Learning regularizers bilevel opitimization or unrolling?

(joint work with Timo de Wolff, Christoph Brauer, Niklas Breustedt)

Center for Industrial Mathematics, University of Bremen

Workshop on Deep Learning, Image Analysis, Inverse Problems, and Optimisation, Lyon, November 2023 ▶ $\bar{s}_{\ell} \in \mathbb{R}^n$ speech signals, $s_{\ell} = Q_{\Delta}(\bar{s}_{\ell})$ quantized signals

Goal: Recover the s_l from the s_l

Learning to dequantize speech signals

▶ [Brauer, L., Gerkmann 16]: Take $\hat{s}_{\ell} = DCT^{-1}(x)$ where x solves

$$\min_{x} \|x\|_{1} \quad \text{s.t.} \quad \|DCT^{-1}(x) - s_{\ell}\|_{\infty} \le \Delta/2 \qquad (*)$$

(Look for signal with sparse DCT but respecting quantization bounds.)

Learning to dequantize speech signals

Figure (a) [Brauer, L., Gerkmann 16]: Take $\hat{s}_{\ell} = DCT^{-1}(x)$ where x solves

$$\min_{x} \|x\|_{1} \quad \text{s.t.} \quad \|DCT^{-1}(x) - s_{\ell}\|_{\infty} \le \Delta/2 \qquad (*)$$

(Look for signal with sparse DCT but respecting quantization bounds.)

 [Brauer, Zhao, L., Fingscheidt, 19]: Improve method by learning better linear map than DCT.

 $\min_{K} \sum_{\ell} \|K x_{\ell}^{N} - \bar{s}_{\ell}\|_{2}^{2} \text{ s.t. } x_{\ell}^{N} \text{ N-the iterate of Chambolle-Pock for (*)}$

Learning to dequantize speech signals

Figure (a) [Brauer, L., Gerkmann 16]: Take $\hat{s}_{\ell} = DCT^{-1}(x)$ where x solves

$$\min_{x} \|x\|_{1} \quad \text{s.t.} \quad \|DCT^{-1}(x) - s_{\ell}\|_{\infty} \le \Delta/2 \qquad (*)$$

(Look for signal with sparse DCT but respecting quantization bounds.)

 [Brauer, Zhao, L., Fingscheidt, 19]: Improve method by learning better linear map than DCT.

 $\min_{K} \sum_{\ell} \|K x_{\ell}^{N} - \bar{s}_{\ell}\|_{2}^{2} \text{ s.t. } x_{\ell}^{N} \text{ N-the iterate of Chambolle-Pock for (*)}$

Results for different depths (with learned stepsizes as well):

Bilevel learning and unrolling

A toy model

Expressivity

Results

Learning regularizers

• Variational regularization of inverse problem $Af = g^{\delta}$

$$\min_{f} \mathcal{D}(Af, g^{\delta}) + \alpha \mathcal{R}(f)$$

- ► \mathcal{D} : similarity measure, often $||Af g^{\delta}||^2$ \mathcal{R} : regularizer, clasically $||f||^2$ or $||\nabla f||^2$, also total variation $||\nabla f||_1, \sum_i \phi(\langle f, v_i \rangle)$ for some $\phi,...$
- General regularization theory available [Burger, Osher 2004], [Burger, Resmerita 2005], [Scherzer et al. 2009]
- Need to solve the optimization problem!
- Need to choose \mathcal{D} and \mathcal{R} ...
- D can be motivated by noise characteristic, generally least squares often good, despite of noise characteristic.
- Influence of R much bigger in practice, much less clear how to choose.

Learning regularizers

• Idea: Having paired data f_i^{\dagger} and g_i^{δ} (with $g_i^{\delta} = Af_i + \text{noise}$), $i = 1 \dots, m$, learn regularizer \mathcal{R} by empirical risk minimization

$$\begin{split} \min_{\mathcal{R}} \frac{1}{m} \sum_{i=1}^{m} \ell(\hat{f}_i, f_i^{\dagger}) \\ \text{s.t.} \quad \hat{f}_i \in \argmin_f \mathcal{D}(\mathsf{Af}, g_i^{\delta}) + \alpha \mathcal{R}(f). \end{split}$$

- ℓ : Loss, typically $\ell(\hat{f}, f^{\dagger}) = \|\hat{f} f^{\dagger}\|^2$
- Needs a model for R to optimize over!
- A Bi-level optimization problem, generally very hard to solve...
- Upper and lower level problems
- [Tappen et al., 2007, Peyré, Fadili 2011, Pock et al. 2013, de los Reyes et al. 2017]

Use unrolling

 If lower level problem has unique solution, consider solution map S(g^δ) = f̂, and obtain

$$\min_{R} \frac{1}{m} \sum_{i=1}^{m} \ell(S(g_i^{\delta}), f_i^{\dagger})$$

Optimization needs derivative of solution operator S

Circumventing this: Unroll an optimization algorithm

 $A_N(g^{\delta}) =$ output of Nth iteration of convergent algorithm and consider

$$\min_{R} \frac{1}{m} \sum_{i=1}^{m} \ell(A_N(g_i^{\delta}), f_i^{\dagger})$$

- Need to "differentiate through iterations"
- If \mathcal{D} is least squares may use

$$f^{n+1} = \operatorname{prox}_{\tau lpha \mathcal{R}}(f^n - \tau A^*(Af^n - g^{\delta})).$$

differentiation may be possible by automatic differentiation

Unrolling vs bi-level

- Which one is better?
- Does unrolling approach converge to bi-level approach for N→∞?
- Why did the deeper unrolling not increase quality in the example of speech dequantization?

Unrolling vs bi-level

- Which one is better?
- Does unrolling approach converge to bi-level approach for N→∞?
- Why did the deeper unrolling not increase quality in the example of speech dequantization?
- → Build tractable toy model and analyze everything explicitly!

Bilevel learning and unrolling

A toy model

Expressivity

Results

- Goal: develop a tractable toy model which can be analyzed explicitly
- Switch to notation from learning theory:
 - x: "objects" (was: noisy data g^{δ})
 - y: "labels" (was: ground truth f[†])
 - Goal: Predict y from x (was: reconstruct f[†] from g^δ)
- Model consists of:
 - Data: Distributions for x and y
 - **Lower level problem:** similarity \mathcal{D} and model for regularizer \mathcal{R}
 - An algorithm to unroll
 - Upper level problem: loss function *l*

• Consider a denoising problem in \mathbb{R}^n , i.e.

$$x = y + \varepsilon \in \mathbb{R}^n$$

Problem: Given pairs of noisy x and clean y, learn a denoiser
Model for clean data y: y ~ D characterized by

$$y = \lambda \mathbf{1}, \quad \mathbb{E}(\lambda) = \mu, \quad Var(\lambda) = \theta^2.$$

Model for the noise: Normally distributed with

$$arepsilon \sim \mathcal{N}(\mathbf{0},\sigma^2 \mathbf{I})$$

The toy lower level problem and algorithm to unroll

Simple quadratic problem

$$\hat{y} = \arg\min_{z} \frac{1}{2} \|z - x\|_{2}^{2} + \frac{1}{2} \|\mathbf{R}z\|_{2}^{2}$$

with

$$\mathbf{R} \in \mathbb{R}^{k \times n}$$
.

Bilevel: Explicit solution

$$\hat{\mathbf{y}} = (\mathbf{I} + \mathbf{R}^T \mathbf{R})^{-1} \mathbf{x}.$$

• Unrolling: Unroll gradient descent with stepsize ω and $z^0 = 0$:

$$\hat{\mathbf{y}} = \mathbf{z}^{N} = \mathbf{z}^{N-1} - \omega((\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R})\mathbf{z}^{N-1} - \mathbf{x})$$

= $\omega \sum_{j=0}^{N-1} (\mathbf{I} - \omega(\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R}))^{j}\mathbf{x}$
= $(\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1} (\mathbf{I} - (\mathbf{I} - \omega(\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R}))^{N})\mathbf{x}.$

Toy upper level problem

Loss

$$\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|_2^2$$

Minimize true (population) risk:

$$\mathcal{E} = \mathop{\mathbb{E}}_{\substack{\varepsilon \sim \mathcal{N} \\ y \sim \mathcal{D}}} \frac{1}{2} \|\hat{y} - y\|_2^2.$$

Toy upper level problem

Loss

$$\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|_2^2$$

Minimize true (population) risk:

$$\mathcal{E} = \mathop{\mathbb{E}}_{\substack{\varepsilon \sim \mathcal{N} \\ y \sim \mathcal{D}}} \frac{1}{2} \|\hat{y} - y\|_2^2.$$

Risk of a denoiser T_R

$$\mathcal{E}(\mathbf{T}_{\mathbf{R}}) = \underset{\substack{\varepsilon \sim \mathcal{N} \\ y \sim \mathcal{D}}}{\mathbb{E}} \frac{1}{2} \|\mathbf{T}_{\mathbf{R}}(y + \varepsilon) - y\|_{2}^{2}$$

Recall:

Bilevel:
$$\mathbf{T}_{\mathbf{R}} = (\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}$$

Unrolling: $\mathbf{T}_{\mathbf{R}} = \omega \sum_{j=0}^{N-1} (\mathbf{I} - \omega(\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R}))^{j}$

Both linear maps!

$$\min_{\mathbf{R}\in\mathbb{R}^{k\times n}} \mathop{\mathbb{E}}_{\substack{\varepsilon\sim\mathcal{N}\\ y\sim\mathcal{D}}} \frac{1}{2} \|\mathbf{T}_{\mathbf{R}}(y+\varepsilon) - y\|_{2}^{2}$$

where

Bilevel:
$$\mathbf{T}_{\mathbf{R}} = (\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}$$

Unrolling: $\mathbf{T}_{\mathbf{R}} = \omega \sum_{j=0}^{N-1} (\mathbf{I} - \omega(\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R}))^{j}$

Lemma

If data y and noise ε are independent, we have for linear **T**

$$\underset{\substack{\varepsilon \sim \mathcal{N} \\ \gamma \sim \mathcal{D}}}{\mathbb{E}} \frac{1}{2} \| \mathbf{T}(\boldsymbol{y} + \varepsilon) - \boldsymbol{y} \|_{2}^{2} = \underset{\boldsymbol{y} \sim \mathcal{D}}{\mathbb{E}} \frac{1}{2} \| (\mathbf{T} - \mathbf{I}) \boldsymbol{y} \|_{2}^{2} + \underset{\varepsilon \sim \mathcal{N}}{\mathbb{E}} \frac{1}{2} \| \mathbf{T} \varepsilon \|_{2}^{2}.$$

For
$$y = \lambda \mathbf{1}$$
, $\mathbb{E}(\lambda) = \mu$, $\operatorname{Var}(\lambda) = \theta^2$ and $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ get

$$\underset{\substack{\varepsilon \sim \mathcal{N} \\ \gamma \sim \mathcal{D}}}{\mathbb{E}} \frac{1}{2} \| \mathbf{T}(\boldsymbol{y} + \varepsilon) - \boldsymbol{y} \|_{2}^{2} = \frac{\mu^{2} + \theta^{2}}{2} \| (\mathbf{T} - \mathbf{I}) \mathbf{1} \|_{2}^{2} + \frac{\sigma^{2}}{2} \| \mathbf{T} \|_{F}^{2}.$$

Total model (once again)

$$\min_{\mathbf{R}\in\mathbb{R}^{k\times n}}\frac{\mu^2+\theta^2}{2}\|(\mathbf{T}_{\mathbf{R}}-\mathbf{I})\mathbf{1}\|_2^2+\frac{\sigma^2}{2}\|\mathbf{T}_{\mathbf{R}}\|_F^2$$

where

Bilevel:
$$\mathbf{T}_{\mathbf{R}} = (\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}$$

Unrolling: $\mathbf{T}_{\mathbf{R}} = \omega \sum_{j=0}^{N-1} (\mathbf{I} - \omega(\mathbf{I} + \mathbf{R}^{\mathsf{T}}\mathbf{R}))^{j}$

- For unrolling: Could also minimize over stepsize ω!
- Dependence on k (# rows of R)?
- Very nonlinear in R.
- First study *expressivity*, i.e. characterize the set of possible T_R

Bilevel learning and unrolling

A toy model

Expressivity

Results

Theorem

The set of possible unrolling denoisers $\bm{T}=(\bm{I}+\bm{R}^{T}\bm{R})^{-1}$ for $\bm{R}\in\mathbb{R}^{k\times n}$ is

$$\mathcal{A}_{k} = \left\{ \mathbf{T} \in \mathbb{R}^{n \times n} \mid \dim(\mathsf{Eig}(\mathbf{T}, \mathbf{1})) \geq n - k, \quad \mathbf{T}^{\mathsf{T}} = \mathbf{T}, \quad \mathbf{0} \prec \mathbf{T} \preccurlyeq \mathbf{I} \right\}$$

Proof.

- ► Spectral calculus: $T = f(R^T R)$, $f(s) = 1/(1 + s) \rightsquigarrow 0 \prec T \preccurlyeq I$
- $rank(R^T R) \leq k$ implies $dim(Eig(T, 1)) \geq n k$

Theorem

The set of possible bilevel denoisers $\mathbf{T} = \omega \sum_{i=0}^{N-1} (\mathbf{I} - \omega (\mathbf{I} + \mathbf{R}^{\mathsf{T}} \mathbf{R}))^{j}$ for

- $\mathbf{R} \in \mathbb{R}^{k imes n}$ is
 - 1. N even:

$$\mathcal{B}_{\mathsf{N},k,\omega} = \left\{ \mathbf{U} \in \mathbb{R}^{n imes n} \, \middle| egin{array}{l} \mathbf{U} = \mathbf{U}^{ op}, \, \dim(\mathsf{Eig}(\mathbf{U}, 1 - (1 - \omega)^{\mathsf{N}})) \geq n - k, \ \mathbf{U} \preccurlyeq [1 - (1 - \omega)^{\mathsf{N}}] \mathbf{I} \end{array}
ight\}$$

2. N odd: There exists a constant $c_{N,\omega}$ such that

$$\mathcal{B}_{N,k,\omega} = \left\{ \mathbf{U} \in \mathbb{R}^{n \times n} \middle| \begin{array}{l} \mathbf{U} = \mathbf{U}^{\top}, \operatorname{dim}(\operatorname{Eig}(\mathbf{U}, 1 - (1 - \omega)^{N})) \ge n - k, \\ c_{N,\omega}\mathbf{I} \preccurlyeq \mathbf{U} \end{array} \right\}$$

$$Roughly \, \omega \left(\frac{1}{2} + \frac{1}{N+1} \right) \le c_{N,\omega} \le \omega \left(\frac{1}{2} + \frac{1}{N} \left(\frac{1 + \log(N)/2}{2 - \frac{\log(N)}{N}} \right) \right)$$

Expressivity of unrolling - proof

Spectral calculus
$$T = f(R^T R)$$
 with

$$f(s) = \omega \sum_{j=0}^{N-1} (1 - \omega(1+s))^j = \frac{1 - (1 - \omega(1+s))^N}{1+s}$$

- ► $R^T R$ has eigenvalue 0 "at least n k times" $\rightsquigarrow T$ has eigenvalue $1 (1 \omega)^N$ "at least n k times"
- Upper and lower bounds on f imply eigenvalue bounds for T

- N even: $f(s) \leq f(0) = 1 (1 \omega)^N$, unbounded from below
- N odd: f unbounded from above, single global minimum $c_{N,\omega}$ with no explicit expression

Using expressivity results we can calculate optimal risks

$$\min_{\mathbf{R} \in \mathbb{R}^{k \times n}} \mathop{\mathbb{E}}_{\substack{\sigma \sim \mathcal{N} \\ y \sim \mathcal{D}}} \frac{1}{2} \|\mathbf{T}(y + \varepsilon) - y\|_2^2$$

explicitly

- For unrolling we can even learn (i.e. optimize) over stepsize ω
- Quite some mess of case distinctions and not very informative

Some results

Theorem

1. Best linear denoiser for our toy model is

$$\mathbf{T}^* = \frac{\mu^2 + \theta^2}{n(\mu^2 + \theta^2) + \sigma^2} \mathbf{1}_{n \times n} \quad \text{with} \quad \mathcal{E}(\mathbf{T}^*) = \frac{\sigma^2}{2} \frac{n(\mu^2 + \theta^2)}{n(\mu^2 + \theta^2) + \sigma^2}$$

2. Best bilevel denoiser does not exist, but

$$\inf_{\mathbf{T} = (\mathbf{I} + \mathbf{R}^{\mathsf{T}} \mathbf{R})^{-1}} \mathcal{E}(\mathbf{T}) = \begin{cases} \frac{\sigma^2}{2} (n - k) & : \quad k < n \\ \frac{\sigma^2}{2} \frac{n(\mu^2 + \theta^2)}{n(\mu^2 + \theta^2) + \sigma^2} & : \quad n = k \end{cases}$$

- Best unrolling denoisers exist but is it a mess of a formula... (results different for N even or odd and k < n or k = n). For N either even or odd, best risk does not depend on N if optimized over stepsize ω.
- \rightsquigarrow Calculate best risks numerically and consider risk ratios

Theorem

1. Best linear denoiser for our toy mod

$$\mathbf{T}^* = rac{\mu^2 + heta^2}{n(\mu^2 + heta^2) + \sigma^2} \mathbf{1}_{n imes n}$$
 with

2. Best bilevel denoiser does not exist,

$$\inf_{\mathbf{T}=(\mathbf{I}+\mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}} \mathcal{E}(\mathbf{T}) = \begin{cases} \frac{\sigma^2}{2} (n - \frac{\sigma^2}{2}) \\ \frac{\sigma^2}{2} \frac{n(n-1)}{n(n-1)} \end{cases}$$

Best unrolling denoisers exist but is it a mession a formula...
 (results different for N even or odd and k < n or k = n).
 For N either even or odd, best risk does not depend on N if optimized over stepsize ω.

 \rightsquigarrow Calculate best risks numerically and consider risk ratios

Also analyzed slightly more general data model:

For
$$j = 1, ..., n$$
: $y_j \sim \mathcal{D}$ i.i.d.
 $\mathbb{E}(y_j) = \mu$, $Var(y_j) = \theta^2$

Different bias-variance decomposition

$$\begin{split} & \underset{\substack{\varepsilon \sim \mathcal{N} \\ \gamma \sim \mathcal{D}}}{\mathbb{E}} \frac{1}{2} \| \mathbf{T}(\boldsymbol{y} + \varepsilon) - \boldsymbol{y} \|_{2}^{2} = \frac{\mu^{2}}{2} \| (\mathbf{T} - \mathbf{I}) \mathbf{1} \|_{2}^{2} + \frac{\theta^{2}}{2} \| \mathbf{T} - \mathbf{I} \|_{F}^{2} + \frac{\sigma^{2}}{2} \| \mathbf{T} \|_{F}^{2} \\ & =: \mathcal{E}_{\text{i.i.d}}(\mathbf{T}) \end{split}$$

Related best risks also pretty messy...

Bilevel learning and unrolling

A toy model

Expressivity

Results

Risk ratios with best linear denoiser

 $n = 500, \mu = 1, \sigma = 0.9$:

Risk ratios between bilevel and unrolling

$$n = 500, \mu = 1$$
:

→ unrolling generally better than bilevel

- Our model is very simple how close to reality are the results?
- Experiment on speech data.
 - Data model:
 - y clean speech (part of IEEE speech corpus)
 - $x = y + \varepsilon$ with Gaussian noise, $n = 320, \sigma = 0.1$
 - Lower level problem and algorithm exactly like here.
 - Upper level problem: Empirical risk with least squares loss.
 - Numerical optimization with TensorFlow, standard optimization tricks applied (initialization, learning rates optimized...)
 - Also optimized over stepsize $\omega(\alpha) = \log(1 + \exp(\alpha))$ over α .

Reality check, observations

- With learned stepsize, MSE basically independent of depth N, as predicted
- Without learned stepsizes no dependence on parity, contrary to prediction
- Without learned stepsizes: Worse MSE for deeper unrolling

Optimal risks according to theory with parameters as in experiment:

Why don't we see the dependence on parity?

- Most theoretical findings confirmed.
- What about parity?
- Conjecture: Good denoisers for odd depth hidden in sharp local minima!

In k = n = 1, i.e. $\mathbf{R} = r \in \mathbb{R}$:

Thanks for listening!

Learning Variational Models with Unrolling and Bilevel Optimization Christoph Brauer, Niklas Breustedt, Timo de Wolff, Dirk A. Lorenz https://arxiv.org/abs/2209.12651

Bilevel learning and unrolling

A toy model

Expressivity

Results

