Vascular segmentation based on variational approach

Odyssée Merveille

Workshop DIPOpt 27/11/2023

CREATIS

Odyssée Merveille

Assistant professor at CREATIS Laboratory

Research topic

Detection and modeling of vascular network in 3D images

Deep learning and variational approaches

Pulmonary vascular network

Why study the vascular networks ?

Cardiovascular diseases (CVDs) are the leading cause of death worldwide

CVDs include :

- Coronary artery diseases
- Aneurysms
- Strokes
- Pulmonary embolism

Mostly caused by atherosclerosis

build up of a lipidic plaque in the vessel wall

Why study the vascular networks ?

Cardiovascular diseases (CVDs) are the leading cause of death worldwide

CVDs include :

- Coronary artery diseases
- Aneurysms
- Strokes
- Pulmonary embolism

Mostly caused by atherosclerosis

build up of a lipidic plaque in the vessel wall

Diagnosis and treatment require the examination of the patients' vascular network.

Vascular imaging

Several imaging modalities reveal blood vessels :

- Magnetic Resonance Angiography (MRA)
- Computed Tomography Angiography (CTA)
- Cathether Angiography
- Vascular Ultrasound

MIP of a brain MRA

Slice of a pulmonary CTA

What can we do with image processing ?

- The vascular system is a complex network of multi-scale and tortuous blood vessels
- Visual inspection of vascular images is :
 - Time-consuming
 - Expert-dependent
 - Prone to fatigue-related error
 - Lacking quantitative data

Slice of a pulmonary CTA

What can we do with image processing ?

- The vascular system is a complex network of multi-scale and tortuous blood vessels
- Visual inspection of vascular images is :
 - Time-consuming
 - Expert-dependent
 - Prone to fatigue-related error
 - Lacking quantitative data

Slice of a pulmonary CTA

Image processing may provide automatic tools for :

- Computer-aided diagnosis
- Computer-aided prognosis
- Computer-aided decision support

PERSEVERE project

Pulmonary Embolism Risk Stratification basEd on Vascular nEtwoRk modElling

PERSEVERE project

Pulmonary Embolism Risk Stratification basEd on Vascular nEtwoRk modElling

Pulmonary embolism : obstruction of a pulmonary artery by a blood clot

PERSEVERE project

Pulmonary Embolism Risk Stratification basEd on Vascular nEtwoRk modElling

- Pulmonary embolism : obstruction of a pulmonary artery by a blood clot
- Upon diagnosis, doctors evaluate the patient prognosis based on established guidelines.
 - Low risk of death
 - Moderate risk of death
 - High risk of death

PERSEVERE project

Pulmonary Embolism Risk Stratification basEd on Vascular nEtwoRk modElling

Pulmonary embolism : obstruction of a pulmonary artery by a blood clot

Upon diagnosis, doctors evaluate the patient prognosis based on established guidelines.

- Low risk of death
- Moderate risk of death
- High risk of death

Patient management depends on this evaluation called **risk stratification**.

PERSEVERE - Current risk stratification

The patient undergoes :

- a pulmonary CT scan (CTPA)
- > a blood test to assess the levels of functional biomarkers

PERSEVERE - Current risk stratification

The patient undergoes :

- a pulmonary CT scan (CTPA)
- > a blood test to assess the levels of functional biomarkers

A radiologist measures a morphological biomarker manually from the CTPA

PERSEVERE - Current risk stratification

The patient undergoes :

- a pulmonary CT scan (CTPA)
- > a blood test to assess the levels of functional biomarkers
- A radiologist measures a morphological biomarker manually from the CTPA
 - A prognosis is established based on these biomarkers

PERSEVERE - Problems and objectives

Limitations :

- No morphological biomarker directly related to the embolism
- \blacktriangleright CTPA not synchronized to the heart rate \rightarrow RV/LV ratio is unreliable

PERSEVERE - Problems and objectives

Limitations :

- No morphological biomarker directly related to the embolism
- \blacktriangleright CTPA not synchronized to the heart rate \rightarrow RV/LV ratio is unreliable

Goals of the PERSEVERE project :

 Build risk stratification models based on automatically extracted morphological biomarkers

Methodology

Pulmonary vascular tree modelling

- Develop an accurate and topologically correct vascular segmentation approach
- Develop a precise pixel-wise thrombus segmentation approach
- Feature-enhanced graph of the pulmonary vascular tree

Methodology

Risk stratification model

- Extract clinically relevant morphological biomarkers from the graph
- Develop a risk stratification model that can be used in a clinical context : robust, automated, interpretable

Analysis of vascular networks

Common first steps of the analysis of vascular network:

Analysis of vascular networks

Common first steps of the analysis of vascular network:

 \rightarrow An accurate and connected segmentation is key

Vascular segmentation challenges

Geometrically complex

- thin, elongated, and tortuous structures
- Iow-contrast at the extremities
- multi-scale
- organized in networks
- scattered in the image

Extensive and accurate annotation extremely costly

- 2D annotation of intrinsically 3D structures
- huge inter-expert variability

Complex qualitative and quantitative analysis

Segmentation of vascular networks

More than 30 years of research [1-2]

- Vesselness-based
- Tracking
- Deformable models
- Machine learning
- Deep learning

[1] Lesage et al., MedIA 2009
 [2] Moccia et al., CMPB, 2018

Segmentation of vascular networks

More than 30 years of research [1-2]

- Vesselness-based
- Tracking
- Deformable models
- Machine learning
- Deep learning
- Focus of my research :
 - Preserve the vascular network connectivity
 - Learn vascular segmentation with limited labels

[1] Lesage et al., MedIA 2009
 [2] Moccia et al., CMPB, 2018

- 1. Directional total variation
- 2. Learning a reconnecting regularization term
- 3. Deep learning-based vascular network segmentation

1. Directional total variation

2. Learning a reconnecting regularization term

3. Deep learning-based vascular network segmentation

The **Chan-Vese binary** segmentation model [1] is :

$$u^{\star} = \underset{u,C}{\operatorname{argmin}} \mu.\operatorname{Length}(C) + \nu.\operatorname{Area}(\operatorname{inside}(C)) + \lambda_1 \int_{\operatorname{inside}(C)} |f(x) - c_1|^2 dx + \lambda_2 \int_{\operatorname{outside}(C)} |f(x) - c_2|^2 dx.$$

where,

- $f \in \mathbb{R}^{\mathbb{N}^2}$ is a 2D-grayscale image to be segmented
- C is the boundary of the segmentation
- \Box c_1 and c_2 are the forward and background intensity of f.
- \blacksquare μ , ν , λ_1 , $\lambda_2 \in \mathbb{R}$ parameters

1

The **Chan-Vese binary** segmentation model [1] is :

$$u^{\star} = \underset{u,C}{\operatorname{argmin}} \mu.\operatorname{Length}(C) + \nu.\operatorname{Area(inside(C))} + \lambda_1 \int_{\operatorname{inside(C)}} |f(x) - c_1|^2 \mathrm{d}x + \lambda_2 \int_{\operatorname{outside(C)}} |f(x) - c_2|^2 \mathrm{d}x.$$

where,

- $f \in \mathbb{R}^{\mathbb{N}^2}$ is a 2D-grayscale image to be segmented
- C is the boundary of the segmentation
- \Box c_1 and c_2 are the forward and background intensity of f.
- \blacksquare μ , ν , λ_1 , $\lambda_2 \in \mathbb{R}$ parameters

\rightarrow Non-convex problem

[1] Chan et al., TIP 2001

Convexification of the Chan-Vese model [1] :

$$u^{\star} = \underset{u \in [0,1]^{\mathbb{N}^2}}{\operatorname{argmin}} < c_f, u >_F + \lambda ||\nabla u||_{2,1},$$

with :

c_f(x) =
$$((c_1 - f(x))^2 - (c_2 - f(x))^2$$

$$d < u, v >_F$$
 the Frobenius product

 $||\nabla u||_{2,1}$ the total variation

$$u^{\star} = \operatorname*{argmin}_{u \in [0,1]^{\mathbb{N}^2}} \underbrace{\langle c_f, u \rangle_F}_{g(u)} + \underbrace{\lambda ||\nabla u||_{2,1}}_{h(u)},$$

with :

Solved by proximal splitting algorithm :

 $u_{n+1} = \operatorname{prox}_{\gamma h}(u_n - \gamma \nabla g(u_n)), \quad \gamma \in]0, +\infty[a \text{ step-size parameter}]$

$$u^{\star} = \operatorname*{argmin}_{u \in [0,1]^{\mathbb{N}^2}} \underbrace{\langle c_f, u \rangle_F}_{g(u)} + \underbrace{\lambda ||\nabla u||_{2,1}}_{h(u)},$$

with :

Solved by proximal splitting algorithm :

 $u_{n+1} = \operatorname{prox}_{\gamma h}(u_n - \gamma \nabla g(u_n)), \quad \gamma \in]0, +\infty[a \text{ step-size parameter}]$

prox_{γh} is computed with the Fast Gradient Projection (FGP) algorithm [1]

[1] Beck et al., TIP 2009

Problem for thin structures

Results of the Chan et al. model :

 \rightarrow Thin structures vanish

Directional total variation idea

$$TV(u) = \sum_{i} \sum_{j} |\sqrt{(u_{ij}^{x})^{2} + (u_{ij}^{y})^{2}}|$$

image

fotal variation (TV)

Directional total variation idea

Direction TV goal :

- Only regularize in the direction of the thin structures
- Denoise and tends to reconnect thin structures

Mixed gradient

Classic gradient:

$$abla u(\mathbf{x}) = (u(\mathbf{x} + \mathbf{e}_i) - u(\mathbf{x}))_{i=1}^n$$

Directional gradient:

$$abla_{\mathbf{d}} u(\mathbf{x}) = (u(\mathbf{x} + \mathbf{d}(\mathbf{x})) - u(\mathbf{x})).\mathbf{d}(\mathbf{x})$$

Mixed gradient

Classic gradient:

$$abla u(\mathbf{x}) = (u(\mathbf{x} + \mathbf{e}_i) - u(\mathbf{x}))_{i=1}^n$$

Directional gradient:

$$abla_{\mathbf{d}} u(\mathbf{x}) = (u(\mathbf{x} + \mathbf{d}(\mathbf{x})) - u(\mathbf{x})).\mathbf{d}(\mathbf{x})$$

Mixed gradient:

$$\nabla_m u(\mathbf{x}) = \begin{cases} \nabla u(\mathbf{x}) & \text{if } x \notin \text{thin structure} \\ \nabla_\mathbf{d} u(\mathbf{x}) & \text{otherwise} \end{cases}$$

Directional total variation

Total variation

 $\mathsf{TV}(u) = ||\nabla u||_{2,1}$

Directional total variation [1]

 $\mathsf{dTV}(u) = ||\nabla_m u||_{2,1},$

where $\nabla_m u(x)$ the a mixed gradient defined by:

 $\nabla_m u(x) = \begin{cases} \nabla_d u(x) & \text{ if } x \in \text{curvilinear structure} \\ \nabla u(x) & \text{ otherwise} \end{cases}$

and
Directional total variation

Total variation

 $\mathsf{TV}(u) = ||\nabla u||_{2,1}$

Directional total variation [1]

 $\mathsf{dTV}(u) = ||\nabla_m u||_{2,1},$

where $\nabla_m u(x)$ is a mixed gradient defined by:

$$\nabla_m u(x) = \begin{cases} \nabla_d u(x) & \text{if } x \in \text{curvilinear structure} \\ \nabla u(x) & \text{otherwise} \end{cases}$$

and

Directional total variation

Lamy et al., TIP 2022

Directional total variation

Lamy et al., TIP 2022

Directional total variation - Results

directional TV

label

ΤV

dTV

тν

box 1

box 2

box 3

- Regularization term adapted to thin structures like vessels
- Works in a unsupervised variational segmentation framework
- Improves the connectivity of segmentation results
- Reconnection power depends on vesselness results

1. Directional total variation

2. Learning a reconnecting regularization term

3. Deep learning-based vascular network segmentation

Difficult to enforce connectivity with an explicit regularization term

 \longrightarrow What about learning it ?

Difficult to enforce connectivity with an explicit regularization term

 \longrightarrow What about learning it ?

Keep the segmentation framework label-free for the target dataset

 \longrightarrow Plug & Play

Difficult to enforce connectivity with an explicit regularization term

 \longrightarrow What about learning it ?

Keep the segmentation framework label-free for the target dataset

 \longrightarrow Plug & Play

Connectivity :

- ▶ Geometric property → may be learned based on synthetic data
- Binary property \longrightarrow easy to plug in a segmentation framework

Dataset of disconnected vascular structures

Synthetic images of vascular structures

- 2D : CCO algorithm [1]
- 3D : VascuSynth [2]

Vascusynth

Realistic disconnection algorithm

- The thinner the vessel the longer the disconnection
- Disconnection with random shapes
- Addition of small non vessel structures

[1] Kerautret et al "OpenCCO [...]" IPOL 2023

[2] Hamarneh et al "VascuSynth[...]" CMIG 2010

Learning to reconnect

2D or 3D Residual UNet

- ▶ 96ⁿ patch, 4-layer deep
- Dice + Weighted Dice loss around the disconnections
- On-the fly data augmentation with rotation and flip

3D reconnection example, added fragments in red

Segmentation model

$$u^{\star} = \operatorname*{argmin}_{u} < c_{f}, u >_{F} + \lambda ||\nabla u||_{2,1} + \mathsf{E}_{\mathsf{reco}}(u)$$

Forward-Backward Primal Dual reformulation [1]

$$u^* = \underset{u}{\operatorname{argmin}} h(u, f) + g(Lu) + k(u)$$

with h, g, k lower-semicontinuous and g non-differentiable s.t:

$$h(u, f) = \langle u, c_f \rangle_F$$

$$g(u) = \lambda ||u||_{2,1}$$

$$L = \nabla$$

$$k(u) = \begin{cases} \mathsf{E}_{\mathsf{reco}}(u) & \text{if } u \text{ almost binary} \\ \iota_{u \in [0,1]^N}(u) & \text{otherwise} \end{cases}$$

Forward-Backward Primal Dual algorithm

Set
$$u_0 \in \mathbb{R}^N$$
 and $v_0 \in \mathbb{R}^K$
Set $(\tau, \sigma) \in]0, +\infty [^2$
For $i = 0, 1, \dots$

$$\begin{vmatrix} p_i = \operatorname{prox}_{\tau k} \left(u_i - \tau \left(\nabla h \left(u_i \right) + L^{\top} v_i \right) \right) \\ q_i = \operatorname{prox}_{\sigma g^*} \left(v_i + \sigma L \left(2p_i - u_i \right) \right) \\ \text{Set } \lambda_i \in] 0, +\infty[\\ \left(u_{i+1}, v_{i+1} \right) = \left(u_i, v_i \right) + \lambda_i \left(\left(p_i, q_i \right) - \left(u_i, v_i \right) \right) \end{aligned}$$

Forward-Backward Primal Dual algorithm

$$p_{i} = \operatorname{prox}_{\tau k} \left(u_{i} - \tau \left(\nabla h \left(u_{i} \right) + L^{\top} v_{i} \right) \right)$$
$$q_{i} = \operatorname{prox}_{\sigma g^{*}} \left(v_{i} + \sigma L \left(2p_{i} - u_{i} \right) \right)$$

with :

Forward-Backward Primal Dual algorithm

$$p_{i} = \operatorname{prox}_{\tau k} \left(u_{i} - \tau \left(\nabla h \left(u_{i} \right) + L^{\top} v_{i} \right) \right)$$
$$q_{i} = \operatorname{prox}_{\sigma g^{*}} \left(v_{i} + \sigma L \left(2p_{i} - u_{i} \right) \right)$$

with :

then :

$$\operatorname{prox}_{\sigma g^*}(u) = \frac{\lambda \sigma^{-1}}{\max(||\frac{u}{\sigma}||_2, \lambda \sigma^{-1})}$$

Forward-Backward Primal Dual algorithm

$$p_{i} = \operatorname{prox}_{\tau k} \left(u_{i} - \tau \left(\nabla h \left(u_{i} \right) + L^{\top} v_{i} \right) \right)$$
$$q_{i} = \operatorname{prox}_{\sigma g^{*}} \left(v_{i} + \sigma L \left(2p_{i} - u_{i} \right) \right)$$

with :

then :

$$\operatorname{prox}_{\sigma g^*}(u) = \frac{\lambda \sigma^{-1}}{\max(||\frac{u}{\sigma}||_2, \lambda \sigma^{-1})}$$

$$\operatorname{prox}_{\tau k}(u) = \begin{cases} G_{\operatorname{reco}} & \text{if } u \text{ almost binary} \\ \mathcal{P}(u) & \text{otherwise} \end{cases}$$

$$\mathcal{P}(u) = \begin{cases} u & \text{if } u \in [0, 1] \\ 0 & \text{if } u < 0 \\ 1 & \text{if } u > 0 \end{cases}$$

Algorithm 1: Plug-and-play segmentation with the learned reconnecting operator

Data: $\alpha \in \mathbb{N}^{+*}$ $u_0 \in \mathbb{R}^{\mathbb{N}^2}, v_0 \in \mathbb{R}^{2\mathbb{N}^2}, (\tau, \sigma) \in]0, +\infty[^2, \lambda_n \in]0, +\infty[$ for i > 1 do $p_i = (u_i - \tau (\nabla h(u_i) + L^T v_i))$ if $i < \alpha$ then $p_i = \operatorname{prox}_{\sigma \iota_{[0,1]N}}(p_i)$ else $p_i = G_{reco}(proj(p_i))$ $\overrightarrow{q_i} = \operatorname{prox}_{\sigma g^*} \left(v_i + \sigma L(2p_i - u_i) \right)$ $\left(u_{i+1}, v_{i+1} \right) = \left(u_i, v_i \right) + \lambda_i \left((p_i, q_i) - (u_i, v_i) \right)$

How to evaluate vascular segmentation quantitatively ?

How to evaluate vascular segmentation quantitatively ?

How to evaluate vascular segmentation quantitatively ?

centerline

centerline-based overlap metric :

 $CIDice_1 < CIDice_3 \leqslant CIDice_2$

How to evaluate vascular segmentation quantitatively ?

centerline

error number of connected components: $\epsilon_{\beta_{0,1}} = \epsilon_{\beta_{0,2}} < \epsilon_{\beta_{0,3}}$

 $\begin{aligned} & \mathsf{ClDice}_1 < \mathsf{ClDice}_2 \leqslant \mathsf{ClDice}_2 \\ & \epsilon_{\beta_0 \, 1} = \epsilon_{\beta_0 \, 2} < \epsilon_{\beta_0 \, 3} \end{aligned}$

2D Dataset

Training dataset

- 20 Synthetic images
- CCO algorithm [1]

Test dataset

- 40 retinal images
- Drive dataset [2]

Kerautret et al, IPOL, 2023
 Niemeijer et al, SPIE Medical Imaging, 2004

Reconnecting model (G_{reco}) results

	Before reconnection	After reconnection
Dice	0.974 ±0.004	0.983 ±0.003
ϵ_{eta_0}	107.4 ± 71.88	$17.30\ {\pm}12.69$

Before reconnection

After reconnection

Results on the drive dataset

	Dice	CIDice	ϵ_{eta_0}
TV	0.747 ±0.036	0.730 ±0.044	24.22 ±15.89
dirTV	0.748 ±0.041	$0.728\ {\pm}0.049$	$25.83\ {\pm}22.35$
ours	0.759 ±0.036	$\textbf{0.744} \pm 0.045$	2.685 ± 2.77

2D segmentation results

image

dirTV

3D datasets

Training dataset

- 315 Synthetic images
- VascuSynth [1]

Test dataset

- 19 liver CT-scans
- IRCAD dataset [2]

[1] Hamarneh et al "VascuSynth[...]" CMIG 2010

[2] https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/

Results on the IRCAD dataset

	Dice	CIDice	ϵ_{eta_0}
TV	0.450 ±0.129	$0.533\ {\pm}0.166$	2.25 ± 3.30
dirTV	0.462 ± 0.105	$0.562\ {\pm}0.106$	1.68 ± 2.26
ours	0.507 ±0.102	0.585 ± 0.079	$\textbf{0.75} \pm 0.43$

3D segmentation results

Results on the IRCAD dataset

Conclusion and limitations

Contributions

- Successfully learn a regularization term enforcing connectivity
- Plug this learned regularization inside a variational segmentation framework
- Competitive unsupervised vascular segmentation results
- Significantly improves the segmentation connectivity

Limitations

- Huge gap w.r.t. supervised learning
 - 2D Dice : 0.759 v.s 0.99 / 3D Dice : 0.5 v.s. 0.9
- Data fidelity term
- Purely geometrical reconnecting prior

- 1. Directional total variation
- 2. Learning a reconnecting regularization term
- 3. Deep learning-based vascular network segmentation

Deep Learning-based vascular segmentation

 Most research focus on fully supervised approaches

Deep Learning-based vascular segmentation

- Most research focus on fully supervised approaches
- Labeling of vascular networks is extremely time-consuming
- Volume-segmented labeled datasets are rare and small

cerebral arterial vascular network labeling

Deep Learning-based vascular segmentation

- Most research focus on fully supervised approaches
- Labeling of vascular networks is extremely time-consuming
- Volume-segmented labeled datasets are rare and small

cerebral arterial vascular network labeling

How to use deep learning-based vascular segmentation with few labels ?

- \longrightarrow Semi-supervised learning
- \longrightarrow Domain adaptation
Semi-supervised learning

Training dataset : a few labeled samples + many unlabeled samples

Most architectures based on consistency losses

Example of semi-supervised learning

Mean Teacher (MT) [1] (figure from [2])

[1] A Tarvainen et al., NeurIPS, 2017[2] Yu et al., MICCAI 2019

- Training and test dataset : Bullitt
 - ► Total in the dataset : 109 unlabeled and 34 labeled

Dice results for different semi-supervised segmentation strategies

num. labeled data	1 (1%)	2	3	5	9	18 (20%)
U-Net supervised	0.55	0.66	0.66	0.69	0.69	0.71

Training and test dataset : Bullitt

Total in the dataset : 109 unlabeled and 34 labeled

Dice results for different semi-supervised segmentation strategies

num. labeled data	1 (1%)	2	3	5	9	18 (20%)
U-Net supervised	0.55	0.66	0.66	0.69	0.69	0.71
MT [1]	0.63	0.69	0.70	0.72	0.71	0.72
UA-MT [2]	0.63	0.69	0.70	0.71	0.71	0.72
SASSnet [3]	0.63	0.68	0.70	0.71	0.72	0.72
DTC [4]	0.62	0.68	0.69	0.71	0.72	0.72
MC-NET [5]	0.64	0.66	0.70	0.70	0.71	0.72

- [1] Tarvainen et al., NeurIPS, 2017
- [3] Zhang et al, MICCAI 2020
- [5] Wu et. al, MedIA, 2022

- [2] Yu et al., MICCAI, 2019
- [4] Luo et. al, AAAI, 2021

Unsupervised Domain Adaptation (UDA)

Training dataset : labeled target samples + unlabeled source samples

<u>Goal</u> : reduce domain-shift

What is domain-shift ?

The distribution of the source data differs from the distribution of the target data

Origin

- Image modality
- Acquisition parameters / Manufacturer
- Subject / Patient population
- Label quality

Domain-shift in cerebral vascular imaging

Same organ / same modality

Bullitt [1]

Brava [2]

 \longrightarrow Is domain adaptation dedicated architecture required for same modality / same organ ?

[1] Aylward et al., TMI, 2002
[2] Wright et. al, NeuroImage, 2013

Training dataset : Brava

<u>Test dataset :</u> Bullitt

	Naive	Fully supervised	UA-MT[1]	DTC[2]	MC-Net[3]
Dice	0.384	0.750	0.428	0.457	0.408

Yu et al., MICCAI, 2019
Luo et. al, AAAI, 2021
Wu et. al, MedIA, 2022

Training dataset : Brava

<u>Test dataset :</u> Bullitt

	Naive	Fully supervised	UA-MT[1]	DTC[2]	MC-Net[3]
Dice	0.384	0.750	0.428	0.457	0.408

 \longrightarrow Domain-shift more important than we thought

Yu et al., MICCAI, 2019
Luo et. al, AAAI, 2021
Wu et. al, MedIA, 2022

Brava

Bullitt

Brava

Bullitt —> Probably high label-shift

Conclusion - Perspectives

Proposed several vascular segmentation strategies to :

- Enforce the segmentation connectivity
- Work with limited labeled data

Variational segmentation

- Unsupervised
- Limited performances due to data fidelity term

Deep learning-based segmentation

Semi-supervised learning yield encouraging results

Conclusion - Perspectives

Proposed several vascular segmentation strategies to :

- Enforce the segmentation connectivity
- Work with limited labeled data

Variational segmentation

- Unsupervised
- Limited performances due to data fidelity term

Deep learning-based segmentation

Semi-supervised learning yield encouraging results

Perspectives

- Post-processing reconnecting network
- Include topological constraints [1] in semi-supervised learning
- Study semi-supervised domain adaptation strategies (SSDA)
- Semi-automatic plugin for vascular network labeling [2]

[1] Rougé et al., arXiV, 2023[2] Lamy et al., JOSS, 2022

Any questions ?