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Learning to dequantize speech signals

▶ s̄ℓ ∈ Rn speech signals, sℓ = Q∆(s̄ℓ) quantized signals
▶ Goal: Recover the s̄ℓ from the sℓ
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Learning to dequantize speech signals

▶ [Brauer, L., Gerkmann 16]: Take ŝℓ = DCT−1(x)where x solves

min
x
∥x∥1 s.t. ∥DCT−1(x)− sℓ∥∞ ≤ ∆/2 (*)

(Look for signal with sparse DCT but respecting quantization
bounds.)

▶ [Brauer, Zhao, L., Fingscheidt, 19]: Improve method by learning
better linear map than DCT.

min
K

∑
ℓ

∥KxNℓ − s̄ℓ∥22 s.t. xNℓ N-the iterate of Chambolle-Pock for (*)

▶ Results for different depths (with learned stepsizes as well):

3 / 31



Learning to dequantize speech signals

▶ [Brauer, L., Gerkmann 16]: Take ŝℓ = DCT−1(x)where x solves
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Learning regularizers

▶ Variational regularization of inverse problem Af = gδ

min
f

D(Af, gδ) + αR(f)

▶ D: similarity measure, often ∥Af − gδ∥2
R: regularizer, clasically ∥f∥2 or ∥∇f∥2, also total variation
∥∇f∥1,

∑
i φ(⟨f, vi⟩) for some φ,. . .

▶ General regularization theory available [Burger, Osher 2004],
[Burger, Resmerita 2005], [Scherzer et al. 2009]

▶ Need to solve the optimization problem!
▶ Need to chooseD andR. . .
▶ D can be motivated by noise characteristic, generally least

squares often good, despite of noise characteristic.
▶ Influence ofRmuch bigger in practice, much less clear

how to choose.
5 / 31



Learning regularizers

▶ Idea: Having paired data f†i and gδi (with gδi = Afi + noise),
i = 1 . . . ,m, learn regularizerR by empirical risk minimization

min
R

1
m

m∑
i=1

ℓ(̂fi, f
†
i )

s.t. f̂i ∈ argmin
f

D(Af, gδi ) + αR(f).

▶ ℓ: Loss, typically ℓ(̂f, f†) = ∥̂f − f†∥2

▶ Needs a model forR to optimize over!
▶ ⇝ Bi-level optimization problem, generally very hard to solve. . .
▶ Upper and lower level problems
▶ [Tappen et al., 2007, Peyré, Fadili 2011, Pock et al. 2013, de los

Reyes et al. 2017]
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Use unrolling

▶ If lower level problem has unique solution, consider solution
map S(gδ) = f̂, and obtain

min
R

1
m

m∑
i=1

ℓ(S(gδi ), f
†
i )

▶ Optimization needs derivative of solution operator S
▶ Circumventing this: Unroll an optimization algorithm

AN(gδ) = output ofNth iteration of convergent algorithm

and consider

min
R

1
m

m∑
i=1

ℓ(AN(gδi ), f
†
i )

▶ Need to “differentiate through iterations”
▶ IfD is least squares may use

fn+1 = proxταR(f
n − τA∗(Afn − gδ)).

differentiation may be possible by automatic differentiation 7 / 31



Unrolling vs bi-level

▶ Which one is better?
▶ Does unrolling approach converge to bi-level approach for

N→∞?
▶ Why did the deeper unrolling not increase quality in the example

of speech dequantization?

⇝ Build tractable toy model and analyze everything explicitly!
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A tractable model

▶ Goal: develop a tractable toy model which can be analyzed
explicitly

▶ Switch to notation from learning theory:
▶ x: “objects” (was: noisy data gδ)
▶ y: “labels” (was: ground truth f†)
▶ Goal: Predict y from x (was: reconstruct f† from gδ)

▶ Model consists of:
▶ Data: Distributions for x and y
▶ Lower level problem: similarityD and model for regularizerR
▶ An algorithm to unroll
▶ Upper level problem: loss function ℓ
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The toy data

▶ Consider a denoising problem inRn, i.e.

x = y+ ε ∈ Rn

Problem: Given pairs of noisy x and clean y, learn a denoiser
▶ Model for clean data y: y ∼ D characterized by

y = λ1, E(λ) = µ, Var(λ) = θ2.

▶ Model for the noise: Normally distributed with

ε ∼ N (0, σ2I)
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The toy lower level problem and algorithm to unroll

▶ Simple quadratic problem

ŷ = argmin
z

1
2∥z− x∥22 + 1

2∥Rz∥
2
2

with

R ∈ Rk×n.

▶ Bilevel: Explicit solution

ŷ = (I+ RTR)−1x.

▶ Unrolling: Unroll gradient descent with stepsize ω and z0 = 0:

ŷ = zN = zN−1 − ω((I+ RTR)zN−1 − x)

= ω

N−1∑
j=0

(I− ω(I+ RTR))jx

= (I+ RTR)−1(I− (I− ω(I+ RTR))N)x.
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Toy upper level problem

▶ Loss

ℓ(ŷ, y) = 1
2∥ŷ− y∥22

▶ Minimize true (population) risk:

E = E
ε∼N
y∼D

1
2∥ŷ− y∥22.

▶ Risk of a denoiser TR

E(TR) = E
ε∼N
y∼D

1
2∥TR(y+ ε)− y∥22

Recall:

Bilevel: TR = (I+ RTR)−1

Unrolling: TR = ω

N−1∑
j=0

(I− ω(I+ RTR))j

Both linear maps!
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Total model

min
R∈Rk×n

E
ε∼N
y∼D

1
2∥TR(y+ ε)− y∥22

where

Bilevel: TR = (I+ RTR)−1

Unrolling: TR = ω

N−1∑
j=0

(I− ω(I+ RTR))j
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Bias-variance decomposition of upper level

Lemma
If data y and noise ε are independent, we have for linear T

E
ε∼N
y∼D

1
2∥T(y+ ε)− y∥22 = E

y∼D
1
2∥(T− I)y∥22 + E

ε∼N
1
2∥Tε∥

2
2.

For y = λ1, E(λ) = µ, Var(λ) = θ2 and ε ∼ N (0, σ2I) get

E
ε∼N
y∼D

1
2∥T(y+ ε)− y∥22 = µ2+θ2

2 ∥(T− I)1∥22 + σ2

2 ∥T∥
2
F.
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Total model (once again)

min
R∈Rk×n

µ2+θ2

2 ∥(TR − I)1∥22 + σ2

2 ∥TR∥2F

where

Bilevel: TR = (I+ RTR)−1

Unrolling: TR = ω

N−1∑
j=0

(I− ω(I+ RTR))j

▶ For unrolling: Could also minimize over stepsize ω!
▶ Dependence on k (# rows of R)?
▶ Very nonlinear in R.
▶ First study expressivity, i.e. characterize the set

of possible TR
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Expressivity of bilevel learning

Theorem
The set of possible unrolling denoisers T = (I+ RTR)−1 for
R ∈ Rk×n is

Ak =
{
T ∈ Rn×n | dim(Eig(T, 1)) ≥ n− k, TT = T, 0 ≺ T ≼ I

}
Proof.
▶ Spectral calculus: T = f(RTR), f(s) = 1/(1+ s)⇝ 0 ≺ T ≼ I
▶ rank(RTR) ≤ k implies dim(Eig(T, 1)) ≥ n− k
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Expressivity of unrolling

Theorem
The set of possible bilevel denoisers T = ω

N−1∑
j=0

(I− ω(I+ RTR))j for

R ∈ Rk×n is
1. N even:

BN,k,ω =

{
U ∈ Rn×n

∣∣∣∣ U = U⊤, dim(Eig(U, 1−(1−ω)N)) ≥ n−k,
U ≼ [1− (1− ω)N]I

}
2. N odd: There exists a constant cN,ω such that

BN,k,ω =

{
U ∈ Rn×n

∣∣∣∣ U = U⊤, dim(Eig(U, 1−(1−ω)N)) ≥ n−k,
cN,ωI ≼ U

}
.

Roughly ω
(

1
2 + 1

N+1

)
≤ cN,ω ≤ ω

(
1
2 + 1

N

(
1+log(N)/2

2−
log(N)

N

))
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Expressivity of unrolling - proof

▶ Spectral calculus T = f(RTR)with

f(s) = ω
N−1∑
j=0

(1− ω(1+ s))j = 1−(1−ω(1+s))N
1+s

▶ RTR has eigenvalue 0 “at least n− k times”⇝ T has eigenvalue
1− (1− ω)N “at least n− k times”

▶ Upper and lower bounds on f imply eigenvalue bounds for T

s

f(s)

N = 2

N = 3

N = 4

N = 5

N = 6

▶ N even: f(s) ≤ f(0) = 1− (1− ω)N, unbounded from below
▶ N odd: f unbounded from above, single global minimum

cN,ω with no explicit expression
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Best risks

▶ Using expressivity results we can calculate optimal risks

min
R∈Rk×n

E
ε∼N
y∼D

1
2∥T(y+ ε)− y∥22

explicitly
▶ For unrolling we can even learn (i.e. optimize) over stepsize ω
▶ Quite somemess of case distinctions and not very informative
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Some results

Theorem
1. Best linear denoiser for our toy model is

T∗ =
µ2 + θ2

n(µ2 + θ2) + σ2
1n×n with E(T∗) =

σ2

2
n(µ2 + θ2)

n(µ2 + θ2) + σ2

2. Best bilevel denoiser does not exist, but

inf
T=(I+RTR)−1

E(T) =

{
σ2

2 (n− k) : k < n
σ2

2
n(µ2+θ2)

n(µ2+θ2)+σ2 : n = k

3. Best unrolling denoisers exist but is it a mess of a formula. . .
(results different for N even or odd and k < n or k = n).
For N either even or odd, best risk does not depend on N if
optimized over stepsize ω.

⇝ Calculate best risks numerically and consider risk ratios
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i.i.d. model

▶ Also analyzed slightly more general data model:

For j = 1, . . . , n : yj ∼ D i.i.d.

E(yj) = µ, Var(yj) = θ2

▶ Different bias-variance decomposition

E
ε∼N
y∼D

1
2∥T(y+ ε)− y∥22 = µ2

2 ∥(T− I)1∥22 + θ2

2 ∥T− I∥2F + σ2

2 ∥T∥
2
F

=: Ei.i.d(T)

▶ Related best risks also pretty messy. . .
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Risk ratios with best linear denoiser

n = 500, µ = 1, σ = 0.9:
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Risk ratios between bilevel and unrolling

n = 500, µ = 1:

⇝ unrolling generally better than bilevel
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Reality check: Numerical experiment

▶ Our model is very simple - how close to reality are the results?
▶ Experiment on speech data.

▶ Data model:
▶ y clean speech (part of IEEE speech corpus)
▶ x = y+ εwith Gaussian noise, n = 320, σ = 0.1

▶ Lower level problem and algorithm exactly like here.
▶ Upper level problem: Empirical risk with least squares loss.
▶ Numerical optimization with TensorFlow, standard optimization

tricks applied (initialization, learning rates optimized. . . )
▶ Also optimized over stepsize ω(α) = log(1+ exp(α)) overα.
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Reality check, observations

▶ With learned stepsize, MSE basically independent of depthN, as
predicted

▶ Without learned stepsizes no dependence on parity, contrary to
prediction

▶ Without learned stepsizes: Worse MSE for deeper unrolling
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Double check: Do results fit theory?

Optimal risks according to theory with parameters as in experiment:
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Why don’t we see the dependence on parity?

▶ Most theoretical findings confirmed.
▶ What about parity?
▶ Conjecture: Good denoisers for odd depth hidden in sharp local

minima!
In k = n = 1, i.e. R = r ∈ R:
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Thanks for listening!

Learning Variational Models with Unrolling and Bilevel Optimization
Christoph Brauer, Niklas Breustedt, Timo deWolff, Dirk A. Lorenz
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