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Why study the vascular networks ?

Cardiovascular diseases (CVDs) are the leading cause of death
worldwide

B CVDs include :

> Coronary artery diseases

> Aneurysms blood flow
> Strokes bloogfow _ Cross-seetion
» Pulmonary embolism <

B Mostly caused by atherosclerosis
build up of a lipidic plaque in the

Narrowed plaque
artery

vessel wall



Why study the vascular networks ?

Cardiovascular diseases (CVDs) are the leading cause of death
worldwide
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> Coronary artery diseases

> Aneurysms blood flow
> Strokes blooq fow Cross-seetion

» Pulmonary embolism

B Mostly caused by atherosclerosis
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Narrowed plaque
artery

Diagnosis and treatment require the examination of the
patients’ vascular network.



Vascular imaging

B Several imaging modalities reveal blood vessels :
> Magnetic Resonance Angiography (MRA)
» Computed Tomography Angiography (CTA)
> Cathether Angiography
» Vascular Ultrasound

MIP of a brain MRA Slice of a pulmonary CTA




What can we do with image processing 7

B The vascular system is a complex
network of multi-scale and
tortuous blood vessels

B Visual inspection of vascular
images is :
» Time-consuming
» Expert-dependent )
> Prone to fatigue-related error Slice of a pulmonary CTA
> Lacking quantitative data




What can we do with image processing 7

B The vascular system is a complex
network of multi-scale and
tortuous blood vessels

B Visual inspection of vascular
images is :
» Time-consuming
» Expert-dependent )
> Prone to fatigue-related error Slice of a pulmonary CTA
> Lacking quantitative data

B Image processing may provide automatic tools for :
» Computer-aided diagnosis
» Computer-aided prognosis
» Computer-aided decision support
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PERSEVERE - Context

B PERSEVERE project ©
Pulmonary Embolism Risk Stratification basEd on anr

Vascular nEtwoRk modElling

B Pulmonary embolism : obstruction of a pulmonary artery by
a blood clot

B Upon diagnosis, doctors evaluate the patient prognosis based
on established guidelines.
> Low risk of death
> Moderate risk of death
> High risk of death

Patient management depends on this evaluation called risk
stratification.




PERSEVERE - Current risk stratification
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blood analysis

B The patient undergoes :
> a pulmonary CT scan (CTPA)
P> a blood test to assess the levels of functional biomarkers
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blood analysis

B The patient undergoes :
» a pulmonary CT scan (CTPA)
» a blood test to assess the levels of functional biomarkers

B A radiologist measures a morphological biomarker manually
from the CTPA

B A prognosis is established based on these biomarkers



PERSEVERE - Problems and objectives
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PERSEVERE - Problems and objectives
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blood analysis

Automatic morphological
biomarkers extraction

BNP and

troponin
levels

B Limitations :

>

vascular and
obstruction
biomarkers

Risk
stratification
model

High risk

Moderate risk

Low risk

» No morphological biomarker directly related to the embolism
» CTPA not synchronized to the heart rate — RV/LV ratio is
unreliable

B Goals of the PERSEVERE project :

» Build risk stratification models based on automatically
extracted morphological biomarkers



Methodology

WP1: Pulmonary vascular vascular
tree modelling segmentation

CTPA PVT graph-based

segmentation

Pulmonary vascular tree modelling

B Develop an accurate and topologically correct vascular
segmentation approach

B Develop a precise pixel-wise thrombus segmentation approach

B Feature-enhanced graph of the pulmonary vascular tree



Methodology

WP1: Pulmonary vascular
tree modelling

vascular
segmentation

CTPA %"’k

PE
segmentation

PVT graph-based
model

WP2 : Morphological biomarkers
extraction and design of
risk stratification models

obstruction-related

biomarkers

vascular alteration

biomarkers

Risk

( stratification

functional
biomarkers | =clels

Risk stratification model

BNP and

troponin

model

Low Moderate

High
risk ris|

B Extract clinically relevant morphological biomarkers from the

graph

B Develop a risk stratification model that can be used in a
clinical context : robust, automated, interpretable



Analysis of vascular networks

B Common first steps of the analysis of vascular network:

Feature-enhanced graph
representation




Analysis of vascular networks

B Common first steps of the analysis of vascular network:

Feature-enhanced graph
representation

Mesh
— An accurate and connected segmentation is key



Vascular segmentation challenges

B Geometrically complex

> thin, elongated, and tortuous structures
low-contrast at the extremities
multi-scale
organized in networks
scattered in the image

vVvyvyy

B Extensive and accurate annotation extremely costly

» 2D annotation of intrinsically 3D structures
» huge inter-expert variability

B Complex qualitative and quantitative analysis



Segmentation of vascular networks

More than 30 years of research [1-2]

B Vesselness-based
B Tracking

B Deformable models
B Machine learning

B Deep learning

[1] Lesage et al., MedIA 2009
[2] Moccia et al., CMPB, 2018



Segmentation of vascular networks

More than 30 years of research [1-2]

B Vesselness-based
B Tracking

B Deformable models
B Machine learning

B Deep learning

B Focus of my research :
> Preserve the vascular network connectivity

» Learn vascular segmentation with limited labels

[1] Lesage et al., MedIA 2009
[2] Moccia et al., CMPB, 2018
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Variational segmentation
The Chan-Vese binary segmentation model [1] is :

u* = argmin p.Length(C) + v.Area(inside(C))

u,C

—i—)\l/ |1f(x) — c1|?dx
inside(C)

+ )\2/ £(x) — co|?dx.
outside(C)

where,
BrecRYisa 2D-grayscale image to be segmented
B C is the boundary of the segmentation
B ¢ and ¢, are the forward and background intensity of f.

B u, v, A1, A2 € R parameters



Variational segmentation
The Chan-Vese binary segmentation model [1] is :

u* = argmin p.Length(C) + v.Area(inside(C))

u,C

—i—)\l/ |1f(x) — c1|?dx
inside(C)

+ )\2/ £(x) — co|?dx.
outside(C)

where,
BrecRYisa 2D-grayscale image to be segmented
B C is the boundary of the segmentation
B ¢ and ¢, are the forward and background intensity of f.

B u, v, A1, A2 € R parameters

— Non-convex problem

[1] Chan et al., TIP 2001



Variational segmentation

Convexification of the Chan-Vese model [1] :

u* = argmin < cr,u > +\||Vul|21,
uel0,1]N?
with :
B cr(x) = ((a = f(x))? — (e — f(x))?
B < u,v >F the Frobenius product
W ||Vul|2,1 the total variation

[1] Chan et al, SIAP 2006



Variational segmentation

g(u) h(u)
u* = argmin < ¢, u >+ A|Vul|21,

uel0,1]¥?
with :
> g(u) convex and differentiable
» h(u) convex but non-differentiable

B Solved by proximal splitting algorithm :

Un+1 = proxXyp(un —yVg(un)), v €0, +oc[a step-size parameter



Variational segmentation

g(u) h(u)
u* = argmin < ¢, u >+ A|Vul|21,

uel0, 1N
with :
> g(u) convex and differentiable
» h(u) convex but non-differentiable

B Solved by proximal splitting algorithm :

Un+1 = proxXyp(un —yVg(un)), v €0, +oc[a step-size parameter

B prox,, is computed with the Fast Gradient Projection (FGP)
algorithm [1]

[1] Beck et al., TIP 2009



Problem for thin structures

B Results of the Chan et al. model :

— Thin structures vanish



Directional total variation idea

V() =) Z |/ (u)? + (u)?]

i

O
L

image Total variation
(TV)

Merveille et al TIP 2019



Directional total variation idea

V() = 3 3 1w+ (]

O O
L. L.

image Total variation Directional TV
(TV) (dTV)
B Direction TV goal :

» Only regularize in the direction of the thin structures
» Denoise and tends to reconnect thin structures

Merveille et al TIP 2019



Mixed gradient

Classic gradient:

Vu(x) = (u(x +e)— u(x));’:l

Directional gradient:

Vau(x) = (u(x + d(x)) — u(x)).d(x)

€1 4

Merveille et al TIP 2019



Mixed gradient

Classic gradient:

Vu(x) = (u(x +e)— u(x));’:l

A
Directional gradient:
x4/ d(x)
Vau(x) = (u(x + d(x)) — u(x)).d(x) eq |
Mixed gradient: - >

Vu(x) if x ¢ thin structure
Vau(x) otherwise

Vmu(x) = {

Merveille et al TIP 2019



Directional total variation

B Total variation
TV(u) = [|Vul]21

B Directional total variation [1]

dTV(v) = [[Vmull2,1,
where V ,u(x) the a mixed gradient defined by:

Vqu(x) if x € curvilinear structure

Vmu(x) = {

Vu(x) otherwise
and
> Vnu(x) = (u(x+ d(x)) — u(x)).d(x)

> d(x) the unit vector lying in the direction of the thin structure
at x

[1] Merveille et al., TIP 2019



Directional total variation

B Total variation
TV(u) = [|Vull21

B Directional total variation [1]

dTV(u) = ||Vmul|21,

where V ,u(x) is a mixed gradient defined by:

V() Vaqu(x) ‘ if x € curvilinear structure
X) =
" Vu(x)  otherwise

and
> Vau(x) = (u(x + d(x)) — u(x)).d(x)
> d(x) the unit vector lying in the direction of the curvilinear
structure at x

[1] Merveille et al., TIP 2019



Directional total variation

vessel vessel
probability map direction map

vesselness
filter

Lamy et al., TIP 2022



Directional total variation

vessel vessel
probability map direction map

vesselness
filter

segmentation

Lamy et al., TIP 2022



Directional total variation - Results
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Conclusion

B Regularization term adapted to thin structures like vessels
B Works in a unsupervised variational segmentation framework
B Improves the connectivity of segmentation results

B Reconnection power depends on vesselness results



Outline of the presentation

1. Directional total variation
2. Learning a reconnecting regularization term

3. Deep learning-based vascular network
segmentation



Learning a reconnecting regularization

B Difficult to enforce connectivity with an explicit regularization
term
— What about learning it ?
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Learning a reconnecting regularization

B Difficult to enforce connectivity with an explicit regularization
term
— What about learning it ?

B Keep the segmentation framework label-free for the target
dataset
— Plug & Play

CNN learning
connectivity

Inirbimize < U >F + Big(u)

segmentation




Learning a reconnecting regularization

CNN learning
connectivity

mil%timize < CGU>F + Feglu)

segmentation

B Connectivity :

» Geometric property —> may be learned based on synthetic
data
> Binary property — easy to plug in a segmentation framework



Learning a reconnecting regularization

@ Dataset creation

\

Disconnected

@ Reconnecting regularization term learning

Reconnected

curvilinear curvilinear
structures structures
Binary curvilinear Disconnected
structures curvilinear
structures C,mcU
@) Plug & Play segmentation
( Segmentation model )
Data fidelity Regularizations

(<c., u> p) ( TV ) Ercco

Carneiro et al Neurocomputing [under revision]




Dataset of disconnected vascular structures

B Synthetic images of vascular
structures

> 2D : CCO algorithm [1]
> 3D : VascuSynth [2]

Vascusynth

B Realistic disconnection algorithm
» The thinner the vessel the longer the disconnection
» Disconnection with random shapes
> Addition of small non vessel structures

[1] Kerautret et al "OpenCCO [...]" IPOL 2023
[2] Hamarneh et al " VascuSynth[...]” CMIG 2010



Learning to reconnect

B 2D or 3D Residual UNet
> 96" patch, 4-layer deep
» Dice + Weighted Dice loss around the disconnections
» On-the fly data augmentation with rotation and flip

3D reconnection example, added fragments in red




Learning a reconnecting regularization

@ Dataset creation

\

Disconnected

@ Reconnecting regularization term learning

Reconnected

curvilinear curvilinear
structures structures
Binary curvilinear Disconnected
structures curvilinear
structures C,mcU
@) Plug & Play segmentation
( Segmentation model )
Data fidelity Regularizations

(<c., u> p) ( TV ) Ercco

Carneiro et al Neurocomputing [under revision]




Plug & Play segmentation

B Segmentation model

u* = argmin < ¢f, u > +A||Vul|2,1 + Ereco(t)
u

B Forward-Backward Primal Dual reformulation [1]

u* = argmin h(u, f) + g(Lu) + k(u)
u
with h, g, k lower-semicontinuous and g non-differentiable s.t:
h(u,f) =< u,cr >F

g(u) = Mull21
L=V

k(u) _ Ereco(U) if u a|n.105t binary
Lueo,v(u)  otherwise

[1] Komodakis et al., SPM, 2015



Plug & Play segmentation

B Forward-Backward Primal Dual algorithm

Set up € RN and vy € RX
Set (1,0) €]0, +00 [
Fori=0,1,....

pi = proxe (uj — 7 (Vh(u;) + L vi))
Qi = ProX, g« (vi+oL(2p; — uj))

Set A\ €]0,4o0[

| (g1, vigr) = (ui, vi) + Xi ((pis gi) — (uiy vi))



Plug & Play segmentation
B Forward-Backward Primal Dual algorithm
Pi = Prox. (u,- -7 (Vh(u,-) + LTV,'))

i = ProxX,g- (vi + oL (2p;i — uj))
with :

h(u, f) =< u,cr >F

g(u) = A () = Ereco(U) if u almost binary
[—v Luepoanv(u)  otherwise



Plug & Play segmentation

B Forward-Backward Primal Dual algorithm

Pi = ProXe; (”f o7 (Vh(ui) i LTV;>)

i = ProxX,g- (vi + oL (2p;i — uj))
with :

h(U, f) =< U,¢r >F
g(u) = A () = {Ereco(u) if u aln?ost binary
[—v Luepoanv(u)  otherwise

then :
Ao L

max(|| ]2, Ao 1)

ProX,g«(u) =



Plug & Play segmentation
B Forward-Backward Primal Dual algorithm
Pi = Prox. (u,- -7 (Vh(u,-) + LTV,'))

i = ProxX,g- (vi + oL (2p;i — uj))
with :
h(u, f) =< u,cr >

g(u) = A () = Ereco(U) if u aln?ost binary
Luepoanv(u)  otherwise

L=V
then :
roX, .« (Uu) = Ao~ if 0.1
ProXos () = max(1Z]T2 2o 1) v ifuclol
. . Pu)=¢0 ifu<0
Greco  if u almost binary
prox,,(u) = 1 ifu>0

P(u) otherwise



Plug & Play Segmentation

Algorithm 1: Plug-and-play segmentation with the learned re-
connecting operator

Data: o € NT*,
up € RV vy € RV, (1,0) €]0, +00[?, Ay €]0, +00]

for i > 1 do
pi = (u,- — T(Vh(u,') + LTV,')
if i < a then

| pi = proxg, (Pi)
else

L pPi = Greco(proj(pi))

i = ProX g« (v,- +ol(2p; — u,-))

(Ujy1, vig1) = (ui, vi) + )\i((Ph qi) — (uj, Vi))




Metrics for vascular segmentation

B How to evaluate vascular segmentation quantitatively ?

\

label result 1 result 2 result 3
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Metrics for vascular segmentation

B How to evaluate vascular segmentation quantitatively ?

—— centerline

result 1 result 2 result 3

segmentation-based overlap metric : Dice; ~ Dice, < Dice;

centerline-based overlap metric : ClIDice; < ClIDice; £ ClIDice,



Metrics for vascular segmentation

B How to evaluate vascular segmentation quantitatively ?

— centerline
l
label result 1 result 2 result 3
segmentation-based overlap metric : Dice; ~ Dice, < Dices
centerline-based overlap metric : CIDice; < CIDice; L ClDice,

error number of connected components: €3, | = 6*()2 < 6503



2D Dataset

B Training dataset

> 20 Synthetic images
> CCO algorithm [1]

B Test dataset

> 40 retinal images
> Drive dataset [2]

[1] Kerautret et al, IPOL, 2023
[2] Niemeijer et al, SPIE Medical Imaging, 2004



Reconnecting model (Gyeco) results

H Before reconnection  After reconnection

0.974 +£0.004 0.983 £0.003
107.4 £71.88 17.30 £12.69

Dice

€50

Before reconnection After reconnection




2D segmentation results

B Results on the drive dataset

H Dice CIDice €5,
TV 0.747 £0.036  0.730 £0.044 24.22 +15.89

dirTV || 0.748 £0.041 0.728 +0.049 25.83 £22.35
0.759 £0.036 0.744 +0.045 2.685 +2.77

ours



2D segmentation results

label




3D datasets

B Training dataset

» 315 Synthetic images
> VascuSynth [1]

B Test dataset

» 19 liver CT-scans
> IRCAD dataset [2]

[1] Hamarneh et al "VascuSynth[...]" CMIG 2010

[2] https://wuw.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/


https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/

3D segmentation results

B Results on the IRCAD dataset

H Dice CIDice €8,
TV 0.450 £0.129  0.533 £0.166 2.25 £3.30

dirTV || 0.462 £0.105 0.562 +0.106 1.68 +2.26
0.507 +0.102 0.585 +0.079 0.75 +0.43

ours



3D segmentation results

B Results on the IRCAD dataset

label dirtv ours




Conclusion and limitations

B Contributions
» Successfully learn a regularization term enforcing connectivity

» Plug this learned regularization inside a variational
segmentation framework

» Competitive unsupervised vascular segmentation results

> Significantly improves the segmentation connectivity

B Limitations
» Huge gap w.r.t. supervised learning
® 2D Dice : 0.759 v.s 0.99 / 3D Dice : 0.5 v.s. 0.9
> Data fidelity term

> Purely geometrical reconnecting prior



Outline of the presentation

1. Directional total variation
2. Learning a reconnecting regularization term

3. Deep learning-based vascular network
segmentation



Deep Learning-based vascular segmentation

B Most research focus on fully
supervised approaches
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cerebral arterial vascular
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Deep Learning-based vascular segmentation

B Most research focus on fully
supervised approaches

B Labeling of vascular networks is
extremely time-consuming

B Volume-segmented labeled datasets
are rare and small cerebral arterial vascular
network labeling

B How to use deep learning-based vascular segmentation
with few labels ?

— Semi-supervised learning

— Domain adaptation



Semi-supervised learning

Training

labeled
image segmentation

(R

dedicated
architecture

—  —xIaNS

unlabeled segmentation

B Training dataset : a few labeled samples + many unlabeled
samples

B Most architectures based on consistency losses



Example of semi-supervised learning

B Mean Teacher (MT) [1] (figure from [2])

ks
Noise f """""""""""" \w
Student Model Dy+Dy
Input |

Noise §' ﬁj ) \\y

Teacher Model

Same Arch.

B Supervision

» Labeled data : £s + L.
» Unlabeled data : L.

[1] A Tarvainen et al., NeurlPS, 2017
[2] Yu et al., MICCAI 2019



Semi-supervised benchmark for cerebral vascular
segmentation

B Training and test dataset : Bullitt

» Total in the dataset : 109 unlabeled and 34 labeled

Dice results for different semi-supervised segmentation strategies

num. labeled data H 1(1%) 2 3 5 9 18 (20%)

U-Net supervised || 055 0.66 0.66 0.69 0.69  0.71




Semi-supervised benchmark for cerebral vascular
segmentation

B Training and test dataset : Bullitt

» Total in the dataset : 109 unlabeled and 34 labeled

Dice results for different semi-supervised segmentation strategies

num. labeled data H 1(1%) 2 3 5 9 18 (20%)

U-Net supervised 055 066 0.66 0.69 0.69 0.71
MT [1] 063 069 070 072 0.71 0.72
UA-MT [2] 0.63 069 070 0.71 071 0.72
SASSnet [3] 063 068 070 0.71 0.72 0.72
DTC [4] 0.62 0.68 0.69 071 0.72 0.72
MC-NET [5] 064 066 070 070 0.71 0.72

[1] Tarvainen et al., NeurlPS, 2017 [2] Yu et al., MICCALI, 2019

[3] Zhang et al, MICCAI 2020 [4] Luo et. al, AAAI, 2021

[5] Wu et. al, MedIA, 2022



Semi-supervised benchmark for cerebral vascular
segmentation

U-Net supervised UA-MT MC-Net

=1

nsamples

=18

nsamples




Unsupervised Domain Adaptation (UDA)

. source source
Traini ng

segmentation label

- dedicated
architecture

source
image

target
image

target
segmentation

B Training dataset : labeled target samples 4+ unlabeled source
samples

B Goal : reduce domain-shift



Domain-shit

B What is domain-shift ?

The distribution of the source data differs from the distribution of
the target data

B Origin
> Image modality
Acquisition parameters / Manufacturer

>
> Subject / Patient population
> Label quality

>



Domain-shift in cerebral vascular imaging

B Same organ / same modality

Bullitt [1] Brava [2]
— Is domain adaptation dedicated architecture required for
same modality / same organ ?

[1] Aylward et al., TMI, 2002
[2] Wright et. al, Neurolmage, 2013



Semi-supervised for cerebral vascular segmentation

B Training dataset : Brava
B Test dataset : Bullitt

| Naive Fully supervised | UA-MT[1] DTC[2] MC-Net[3]

Dice || 0.384 0.750 | 0428 0.457 0.408

[1] Yu et al., MICCAI, 2019
[2] Luo et. al, AAAI, 2021
[3] Wu et. al, MedIA, 2022



Semi-supervised for cerebral vascular segmentation

B Training dataset : Brava
B Test dataset : Bullitt

| Naive Fully supervised | UA-MT[1] DTC[2] MC-Net[3]

Dice || 0.384 0.750 | 0428 0.457 0.408

— Domain-shift more important than we thought

[1] Yu et al., MICCAI, 2019
[2] Luo et. al, AAAI, 2021
[3] Wu et. al, MedIA, 2022



Semi-supervised for cerebral vascular segmentation

Bullitt Brava



Semi-supervised for cerebral vascular segmentation

Bullitt Brava
— Probably high label-shift



Conclusion - Perspectives

B Proposed several vascular segmentation strategies to :

> Enforce the segmentation connectivity
> Work with limited labeled data

B Variational segmentation

» Unsupervised
» Limited performances due to data fidelity term

B Deep learning-based segmentation
> Semi-supervised learning yield encouraging results



Conclusion - Perspectives

B Proposed several vascular segmentation strategies to :

> Enforce the segmentation connectivity
> Work with limited labeled data

B Variational segmentation

» Unsupervised
» Limited performances due to data fidelity term

B Deep learning-based segmentation
> Semi-supervised learning yield encouraging results

B Perspectives

> Post-processing reconnecting network

» Include topological constraints [1] in semi-supervised learning
» Study semi-supervised domain adaptation strategies (SSDA)
> Semi-automatic plugin for vascular network labeling [2]

[1] Rougé et al., arXiV, 2023
[2] Lamy et al., JOSS, 2022



Any questions ?



