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Why study the vascular networks ?

Cardiovascular diseases (CVDs) are the leading cause of death
worldwide

■ CVDs include :
▶ Coronary artery diseases
▶ Aneurysms
▶ Strokes
▶ Pulmonary embolism

■ Mostly caused by atherosclerosis
build up of a lipidic plaque in the

vessel wall
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Cross-section

Narrowed
artery

Plaque

Diagnosis and treatment require the examination of the
patients’ vascular network.
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Vascular imaging

■ Several imaging modalities reveal blood vessels :

▶ Magnetic Resonance Angiography (MRA)

▶ Computed Tomography Angiography (CTA)

▶ Cathether Angiography

▶ Vascular Ultrasound

MIP of a brain MRA
Slice of a pulmonary CTA
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What can we do with image processing ?

■ The vascular system is a complex
network of multi-scale and
tortuous blood vessels

■ Visual inspection of vascular
images is :
▶ Time-consuming
▶ Expert-dependent
▶ Prone to fatigue-related error
▶ Lacking quantitative data

Slice of a pulmonary CTA

■ Image processing may provide automatic tools for :
▶ Computer-aided diagnosis
▶ Computer-aided prognosis
▶ Computer-aided decision support
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PERSEVERE - Context

■ PERSEVERE project
Pulmonary Embolism Risk Stratification basEd on
Vascular nEtwoRk modElling

■ Pulmonary embolism : obstruction of a pulmonary artery by
a blood clot

■ Upon diagnosis, doctors evaluate the patient prognosis based
on established guidelines.
▶ Low risk of death
▶ Moderate risk of death
▶ High risk of death

Patient management depends on this evaluation called risk
stratification.
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PERSEVERE - Current risk stratification

CTPA

blood analysis

BNP and
troponin
levels

■ The patient undergoes :
▶ a pulmonary CT scan (CTPA)
▶ a blood test to assess the levels of functional biomarkers

■ A radiologist measures a morphological biomarker manually
from the CTPA

■ A prognosis is established based on these biomarkers
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PERSEVERE - Problems and objectives

CTPA

blood analysis

BNP and
troponin
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Visual expert
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Risk 
stratification

model

RV/LV
ratio

Moderate risk

Low risk

High risk

■ Limitations :
▶ No morphological biomarker directly related to the embolism
▶ CTPA not synchronized to the heart rate → RV/LV ratio is

unreliable

■ Goals of the PERSEVERE project :
▶ Build risk stratification models based on automatically

extracted morphological biomarkers
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Methodology

PVT graph-based
model

WP1: Pulmonary vascular 
     tree modelling

CTPA

vascular
segmentation

PE
segmentation

Pulmonary vascular tree modelling

■ Develop an accurate and topologically correct vascular
segmentation approach

■ Develop a precise pixel-wise thrombus segmentation approach

■ Feature-enhanced graph of the pulmonary vascular tree
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Methodology

PVT graph-based
model

obstruction-related
biomarkers

vascular alteration
biomarkers

functional
biomarkers

BNP and
troponin
levels

Risk 
stratification

model

Moderate
risk

Low
risk

High
risk

WP1: Pulmonary vascular 
     tree modelling

WP2 : Morphological biomarkers 
        extraction and design of 
       risk stratification models

CTPA

vascular
segmentation

PE
segmentation

Risk stratification model

■ Extract clinically relevant morphological biomarkers from the
graph

■ Develop a risk stratification model that can be used in a
clinical context : robust, automated, interpretable
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Analysis of vascular networks

■ Common first steps of the analysis of vascular network:

radius,

extremity

bifurcation

length,
   ...

Image Binary segmentation

Feature-enhanced graph
representation

Mesh

→ An accurate and connected segmentation is key
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Vascular segmentation challenges

■ Geometrically complex
▶ thin, elongated, and tortuous structures
▶ low-contrast at the extremities
▶ multi-scale
▶ organized in networks
▶ scattered in the image

■ Extensive and accurate annotation extremely costly
▶ 2D annotation of intrinsically 3D structures
▶ huge inter-expert variability

■ Complex qualitative and quantitative analysis
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Segmentation of vascular networks

More than 30 years of research [1-2]

■ Vesselness-based

■ Tracking

■ Deformable models

■ Machine learning

■ Deep learning

■ Focus of my research :
▶ Preserve the vascular network connectivity

▶ Learn vascular segmentation with limited labels

[1] Lesage et al., MedIA 2009
[2] Moccia et al., CMPB, 2018
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Outline of the presentation

1. Directional total variation

2. Learning a reconnecting regularization term

3. Deep learning-based vascular network
segmentation
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Variational segmentation

The Chan-Vese binary segmentation model [1] is :

u⋆ = argmin
u,C

µ.Length(C ) + ν.Area(inside(C))

+ λ1

∫
inside(C)

|f (x)− c1|2dx

+ λ2

∫
outside(C)

|f (x)− c2|2dx .

where,

■ f ∈ RN2
is a 2D-grayscale image to be segmented

■ C is the boundary of the segmentation

■ c1 and c2 are the forward and background intensity of f .

■ µ, ν, λ1, λ2 ∈ R parameters

→ Non-convex problem

[1] Chan et al., TIP 2001
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Variational segmentation

Convexification of the Chan-Vese model [1] :

u⋆ = argmin
u∈[0,1]N2

< cf , u >F +λ||∇u||2,1,

with :

■ cf (x) = ((c1 − f (x))2 − (c2 − f (x))2

■ < u, v >F the Frobenius product

■ ||∇u||2,1 the total variation

[1] Chan et al, SIAP 2006
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Variational segmentation

u⋆ = argmin
u∈[0,1]N2

g(u)︷ ︸︸ ︷
< cf , u >F +

h(u)︷ ︸︸ ︷
λ||∇u||2,1,

with :
▶ g(u) convex and differentiable
▶ h(u) convex but non-differentiable

■ Solved by proximal splitting algorithm :

un+1 = proxγh(un − γ∇g(un)), γ ∈]0,+∞[a step-size parameter

■ proxγh is computed with the Fast Gradient Projection (FGP)
algorithm [1]

[1] Beck et al., TIP 2009
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Problem for thin structures

■ Results of the Chan et al. model :

λ = 0.1 λ = 0.3 λ = 0.6 λ = 1

→ Thin structures vanish
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Directional total variation idea

TV (u) =
∑
i

∑
j

|
√

(uxij )
2 + (uyij )

2|

image Total variation 
(TV)

■ Direction TV goal :
▶ Only regularize in the direction of the thin structures
▶ Denoise and tends to reconnect thin structures

Merveille et al TIP 2019
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Mixed gradient

Classic gradient:

∇u(x) =
(
u(x+ ei )− u(x)

)n
i=1

Directional gradient:

∇du(x) =
(
u(x+ d(x))− u(x)

)
.d(x)

Mixed gradient:

∇mu(x) =

{
∇u(x) if ∥d(x)∥2 = 0
∇du(x) if ∥d(x)∥2 = 1

Merveille et al TIP 2019
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Directional total variation

■ Total variation

TV(u) = ||∇u||2,1

■ Directional total variation [1]

dTV(u) = ||∇mu||2,1,

where ∇mu(x) the a mixed gradient defined by:

∇mu(x) =

{
∇du(x) if x ∈ curvilinear structure

∇u(x) otherwise

and
▶ ∇mu(x) = (u(x + d(x))− u(x)).d(x)
▶ d(x) the unit vector lying in the direction of the thin structure

at x

[1] Merveille et al., TIP 2019
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Directional total variation

+
vesselness

filter

vessel 
probability map

vessel 
direction map

image

Lamy et al., TIP 2022
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Directional total variation

+

segmentation

vesselness
filter

vessel 
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direction map

image

Lamy et al., TIP 2022
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Directional total variation - Results

label TV directional TV

dTV

TV

box 1 box 2 box 3
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Conclusion

■ Regularization term adapted to thin structures like vessels

■ Works in a unsupervised variational segmentation framework

■ Improves the connectivity of segmentation results

■ Reconnection power depends on vesselness results
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Outline of the presentation

1. Directional total variation

2. Learning a reconnecting regularization term

3. Deep learning-based vascular network
segmentation
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Learning a reconnecting regularization

■ Difficult to enforce connectivity with an explicit regularization
term
−→ What about learning it ?

■ Keep the segmentation framework label-free for the target
dataset
−→ Plug & Play

segmentation

image

CNN learning
connectivity
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Learning a reconnecting regularization

segmentation

image

CNN learning
connectivity

■ Connectivity :
▶ Geometric property −→ may be learned based on synthetic

data
▶ Binary property −→ easy to plug in a segmentation framework
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Learning a reconnecting regularization

Greco

TV Ereco

Segmentation model

Data fidelity Regularizations

Disconnected 
curvilinear
structures

Reconnected
curvilinear
structures

Reconnecting regularization term learning

Disconnection

Binary curvilinear
structures

Disconnected 
curvilinear
structures

Dataset creation1

Plug & Play segmentation3

2

Carneiro et al Neurocomputing [under revision]
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Dataset of disconnected vascular structures

■ Synthetic images of vascular
structures
▶ 2D : CCO algorithm [1]

▶ 3D : VascuSynth [2]

Vascusynth

■ Realistic disconnection algorithm
▶ The thinner the vessel the longer the disconnection
▶ Disconnection with random shapes
▶ Addition of small non vessel structures

[1] Kerautret et al ”OpenCCO [...]” IPOL 2023
[2] Hamarneh et al ”VascuSynth[...]” CMIG 2010
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Learning to reconnect

■ 2D or 3D Residual UNet
▶ 96n patch, 4-layer deep
▶ Dice + Weighted Dice loss around the disconnections
▶ On-the fly data augmentation with rotation and flip

Images de
 vaisseaux

déconnectées
ResUNet

3D reconnection example, added fragments in red
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Learning a reconnecting regularization

Greco

TV Ereco

Segmentation model

Data fidelity Regularizations

Disconnected 
curvilinear
structures
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curvilinear
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Plug & Play segmentation

■ Segmentation model

u⋆ = argmin
u

< cf , u >F +λ||∇u||2,1 + Ereco(u)

■ Forward-Backward Primal Dual reformulation [1]

u⋆ = argmin
u

h(u, f ) + g(Lu) + k(u)

with h, g , k lower-semicontinuous and g non-differentiable s.t:

h(u, f ) =< u, cf >F

g(u) = λ||u||2,1
L = ∇

k(u) =

{
Ereco(u) if u almost binary

ιu∈[0,1]N (u) otherwise

[1] Komodakis et al., SPM, 2015
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Plug & Play segmentation

■ Forward-Backward Primal Dual algorithm

Set u0 ∈ RN and v0 ∈ RK

Set (τ, σ) ∈]0,+∞
[
2

For i = 0, 1, . . ..

pi = proxτk
(
ui − τ

(
∇h (ui ) + L⊤vi

))
qi = proxσg∗ (vi + σL (2pi − ui ))

Set λi ∈] 0,+∞[

(ui+1, vi+1) = (ui , vi ) + λi ((pi , qi )− (ui , vi ))
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Plug & Play segmentation

■ Forward-Backward Primal Dual algorithm

pi = proxτk

(
ui − τ

(
∇h (ui ) + L⊤vi

))
qi = proxσg∗ (vi + σL (2pi − ui ))

with :

h(u, f ) =< u, cf >F

g(u) = λ|u|
L = ∇

k(u) =

{
Ereco(u) if u almost binary

ιu∈[0,1]N (u) otherwise

then :

proxσg∗(u) =
λσ−1

max(|| uσ ||2, λσ−1)

proxτk(u) =

{
Greco if u almost binary

P(u) otherwise

P(u) =


u if u ∈ [0, 1]

0 if u < 0

1 if u > 0
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Plug & Play Segmentation

Algorithm 1: Plug-and-play segmentation with the learned re-
connecting operator

Data: α ∈ N+∗,
u0 ∈ RN2

, v0 ∈ R2N2
, (τ, σ) ∈]0,+∞[2, λn ∈]0,+∞[

for i ≥ 1 do
pi = (ui − τ

(
∇h(ui ) + LT vi

)
if i < α then

pi = proxσι
[0,1]N

(pi )

else
pi = Greco

(
proj(pi )

)
qi = proxσg⋆

(
vi + σL(2pi − ui )

)
(ui+1, vi+1) = (ui , vi ) + λi

(
(pi , qi )− (ui , vi )

)
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Metrics for vascular segmentation

■ How to evaluate vascular segmentation quantitatively ?

label result 1 result 3result 2
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Metrics for vascular segmentation

■ How to evaluate vascular segmentation quantitatively ?

label

centerline

result 1 result 3result 2

Dice1 Dice2 Dice3

ClDice1 ClDice2ClDice3

segmentation-based overlap metric : 

centerline-based overlap metric : 

error number of connected components:
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2D Dataset

■ Training dataset

▶ 20 Synthetic images

▶ CCO algorithm [1]

■ Test dataset

▶ 40 retinal images

▶ Drive dataset [2]

[1] Kerautret et al, IPOL, 2023
[2] Niemeijer et al, SPIE Medical Imaging, 2004
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Reconnecting model (Greco) results

Before reconnection After reconnection

Dice 0.974 ±0.004 0.983 ±0.003
ϵβ0 107.4 ±71.88 17.30 ±12.69

Before reconnection After reconnection
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2D segmentation results

■ Results on the drive dataset

Dice ClDice ϵβ0

TV 0.747 ±0.036 0.730 ±0.044 24.22 ±15.89

dirTV 0.748 ±0.041 0.728 ±0.049 25.83 ±22.35

ours 0.759 ±0.036 0.744 ±0.045 2.685 ±2.77
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2D segmentation results

image

oursdirTV

label
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3D datasets

■ Training dataset

▶ 315 Synthetic images

▶ VascuSynth [1]

■ Test dataset

▶ 19 liver CT-scans

▶ IRCAD dataset [2]

[1] Hamarneh et al ”VascuSynth[...]” CMIG 2010
[2] https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/

https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/


40/55

3D segmentation results

■ Results on the IRCAD dataset

Dice ClDice ϵβ0

TV 0.450 ±0.129 0.533 ±0.166 2.25 ±3.30

dirTV 0.462 ±0.105 0.562 ±0.106 1.68 ±2.26

ours 0.507 ±0.102 0.585 ±0.079 0.75 ±0.43
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3D segmentation results

■ Results on the IRCAD dataset

dirTV ourslabel
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Conclusion and limitations

■ Contributions
▶ Successfully learn a regularization term enforcing connectivity

▶ Plug this learned regularization inside a variational
segmentation framework

▶ Competitive unsupervised vascular segmentation results

▶ Significantly improves the segmentation connectivity

■ Limitations
▶ Huge gap w.r.t. supervised learning

• 2D Dice : 0.759 v.s 0.99 / 3D Dice : 0.5 v.s. 0.9

▶ Data fidelity term

▶ Purely geometrical reconnecting prior
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Outline of the presentation

1. Directional total variation

2. Learning a reconnecting regularization term

3. Deep learning-based vascular network
segmentation
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Deep Learning-based vascular segmentation

■ Most research focus on fully
supervised approaches

■ Labeling of vascular networks is
extremely time-consuming

■ Volume-segmented labeled datasets
are rare and small cerebral arterial vascular

network labeling

■ How to use deep learning-based vascular segmentation
with few labels ?

−→ Semi-supervised learning

−→ Domain adaptation
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Semi-supervised learning

labeled 
image

unlabeled 

loss

Training

segmentation

segmentation

label

dedicated
architecture

■ Training dataset : a few labeled samples + many unlabeled
samples

■ Most architectures based on consistency losses



46/55

Example of semi-supervised learning

■ Mean Teacher (MT) [1] (figure from [2])

■ Supervision
▶ Labeled data : Ls + Lc

▶ Unlabeled data : Lc

[1] A Tarvainen et al., NeurIPS, 2017
[2] Yu et al., MICCAI 2019
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Semi-supervised benchmark for cerebral vascular
segmentation

■ Training and test dataset : Bullitt

▶ Total in the dataset : 109 unlabeled and 34 labeled

Dice results for different semi-supervised segmentation strategies

num. labeled data 1 (1%) 2 3 5 9 18 (20%)

U-Net supervised 0.55 0.66 0.66 0.69 0.69 0.71

MT [1] 0.63 0.69 0.70 0.72 0.71 0.72
UA-MT [2] 0.63 0.69 0.70 0.71 0.71 0.72
SASSnet [3] 0.63 0.68 0.70 0.71 0.72 0.72
DTC [4] 0.62 0.68 0.69 0.71 0.72 0.72
MC-NET [5] 0.64 0.66 0.70 0.70 0.71 0.72

[1] Tarvainen et al., NeurIPS, 2017 [2] Yu et al., MICCAI, 2019
[3] Zhang et al, MICCAI 2020 [4] Luo et. al, AAAI, 2021
[5] Wu et. al, MedIA, 2022

[1] Yu et al., MICCAI, 2019
[2] Luo et. al, AAAI, 2021
[2] Wu et. al, MedIA, 2022
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Semi-supervised benchmark for cerebral vascular
segmentation
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Unsupervised Domain Adaptation (UDA)

Training

loss

source
segmentation

source
label

dedicated
architecture

source
image

target
image

target
segmentation

■ Training dataset : labeled target samples + unlabeled source
samples

■ Goal : reduce domain-shift
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Domain-shit

■ What is domain-shift ?

The distribution of the source data differs from the distribution of
the target data

■ Origin

▶ Image modality

▶ Acquisition parameters / Manufacturer

▶ Subject / Patient population

▶ Label quality

▶ ...



51/55

Domain-shift in cerebral vascular imaging

■ Same organ / same modality

Bullitt [1] Brava [2]

−→ Is domain adaptation dedicated architecture required for
same modality / same organ ?

[1] Aylward et al., TMI, 2002
[2] Wright et. al, NeuroImage, 2013
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Semi-supervised for cerebral vascular segmentation

■ Training dataset : Brava

■ Test dataset : Bullitt

Naive Fully supervised UA-MT[1] DTC[2] MC-Net[3]

Dice 0.384 0.750 0.428 0.457 0.408

−→ Domain-shift more important than we thought

[1] Yu et al., MICCAI, 2019
[2] Luo et. al, AAAI, 2021
[3] Wu et. al, MedIA, 2022
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Semi-supervised for cerebral vascular segmentation

Bullitt Brava

−→ Probably high label-shift
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Bullitt Brava
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Conclusion - Perspectives

■ Proposed several vascular segmentation strategies to :
▶ Enforce the segmentation connectivity
▶ Work with limited labeled data

■ Variational segmentation
▶ Unsupervised
▶ Limited performances due to data fidelity term

■ Deep learning-based segmentation
▶ Semi-supervised learning yield encouraging results

■ Perspectives
▶ Post-processing reconnecting network
▶ Include topological constraints [1] in semi-supervised learning
▶ Study semi-supervised domain adaptation strategies (SSDA)
▶ Semi-automatic plugin for vascular network labeling [2]

[1] Rougé et al., arXiV, 2023
[2] Lamy et al., JOSS, 2022
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