisebarre

 special thanks to the whole Ockham team @LIP, ENS de Lyon, and particularly to Pascal Carrivain, Simon Delamare, Hakim Hadj-Djilani for their work on pyfaust & lazylinop (python+matlab libraries)

Chaire IA AllegroAssai ANR-19-CHIA-0009