Learning regularizers

bilevel opitimization or unrolling?

Dirk Lorenz
(joint work with Timo de Wolff, Christoph Brauer, Niklas Breustedt)

Center for Industrial Mathematics, University of Bremen

Center for
Industrial Mathematics

Workshop on Deep Learning, Image Analysis, Inverse Problems,
and Optimisation, Lyon, November 2023



Learning to dequantize speech signals

» 5, € R" speech signals, s; = Qa(5;) quantized signals
P> Goal: Recover the s, from the s,
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Learning to dequantize speech signals

» [Brauer, L., Gerkmann 16]: Take 5, = DCT1(x) where x solves
min x|z st |IDCT 1(x) — splloe < A/2 (%)
X

(Look for signal with sparse DCT but respecting quantization
bounds.)



Learning to dequantize speech signals

» [Brauer, L., Gerkmann 16]: Take 5, = DCT1(x) where x solves
min|[x|l1 st ||IDCT 1(x) — splloc < A/2 (*)
X
(Look for signal with sparse DCT but respecting quantization
bounds.)

» [Brauer, Zhao, L., Fingscheidt, 19]: Improve method by learning
better linear map than DCT.

mKin Z | Kx)' — 5g||3 s.t. ' N-the iterate of Chambolle-Pock for (¥)
12



Learning to dequantize speech signals

» [Brauer, L., Gerkmann 16]: Take 5, = DCT1(x) where x solves
min x|z st |IDCT 1(x) — splloe < A/2 (%)
X

(Look for signal with sparse DCT but respecting quantization
bounds.)

» [Brauer, Zhao, L., Fingscheidt, 19]: Improve method by learning
better linear map than DCT.

mKin Z | Kx)' — 5g||3 s.t. ' N-the iterate of Chambolle-Pock for (¥)
12

P Results for different depths (with learned stepsizes as well):
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Bilevel learning and unrolling



Learning reqgularizers

> Variational regularization of inverse problem Af = ¢°

min D(AF, ¢°) + aR(f)

» D: similarity measure, often ||Af — g°||?
R: regularizer, clasically ||f||? or || Vf]|?, also total variation
|Vfll1, > d((f, vi)) for some ¢,...

P General regularization theory available [Burger, Osher 2004],
[Burger, Resmerita 2005], [Scherzer et al. 2009]

P> Need to solve the optimization problem!

P> Needtochoose Dand R...

» D can be motivated by noise characteristic, generally least
squares often good, despite of noise characteristic.

P Influence of R much bigger in practice, much less clear
how to choose.



Learning reqgularizers

P |dea: Having paired data 1‘,-T and g? (with g? = Af; 4 noise),
i=1...,m, learnregularizer R by empirical risk minimization

1<,
_— fi.fT
min m;ﬂ( i
st. f; € argmin D(Af, ¢°) + aR(f).
f

£: Loss, typically £(F, 1) = ||F — f1])2
Needs a model for R to optimize over!

>
>
» ~~ Bi-level optimization problem, generally very hard to solve...
» Upper and lower level problems

>

[Tappen et al., 2007, Peyré, Fadili 2011, Pock et al. 2013, de los
Reyes et al. 2017]
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Use unrolling

> If lower level problem has unique solution, consider solution
map S(g°) = 7, and obtain

1 m
in—> " 4(S(g?). f!
- 345
=
P Optimization needs derivative of solution operator S
» Circumventing this: Unroll an optimization algorithm
AN(gé) = output of Nth iteration of convergent algorithm

and consider

mm—Z(Z (An( g, . ,

P> Need to “differentiate through iterations”
P If Dis least squares may use

T = proxar (1 — TA*(AF — g%)). @

differentiation may be possible by automatic differentiation S



Unrolling vs bi-level

» Which one is better?

» Does unrolling approach converge to bi-level approach for
N — o0?

> Why did the deeper unrolling not increase quality in the example
of speech dequantization?



Unrolling vs bi-level

» Which one is better?

» Does unrolling approach converge to bi-level approach for
N — o0?

> Why did the deeper unrolling not increase quality in the example
of speech dequantization?

~= Build tractable toy model and analyze everything explicitly!




A toy model




A tractable model

P Goal: develop a tractable toy model which can be analyzed
explicitly
P Switch to notation from learning theory:
> x: “objects” (was: noisy data g°)
> y: “labels” (was: ground truth ff)
> Goal: Predict y from x (was: reconstruct ff from g°)
P> Model consists of:

» Data: Distributions for xand y

> Lower level problem: similarity D and model for regularizer R
» An algorithm to unroll

> Upper level problem: loss function £




The toy data

» Consider a denoising problem in R", i.e.
x=y+e€R"

Problem: Given pairs of noisy xand clean y, learn a denoiser

» Model for clean data y: y ~ D characterized by
y=AL, E(\)=u, Var(\)=86%
» Model for the noise: Normally distributed with

e ~ N(0,a°l)



The toy lower level problem and algorithm to unroll

P Simple quadratic problem
y = arg min 32— x|3 + 3 Rz]3
with
R € R,
> Bilevel: Explicit solution
§=(0+RR)"x
» Unrolling: Unroll gradient descent with stepsize w and 2° = 0:

=N =N w((@+RR)NT )
Z +R'R))x

(l+ R'TR)™(1 - (1 - w(I + RR))")x. @

<>



Toy upper level problem

> Loss
&5.y) =31y —vll2
» Minimize true (population) risk:

_ 10 2
&= EENzlly— Y”z-
y~D



Toy upper level problem

> Loss
&5.y) =31y —vll2
» Minimize true (population) risk:
_ TR 2
&€= E sy -yl
y~D

» Risk of a denoiser Tr

1 2
E(Tr) = ErIVENEHTR(Y‘f‘ ) — vl
y~D
Recall:

Bilevel: Tg = (1+ RTR)’l
Unrolling: Tr = wz I —w(l+R'R)Y

Both linear maps! -



min T +€)—
omin B Nz” R(y +€) = vlI3
yf\l

where
Bilevel: Tg = (1+R'R)™!

N—-1

Unrolling: TR =w Z(I —w(1+R'R)Y
j=0



Bias-variance decomposition of upper level

Lemma
If data y and noise € are independent, we have for linear T

2 1 2
gzllT(y+€)—yllz— ESIT =0z + E 3lITels.
yt\/

Fory=X1, E(\)=u, Var(A)=6?ande~ N(0,0?l)get

6? 2
2||T(y+ e) —yl3 = EEE((T - N1 + Z T3
yND



Total model (once again)

9 2
Rre]?Rlpxn g + (TR — D1|3 + %HTR”,Z:

where

Bilevel: Tg = (1+R'R)!
N-1
Unrolling: TR =w Z(I —w(1+R'R)Y
j=0

» For unrolling: Could also minimize over stepsize w!
P> Dependence on k (# rows of R)?
» Very nonlinearinR.

P First study expressivity, i.e. characterize the set
of possible Tg TR,



Expressivity




Expressivity of bilevel learning

Theorem

The set of possible unrolling denoisers T = (1 + R'R) ™! for
R € RK"js

A= {TeR™" | dim(Eig(T,1)) >n—k T =T, 0<Txl}
Proof.

» Spectral calculus: T= f(R'R), f(s) = 1/(1 +s)~ 0 < T x|
» rank(RTR) < kimplies dim(Eig(T,1)) > n—k



Expressivity of unrolling

Theorem Nt
The set of possible bilevel denoisers T = w > (1 — w(l + R'R)) for
j=0
R e Rjs
1. Neven:

U=UT, dim(Eig(u,1—(1—w)V)) > n—k, }

_ nxn
Bikw = {UgR U<[l—(1-w)

2. N odd: There exists a constant cy ., such that

U=U", dim(Eig(VU,1—(1—-w)")) > n—k, } |

B =JU e R™"
Nikw { Nl < U

1+log(N)/2

Roughlyw(% + N%rl) < Onw S w(% + %(W)) @
TN
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Expressivity of unrolling - proof

» Spectral calculus T = f(R"R) with

N-1 e (1—w(1eenN
f(s) :w];)(l—w(l—i-s))/: 1wl

» RTRhas eigenvalue 0 “at least n — ktimes” ~ T has eigenvalue
1— (1 - w)N"atleast n — ktimes”

» Upper and lower bounds on fimply eigenvalue bounds for T

f@)w N=5
N=3
| N\

> Neven: f(s) < f(0) =1 — (1 — w)", unbounded from below
» N odd: funbounded from above, single global minimum @

CN,w With no explicit expression .

Il 1l
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P Using expressivity results we can calculate optimal risks

min E L|T(y+¢e)—yl3
i, B 31T+ 6) i
yN

explicitly
P For unrolling we can even learn (i.e. optimize) over stepsize w

P Quite some mess of case distinctions and not very informative




Theorem

1. Best linear denoiser for our toy model is

n(w? +6°)
n(w? +62) 4 02

0.2
T = 1,., with E(T*):7

2. Best bilevel denoiser does not exist, but

N

(n—k) : k<n

a?
inf  &(T) = 2N e
T=(1+R7R)"1 (T) { %zin(#(z‘i;?ﬁaz

3. Best unrolling denoisers exist but is it a mess of a formula. ..
(results different for N even or odd and k < nork = n).
For N either even or odd, best risk does not depend on N if
optimized over stepsize w.

~+ Calculate best risks numerically and consider risk ratios T —



Theorem

1. Best linear denoiser for our toy mod%

inf  &(T) :{ 2

T=(I+R"R)~!

3. Best unrolling denoisers exist but is It
(results different for N even or odd and k < nork = n).
For N either even or odd, best risk does not depend on N if
optimized over stepsize w.

~= Calculate best risks numerically and consider risk ratios



P Also analyzed slightly more general data model:

Forj=1,....n: y;~D iid.
E(y) =, Var(y) = 6

» Different bias-variance decomposition

2 2 2
ELEN%HT(Y‘F &) —yll3 =L (T—01)3+ ST -1} + Z|TII?
y~D
=: &id(T)

P Related best risks also pretty messy...



Results




Risk ratios with best linear denoiser

n=500,u=10=0.09:
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Risk ratios between bilevel and unrolling
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~+ unrolling generally better than bilevel
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Reality check: Numerical experiment

P> Our modelis very simple - how close to reality are the results?

P> Experiment on speech data.
»> Data model:
» yclean speech (part of IEEE speech corpus)
» x = y+ e with Gaussian noise, n = 320,06 = 0.1
> Lower level problem and algorithm exactly like here.
» Upper level problem: Empirical risk with least squares loss.
» Numerical optimization with TensorFlow, standard optimization
tricks applied (initialization, learning rates optimized...)
> Also optimized over stepsize w(a) = log(1 + exp(a)) over a.




Reality check, observations

12
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MSE on Test Data

P With learned stepsize, MSE basically independent of depth N, as
predicted
P> Without learned stepsizes no dependence on parity, contrary to

prediction
P> Without learned stepsizes: Worse MSE for deeper unrolling @




Double check: Do results fit theory?

Optimal risks according to theory with parameters as in experiment:
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Why don’t we see the dependence on parity?

P Most theoretical findings confirmed.
What about parity?

P Conjecture: Good denoisers for odd depth hidden in sharp local
minimal
Ink=n=1,ie.R=rekR:
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Thanks for listening!
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