Solution of Mismatched Monotone+Lipschitz Inclusion Problems

Fernando Roldán

Workshop DIPOpt

Joint work with Emilie Chouzenoux and Jean-Christophe Pesquet
CVN, CentraleSupélec, Université Paris-Saclay, Inria-Saclay
November 28, 2023

Overview

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Motivation

Optimization Problem

$$
\begin{equation*}
\min _{x \in \mathcal{H}} f(x)+\frac{\alpha}{2}\|L x-c\|^{2} \tag{1}
\end{equation*}
$$

- \mathcal{H} and \mathcal{G} are real Hilbert spaces.
- $f \in \Gamma_{0}(\mathcal{H})$.
- $L: \mathcal{H} \rightarrow \mathcal{G}$ is a linear bounded operator.
- $\alpha \in] 0,+\infty[$.

Motivation

Optimization Problem

$$
\begin{equation*}
\min _{x \in \mathcal{H}} f(x)+\frac{\alpha}{2}\|L x-c\|^{2} \tag{2}
\end{equation*}
$$

Image restoration/reconstruction

- Recover an image x from the observation c
- L: observation process
- f : regularization term
- $\frac{\alpha}{2}\|L x-c\|^{2}$: data fidelity term

Motivation

Optimization Problem

$$
\begin{equation*}
\min _{x \in \mathcal{H}} f(x)+\frac{\alpha}{2}\|L x-c\|^{2} \tag{3}
\end{equation*}
$$

(standard qualification conditions)

Monotone Inclusion

find $x \in \mathcal{H}$ such that $0 \in \partial f(x)+\alpha L^{*}(L x-c)$.

Motivation

Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in \partial f(x)+\alpha L^{*}(L x-c) \tag{5}
\end{equation*}
$$

Forward-Backward

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\lfloor z_{n+1}=\operatorname{prox}_{\gamma f}\left(z_{n}-\gamma L^{*}\left(L z_{n}-c\right)\right)\right. \tag{6}
\end{equation*}
$$

$$
\operatorname{prox}_{f}: x \mapsto \underset{y \in \mathcal{H}}{\arg \min }\left(f(y)+\frac{1}{2}\|x-y\|^{2}\right) .
$$

- Iterative methods require L^{*}
- In some practical instances L^{*} is not available and it must be approximated

Motivation

Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in \partial f(x)+\alpha L^{*}(L x-c) \tag{5}
\end{equation*}
$$

Forward-Backward

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\lfloor z_{n+1}=\operatorname{prox}_{\gamma f}\left(z_{n}-\gamma L^{*}\left(L z_{n}-c\right)\right)\right. \tag{6}
\end{equation*}
$$

$$
\operatorname{prox}_{f}: x \mapsto \underset{y \in \mathcal{H}}{\arg \min }\left(f(y)+\frac{1}{2}\|x-y\|^{2}\right) .
$$

- Iterative methods require L^{*}
- In some practical instances L^{*} is not available and it must be approximated

$$
L^{*} \longrightarrow K
$$

Motivation

Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in \partial f(x)+\alpha L^{*}(L x-c) \tag{7}
\end{equation*}
$$

$$
L^{*} \longrightarrow K
$$

Adjoint Mismatch Problem

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in \partial f(x)+\alpha K(L x-c) \text {. } \tag{8}
\end{equation*}
$$

- $K: \mathcal{G} \rightarrow \mathcal{H}$ is a linear bounded operator approximating L^{*}.
- The convergence results for classical splitting algorithms in the literature are no longer valid in this context.
- A solution to the adjoint mismatch problem is not necessarily a solution to the original problem.

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Mismatched Forward-Backward (FB) Algorithm

Adjoint Mismatch Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in \partial f(x)+K(L x-c) . \tag{9}
\end{equation*}
$$

- $f \in \Gamma_{0}(\mathcal{H})$.
- $L: \mathcal{H} \rightarrow \mathcal{G}$ and $K: \mathcal{G} \rightarrow \mathcal{H}$ are linear bounded operators.

Mismatched Forward-Backward Algorithm (Chouzenoux et al 2021)

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\lfloor x_{n+1}=x_{n}+\theta_{n}\left(\operatorname{prox}_{\gamma f}\left(x_{n}-\gamma K_{n}\left(L x_{n}-c\right)\right)-x_{n}\right)\right. \tag{10}
\end{equation*}
$$

In the case when $K_{n} \equiv L^{*}$ the classical Forward-Backward Algorithm is recovered.

Remark

Let $T: \mathcal{H} \rightarrow \mathcal{H}$ and $\beta \in] 0,+\infty[$. The operator T is β-cocoercive if

$$
(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad\langle x-y \mid T x-T y\rangle \geq \beta\|T x-T y\|^{2}
$$

The operator T is β-Lipschitzian if

$$
(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad\|T x-T y\| \leq \beta\|x-y\|
$$

- Every cocoercive operator is a Lipschitzian opeartor, the converse is not true.
- If $T=\nabla f$ where f is a convex differentiable function, the notion of Lipschitz and cocoercive gradients are equivalent (Baillon-Haddad).

Mismatched Forward-Backward Algorithm (Chouzenoux et al 2021)

$(\forall n \in \mathbb{N}) \quad\left\lfloor x_{n+1}=x_{n}+\theta_{n}\left(\operatorname{prox}_{\gamma f}\left(x_{n}-\gamma K_{n}\left(L x_{n}-c\right)\right)-x_{n}\right)\right.$

Convergence (Chouzenoux et al 2021)

Suppose that
(1) $\left\{K_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{B}(\mathcal{G}, \mathcal{H})$, s.t., $\left\|K_{n}-K\right\| \leq \omega_{n}$, where $\sum_{n \in \mathbb{N}} \omega_{n}<+\infty$.
(2) $K \circ L$ is η-cocoercive.
(3) $\gamma \in] 0,2 \eta[$.
(9) $\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \subset[0, \delta], \sum \theta_{n}\left(\delta-\theta_{n}\right)=+\infty$, where $\delta=2-\gamma /(2 \eta)$.

Then $x_{n} \rightharpoonup x \in \mathcal{H}$ such that x is a solution to (10).

Cocoercivity of $K \circ L$ (Chouzenoux et al 2021)

Set $T=K \circ L$. Suppose that $\operatorname{ran}\left(T+T^{*}\right)$ is closed. Then, T is η-cocoercive if and only if $\lambda_{\text {min }} \geq 0, \operatorname{ker}\left(T+T^{*}\right)=\operatorname{ker}(T)$, and

$$
\begin{equation*}
\eta \leq \frac{2}{\|M\|^{2}} \tag{12}
\end{equation*}
$$

- $\lambda_{\text {min }}$ is defined by

$$
\begin{equation*}
\lambda_{\min }=\inf \{\langle x \mid K L x\rangle \mid x \in \mathcal{H},\|x\|=1\} . \tag{13}
\end{equation*}
$$

- $M=\left(\operatorname{ld}+\left(\left(T-T^{*}\right)\left(T+T^{*}\right)^{\#}\right)\left(T+T^{*}\right)^{1 / 2}\right)$
- $T^{\#}$ denotes the Moore-Penrose generalized inverse.

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Mismatched Condat-Vũ (CV) Algorithm

Adjoint Mismatch Monotone Inclusion

- $g \in \Gamma_{0}(\mathcal{K})$.
- $N: \mathcal{H} \rightarrow \mathcal{K}$ is a linear bounded operator.

Mismatched Condat-Vũ Algorithm (Chouzenoux et al 2023)

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
y_{n+1}=\operatorname{prox}_{\tau f}\left(x_{n}-\tau\left(K_{n}\left(H x_{n}-c+N^{*} u_{n}\right)\right)\right. \\
v_{n+1}=\operatorname{prox}_{\sigma \hat{\mathrm{g}}^{*}}\left(u_{n}+\sigma N\left(2 y_{n+1}-x_{n}\right)\right) \tag{15}\\
x_{n+1}=x_{n}+\theta_{n}\left(y_{n+1}-x_{n}\right) \\
u_{n+1}=u_{n} \theta_{n}\left(v_{n+1}-u_{n}\right)
\end{array}\right.
$$

In the case when $K_{n} \equiv L^{*}$ the Condat-Vũ Algorithm is recovered.

Mismatched Condat-Vũ Algorithm (Chouzenoux et al 2023)

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
y_{n+1}=\operatorname{prox}_{\tau f}\left(x_{n}-\tau\left(K_{n}\left(H x_{n}-c+N^{*} u_{n}\right)\right)\right. \\
v_{n+1}=\operatorname{prox}_{\sigma \hat{\mathrm{g}}^{*}}\left(u_{n}+\sigma N\left(2 y_{n+1}-x_{n}\right)\right) \tag{16}\\
x_{n+1}=x_{n}+\theta_{n}\left(y_{n+1}-x_{n}\right) \\
u_{n+1}=u_{n} \theta_{n}\left(v_{n+1}-u_{n}\right)
\end{array}\right.
$$

Convergence (Chouzenoux et al 2023)

Suppose that
(1) $\left\{K_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{B}(\mathcal{G}, \mathcal{H})$, s.t., $\left\|K_{n}-K\right\| \leq \omega_{n}$, where $\sum_{n \in \mathbb{N}} \omega_{n}<+\infty$.
(2) $K \circ L$ is η-cocoercive.
(3) $1-\tau \delta\|N\|^{2}>\tau\|M\|^{2} / 4$
(9) $\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \subset[0, \delta], \sum \theta_{n}\left(\delta-\theta_{n}\right)=+\infty$, where $\delta=2-\left(1 / \tau-\sigma\|N\|^{2}\right)^{-1}\|M\|^{2} / 4$.
Then $x_{n} \rightharpoonup x \in \mathcal{H}$ such that x is a solution to (14).

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Mismatched Primal-Dual (PD) Algorithm

Adjoint Mismatch Monotone Inclusion

$$
\text { find } x \in \mathcal{H} \text { such that } 0 \in \partial f(x)+K \partial h(L x) .
$$

- $h \in \Gamma_{0}(\mathcal{G})$.

Mismatched Primal-Dual (Lorenz-Schneppe 2022)

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
x_{n+1}=\operatorname{prox}_{\tau_{n} f}\left(x_{n}-\tau_{n} K u_{n}\right) \tag{18}\\
y_{n+1}=x_{n+1}+\lambda_{n}\left(x_{n+1}-x_{n}\right) \\
u_{n+1}=\operatorname{prox}_{\sigma_{n} h^{*}}\left(u_{n}+\sigma_{n} L y_{n+1}\right)
\end{array}\right.
$$

In the case when $K=L^{*}$ the Primal-Dual Algorithm (Chambolle-Pock 2011) is recovered.

Mismatched Primal-Dual (Lorenz-Schneppe 2022)

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
x_{n+1}=\operatorname{prox}_{\tau f}\left(x_{n}-\tau K^{*} u_{n}\right) \tag{19}\\
y_{n+1}=x_{n+1}+\lambda\left(x_{n+1}-x_{n}\right) \\
u_{n+1}=\operatorname{prox}_{\sigma h^{*}}\left(u_{n}+\sigma L y_{n+1}\right)
\end{array}\right.
$$

Convergence (Lorenz-Schneppe 2022)

If f and h are strongly convex functions, for adequate step-sizes τ, σ and extrapolation parameter λ, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges linearly to a solution to (17).

- The authors provide examples where the convergence of the Mismatched Primal-Dual algorithm fails to converge if one of the functions is not strongly convex.

Table of Contents

(1) Motivation

(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Main Problem

We will focus on the adjoint mismatch problem associated to the following inclusion

Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x+\alpha L^{*} L x+L^{*} B L x \tag{20}
\end{equation*}
$$

where

- A: $\mathcal{H} \rightarrow 2^{\mathcal{H}}$ is maximally monotone
- C is β-cocoercive
- B is monotone and ζ-Lipschitzian

Main Problem

We will focus on the adjoint mismatch problem associated to the following inclusion

Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x+\alpha L^{*} L x+L^{*} B L x \tag{20}
\end{equation*}
$$

where

- A: $\mathcal{H} \rightarrow 2^{\mathcal{H}}$ is maximally monotone
- C is β-cocoercive
- B is monotone and ζ-Lipschitzian

Example:

- $A=\partial f$
- $C=\nabla g$
- $B=\nabla h$

Main Problem

Denote: $D=\alpha L^{*} L+L^{*} B L$.
Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x+D x \tag{21}
\end{equation*}
$$

Note that D is monotone and Lipschitzian

$$
\begin{equation*}
\left\|L^{*}(\alpha \mathrm{Id}+B) L x-L^{*}(\alpha \mathrm{Id}+B) L y\right\| \leq\|L\|^{2}(\alpha+\zeta)\|x-y\| \tag{22}
\end{equation*}
$$

Main Problem

Denote: $D=\alpha L^{*} L+L^{*} B L$.
Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x+D x \tag{21}
\end{equation*}
$$

Note that D is monotone and Lipschitzian

$$
\begin{equation*}
\left\|L^{*}(\alpha \mathrm{Id}+B) L x-L^{*}(\alpha \mathrm{Id}+B) L y\right\| \leq\|L\|^{2}(\alpha+\zeta)\|x-y\| \tag{22}
\end{equation*}
$$

Therefore, the problem can be solved by:

- (FBHF) Forward-Backward-Half-Forward (Briceño-Arias-Davis 2018)

Main Problem

Denote: $D=\alpha L^{*} L+L^{*} B L$.
Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x+D x \text {, } \tag{21}
\end{equation*}
$$

Note that D is monotone and Lipschitzian

$$
\begin{equation*}
\left\|L^{*}(\alpha \mathrm{Id}+B) L x-L^{*}(\alpha \mathrm{Id}+B) L y\right\| \leq\|L\|^{2}(\alpha+\zeta)\|x-y\| \tag{22}
\end{equation*}
$$

Therefore, the problem can be solved by:

- (FBHF) Forward-Backward-Half-Forward (Briceño-Arias-Davis 2018)
- (FDRF) Forward-Douglas-Rachford-Forward (Ryu-Vũ 2020)

Forward-Backward-Half-Forward (FBHF)

FBHF (Briceño-Arias-Davis 2018)

$$
(\forall n \in \mathbb{N}) \quad \left\lvert\, \begin{align*}
& u_{n}=D z_{n} \tag{23}\\
& y_{n}=z_{n}-\gamma\left(C\left(z_{n}\right)+u_{n}\right) \\
& x_{n}=J_{\gamma A}\left(y_{n}\right) \\
& z_{n+1}=x_{n}+\gamma\left(u_{n}-D x_{n}\right)
\end{align*}\right.
$$

Convergence (Briceño-Arias-Davis 2018)

If

$$
\gamma \in] 0, \frac{4 \beta}{1+\sqrt{1+16 \beta^{2}\|L\|^{4}(\alpha+\zeta)^{2}}}[,
$$

then, $z_{n} \rightharpoonup x \in \mathcal{H}$ where x is a solution to the monotone inclusion.

$$
\text { - } J_{\gamma A}=(\operatorname{ld}+\gamma A)^{-1} \text {, if } A=\partial f \text {, then } J_{\gamma A}=\operatorname{prox}_{\gamma f} .
$$

Remark

FBHF combines Forward-Backward (FB) and Forward-Backward-Forward (FBF - Tseng 2000).

$$
\begin{aligned}
& u_{n}=D z_{n} \\
& y_{n}=z_{n}-\gamma\left(C z_{n}+u_{n}\right) \\
& x_{n}=J_{\gamma A}\left(y_{n}\right) \\
& z_{n+1}=x_{n}+\gamma\left(u_{n}-D x_{n}\right) \text {. } \\
& \underbrace{\begin{array}{l}
\Downarrow D=0 \\
z_{n+1}=J_{\gamma A}\left(z_{n}-\gamma C\left(z_{n}\right)\right) .
\end{array}}_{\text {FB }} \\
& \begin{array}{c}
\not{ }^{\Downarrow D=0} \\
\underbrace{\left\lfloor z_{n+1}=J_{\gamma A}\left(z_{n}-\gamma C\left(z_{n}\right)\right) .\right.}_{\text {FB }}
\end{array} \\
& \overline{C=0} \Longrightarrow \underbrace{\begin{array}{l}
y_{n}=J_{\gamma A}\left(z_{n}-\gamma D z_{n}\right) \\
z_{n+1}=y_{n}+\gamma\left(D z_{n}-D y_{n}\right)
\end{array}}_{\text {FBF }}
\end{aligned}
$$

Forward-Douglas-Rachford-Forward (FDRF)

FDRF (Ryu-Vũ 2020)

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
x_{n}=J_{\gamma} C z_{n} \tag{25}\\
w_{n}=D x_{n} \\
y_{n}=J_{\gamma A}\left(2 x_{n}-z_{n}-\gamma w_{n}\right) \\
z_{n+1}=z_{n}+y_{n}-x_{n}-\gamma\left(D y_{n}-w_{n}\right)
\end{array}\right.
$$

Convergence

If

$$
\begin{equation*}
\gamma \in\{\gamma \in] 0,+\infty\left[\left\lvert\,\|L\|^{4}(\alpha+\zeta)^{2} \gamma^{2}\left(1+\frac{\gamma}{2 \beta}\right)<1\right.\right\} \tag{26}
\end{equation*}
$$

then, $z_{n} \rightharpoonup x \in \mathcal{H}$ where $J_{\gamma} C x$ is a solution to the monotone inclusion.

Remark

FDRF combines Forward-Backward-Forward and Douglas-Rachford Splitting (DR - Lions-Mercier 1979).

$$
\begin{aligned}
& \begin{array}{l}
x_{n}=J_{\gamma} C z_{n} \\
w_{n}=D x_{n} \\
y_{n}=J_{\gamma A}\left(2 x_{n}-z_{n}-\gamma w_{n}\right) \quad \underset{C=0}{\Longrightarrow} \\
z_{n+1}=z_{n}+y_{n}-x_{n}-\gamma\left(D y_{n}-w_{n}\right) \\
\Downarrow D=0
\end{array} \underbrace{\qquad \begin{array}{l}
y_{n}=J_{\gamma A}\left(z_{n}-\gamma D z_{n}\right) \\
z_{n+1}=y_{n}+\gamma\left(D z_{n}-D y_{n}\right)
\end{array}}_{\text {DR }} \\
& \underbrace{z_{n+1}=J_{\gamma A}\left(2 J_{\gamma C} z_{n}-z_{n}\right)+\left(\mathrm{Id}-J_{\gamma} C\right) z_{n}}_{\text {FBF }}
\end{aligned}
$$

Mismatch Problem

Monotone Inclusion

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x+\alpha L^{*} L x+L^{*} B L x, \tag{27}
\end{equation*}
$$

Consider the following relaxed monotone inclusion

Adjoint Mismatch Monotone Inclusion

find $\quad x \in \mathcal{H} \quad$ such that $\quad 0 \in A x+C x+\alpha K L x+K B L x$

- A: $\mathcal{H} \rightarrow 2^{\mathcal{H}}$ is a maximally ρ-monotone operator for some $\rho \in \mathbb{R}$, i.e., for every $(x, u) \in \operatorname{gra} A$ and $(y, v) \in \operatorname{gra} A$ we have

$$
\begin{equation*}
\langle x-y \mid u-v\rangle \geq \rho\|x-y\|^{2} \tag{29}
\end{equation*}
$$

- If $\rho>-1, J_{A}=(\mathrm{Id}+A)^{-1}$ is single valued and Lipschitzian.
- We assume that the solution set is not empty.

Mismatch Problem

Adjoint Mismatch Inclusion

find $\quad x \in \mathcal{H} \quad$ such that $\quad 0 \in A x+C x+\alpha K L x+K B L x$

- $K(\alpha \mathrm{ld}+B) L$ is Lipschitzian but not necessarily monotone.
- The convergence results for FBHF and FDRF are no longer valid in this context.

Mismatch Problem

Adjoint Mismatch Inclusion

$$
\text { find } \quad x \in \mathcal{H} \quad \text { such that } \quad 0 \in A x+C x+\alpha K L x+K B L x
$$

- $K(\alpha \mathrm{ld}+B) L$ is Lipschitzian but not necessarily monotone.
- The convergence results for FBHF and FDRF are no longer valid in this context.
Goals:
- Characterize the Monotone+Lipschitzian mismatch
- Extend the convergence of FBHF and FDRF for solving the mismatch problem allowing approximation on the iterations
- Relax hypotheses in previous results

Notation

Notation

- $D_{K}: x \mapsto \alpha K L x+K B L x$
- $D_{K_{n}}: x \mapsto \alpha K_{n} L x+K_{n} B L x$
- κ_{K} be the Lipschitz constant of D_{K}
- ζ_{K} be the Lipschitz constant of $\left(K-L^{*}\right) B L$
-

$$
\begin{equation*}
\lambda_{\min }=\inf \{\langle x \mid K L x\rangle \mid x \in \mathcal{H},\|x\|=1\} \tag{31}
\end{equation*}
$$

Adjoint Mismatch Monotone Inclusion

$$
\begin{equation*}
\text { find } \quad x \in \mathcal{H} \quad \text { such that } \quad 0 \in A x+C x+D_{K} x \tag{32}
\end{equation*}
$$

Comparison with the original solution

Proposition

Assume that $\rho+\alpha \lambda_{\text {min }}>0$. Then, there exists a unique solution z^{*} to the monotone inclusion (with L^{*}). Furthermore, every solution z to the adjoint mismatch monotone inclusion is such that

$$
\begin{equation*}
\left\|z-z^{*}\right\| \leq \frac{1}{\rho+\alpha \lambda_{\min }}\left\|L^{*}-K\right\|\|(\alpha \mathrm{Id}+B L) z\| \tag{33}
\end{equation*}
$$

- $\rho+\alpha \lambda_{\text {min }}>0$ is associated to the strongly monotonicity of $A+D$.

Assumptions

We introduce the following assumptions:

Assumption

1. $\hat{\rho}=\rho+\alpha \lambda_{\text {min }}-\zeta_{K} \geq 0$
2. $\left(K_{n}\right)_{n \in \mathbb{N}}$ is a sequence of $\mathcal{B}(\mathcal{G}, \mathcal{H})$ such that, for every $n \in \mathbb{N}$, $\left\|K_{n}-K\right\| \leq \omega_{n}$, where $\left\{\omega_{n}\right\}_{n \in \mathbb{N}} \subset\left[0,+\infty\left[\right.\right.$ and $\sum_{n \in \mathbb{N}} \omega_{n}<+\infty$.

Remark

- Note that $\zeta_{K} \leq\left\|L^{*}-K\right\|\|L\| \zeta$.
- 1 guarantees the monotonicity of $A+D_{K}$.
- If $B=0.1: \rho+\alpha \lambda_{\text {min }} \geq 0$.
- If $\alpha=0$. $1: \rho-\zeta_{K} \geq 0 \Rightarrow \rho>0$.

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Mismatched Forward-Backward-Half-Forward

$$
(\forall n \in \mathbb{N}) \quad \left\lvert\, \begin{align*}
& u_{n}=D_{K_{n}} z_{n} \tag{34}\\
& y_{n}=z_{n}-\gamma_{n}\left(C z_{n}+u_{n}\right) \\
& x_{n}=J_{\gamma_{n}} A\left(y_{n}\right) \\
& z_{n+1}=x_{n}+\gamma_{n}\left(u_{n}-D_{K_{n}} x_{n}\right) .
\end{align*}\right.
$$

Theorem

Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, \chi-\varepsilon]$, for some $\left.\varepsilon \in\right] 0, \chi / 2[$, such that
 $\chi=\min \left\{4 \beta /\left(1+\sqrt{1+16 \beta^{2} \kappa_{K}^{2}}\right),-1 / \rho\right\}$ otherwise. Therefore
(1) $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a zero of $\left(A+C+D_{K}\right)$.
(2) If $\hat{\rho}>0$ and there exists $\bar{\eta} \in[0,1[$ such that, for every $n \in \mathbb{N}$, $\omega_{n}=\omega_{0} \bar{\eta}^{n}$, then $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges linearly to the unique zero of $\left(A+C+D_{K}\right)$.

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Mismatched Forward-Douglas-Rachford-Forward

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
x_{n}=J_{\gamma} C z_{n} \tag{35}\\
w_{n}=D_{K_{n}} x_{n} \\
y_{n}=J_{\gamma A}\left(2 x_{n}-z_{n}-\gamma w_{n}\right) \\
z_{n+1}=z_{n}+y_{n}-x_{n}-\gamma\left(D_{K_{n}} y_{n}-w_{n}\right) .
\end{array}\right.
$$

Theorem

Suppose that $\gamma \in\{\gamma \in] 0,+\infty\left[\left\lvert\, \kappa_{K}^{2} \gamma^{2}\left(1+\frac{\gamma}{2 \beta}\right)<1\right.\right.$ and $\left.\rho \gamma>-1\right\}$. Then, the following hold.
(1) $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges weakly to some $\bar{z} \in \mathcal{H}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to $J_{\gamma} C \bar{z} \in \operatorname{zer}\left(A+C+D_{K}\right)$.
(2) If $\hat{\rho}>0$ and there exists $\bar{\eta} \in[0,1[$ such that, for every $n \in \mathbb{N}$, $\omega_{n}=\omega_{0} \bar{\eta}^{n}$, then $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges linearly to $\bar{z} \in \mathcal{H}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges linearly to $J_{\gamma} C \bar{z}$ the unique zero of $\left(A+C+D_{K}\right)$.

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Sketch of proof

Let $Q^{\gamma}: \mathcal{H} \rightarrow \mathcal{H}$ be the operator associated to FBHF or FDRF $\left(Q^{\gamma}=Q^{\gamma}(K)\right.$). We can deduce the following Fejér type inequality.

$$
\begin{equation*}
(\forall z \in \mathcal{H})\left(\forall z^{*} \in \boldsymbol{Z}\right) \quad\left\|Q^{\gamma} z-z^{*}\right\|^{2} \leq\left\|z-z^{*}\right\|^{2}-\phi^{\gamma}(z), \tag{36}
\end{equation*}
$$

where $\phi^{\gamma}: \mathcal{H} \rightarrow[0,+\infty[$.

Sketch of proof

Let $Q^{\gamma}: \mathcal{H} \rightarrow \mathcal{H}$ be the operator associated to FBHF or FDRF ($Q^{\gamma}=Q^{\gamma}(K)$). We can deduce the following Fejér type inequality.

$$
\begin{equation*}
(\forall z \in \mathcal{H})\left(\forall z^{*} \in \boldsymbol{Z}\right) \quad\left\|Q^{\gamma} z-z^{*}\right\|^{2} \leq\left\|z-z^{*}\right\|^{2}-\phi^{\gamma}(z), \tag{36}
\end{equation*}
$$

where $\phi^{\gamma}: \mathcal{H} \rightarrow[0,+\infty[$.
In order to consider approximations on K we consider an operator $Q_{n}^{\gamma}: \mathcal{H} \rightarrow \mathcal{H}\left(Q_{n}^{\gamma}=Q_{n}^{\gamma}\left(K_{n}\right)\right)$ approximating Q and we prove that

$$
\begin{equation*}
(\forall z \in \mathcal{H}) \quad\left\|Q_{n}^{\gamma} z-Q^{\gamma} z\right\| \leq \xi_{n}\left(z^{*}\right)\left\|z-z^{*}\right\|+\eta_{n}\left(z^{*}\right) \tag{37}
\end{equation*}
$$

Sketch of proof

Let $Q^{\gamma}: \mathcal{H} \rightarrow \mathcal{H}$ be the operator associated to FBHF or FDRF ($Q^{\gamma}=Q^{\gamma}(K)$). We can deduce the following Fejér type inequality.

$$
\begin{equation*}
(\forall z \in \mathcal{H})\left(\forall z^{*} \in \boldsymbol{Z}\right) \quad\left\|Q^{\gamma} z-z^{*}\right\|^{2} \leq\left\|z-z^{*}\right\|^{2}-\phi^{\gamma}(z), \tag{36}
\end{equation*}
$$

where $\phi^{\gamma}: \mathcal{H} \rightarrow[0,+\infty[$.
In order to consider approximations on K we consider an operator $Q_{n}^{\gamma}: \mathcal{H} \rightarrow \mathcal{H}\left(Q_{n}^{\gamma}=Q_{n}^{\gamma}\left(K_{n}\right)\right)$ approximating Q and we prove that

$$
\begin{equation*}
(\forall z \in \mathcal{H}) \quad\left\|Q_{n}^{\gamma} z-Q^{\gamma} z\right\| \leq \xi_{n}\left(z^{*}\right)\left\|z-z^{*}\right\|+\eta_{n}\left(z^{*}\right) \tag{37}
\end{equation*}
$$

where, for every $z^{*} \in \boldsymbol{Z}$,

- $\left\{\xi_{n}\left(z^{*}\right)\right\}_{n \in \mathbb{N}} \subset\left[0,+\infty\left[\right.\right.$ such that $\sum_{n \in \mathbb{N}} \xi_{n}\left(z^{*}\right)<+\infty$
- $\left\{\eta_{n}\left(z^{*}\right)\right\}_{n \in \mathbb{N}} \subset\left[0,+\infty\left[\right.\right.$ such that $\sum_{n \in \mathbb{N}} \eta_{n}\left(z^{*}\right)<+\infty$.

Sketch of proof

Mismatched FBHF and Mismatched FDRF are defined by the recurrence:

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad z_{n+1}=Q_{n}^{\gamma} z_{n} \tag{38}
\end{equation*}
$$

We can deduce the following quasi-Fejér inequality

$$
\begin{equation*}
\left\|z_{n+1}-z^{*}\right\| \leq\left(1+\xi_{n}\left(z^{*}\right)\right)\left\|z_{n}-z^{*}\right\|+\eta_{n}\left(z^{*}\right) . \tag{39}
\end{equation*}
$$

Sketch of proof

Mismatched FBHF and Mismatched FDRF are defined by the recurrence:

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad z_{n+1}=Q_{n}^{\gamma} z_{n} \tag{38}
\end{equation*}
$$

We can deduce the following quasi-Fejér inequality

$$
\begin{equation*}
\left\|z_{n+1}-z^{*}\right\| \leq\left(1+\xi_{n}\left(z^{*}\right)\right)\left\|z_{n}-z^{*}\right\|+\eta_{n}\left(z^{*}\right) . \tag{39}
\end{equation*}
$$

Then, we deduce that

$$
\begin{equation*}
\left(\left\|z_{n}-z^{*}\right\|\right)_{n \in \mathbb{N}} \text { is convergent. } \tag{40}
\end{equation*}
$$

Sketch of proof

Mismatched FBHF and Mismatched FDRF are defined by the recurrence:

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad z_{n+1}=Q_{n}^{\gamma} z_{n} . \tag{38}
\end{equation*}
$$

We can deduce the following quasi-Fejér inequality

$$
\begin{equation*}
\left\|z_{n+1}-z^{*}\right\| \leq\left(1+\xi_{n}\left(z^{*}\right)\right)\left\|z_{n}-z^{*}\right\|+\eta_{n}\left(z^{*}\right) . \tag{39}
\end{equation*}
$$

Then, we deduce that

$$
\begin{equation*}
\left(\left\|z_{n}-z^{*}\right\|\right)_{n \in \mathbb{N}} \text { is convergent. } \tag{40}
\end{equation*}
$$

Finally, in each case, we conclude the proof by showing that every weak sequential cluster point of $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a solution point and invoking Opial's Lemma.

Sketch of proof

Mismatched FBHF and Mismatched FDRF are defined by the recurrence:

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad z_{n+1}=Q_{n}^{\gamma} z_{n} . \tag{38}
\end{equation*}
$$

We can deduce the following quasi-Fejér inequality

$$
\begin{equation*}
\left\|z_{n+1}-z^{*}\right\| \leq\left(1+\xi_{n}\left(z^{*}\right)\right)\left\|z_{n}-z^{*}\right\|+\eta_{n}\left(z^{*}\right) . \tag{39}
\end{equation*}
$$

Then, we deduce that

$$
\begin{equation*}
\left(\left\|z_{n}-z^{*}\right\|\right)_{n \in \mathbb{N}} \text { is convergent. } \tag{40}
\end{equation*}
$$

Finally, in each case, we conclude the proof by showing that every weak sequential cluster point of $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a solution point and invoking Opial's Lemma.

- For linear convergence, a similar procedure is followed, using the strong monotonicity of $A+D_{K}$.

Remark

Adjoint Mismatch Inclusion

find $\quad x \in \mathcal{H} \quad$ such that $\quad 0 \in A x+C x+\alpha K L x+K B L x$

Mismatched Alg.	A	C	B	$\lambda_{\min }$				
FB	\mathcal{M}	0	0	$\lambda_{\min } \geq 0(+$ others $)$				
CV	\mathcal{M}	$N^{*} \mathcal{M} N$	0	$\lambda_{\min } \geq 0(+$ others $)$				
CP	\mathcal{S}	0	\mathcal{S}	$\alpha=0$				
FBHF \& FDRF	$\rho-\mathcal{M}$	\mathcal{C}	$\zeta-\mathcal{L}$	$\rho+\alpha \lambda_{\min } \geq\left\\|L^{*}-K\right\\|\\|L\\| \zeta$				

- \mathcal{M} : Maximally monotone
- \mathcal{S} : Strongly monotone
- \mathcal{C} : Cocoercive
- \mathcal{L} : Lipschitzian

Table of Contents

(1) Motivation
(2) Existing Mismatch Algorithms

- Mismatched Forward-Backward Algorithm
- Mismatched Condat-Vũ Algorithm
- Mismatched Primal-Dual Algorithm
(3) Main Problem and Results
- Mismatched Forward-Backward-Half-Forward
- Mismatched Forward-Douglas-Rachford-Forward
- Sketch of proof
(4) Numerical Example

Numerical Example

Optimization Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} f(x)+g(x)+\alpha \frac{\|L x-c\|^{2}}{2}+h(L x) \tag{42}
\end{equation*}
$$

Image reconstruction

- Recover an image x from the observation c.
- $f(x)=\iota_{\left[0, x_{\max }\right]^{N}}(x)+\frac{\rho}{2}\|x\|^{2}$
- $g(x)=\left(\Phi_{\delta} \circ W\right)(x)$ where W is an orthonormal wavelet transform and Φ_{δ} is the Huber function.
- $L \in \mathbb{R}^{N \times M}$ is a discretized Radon projector.
- h is the generalized Anscombe function (smoothed approximation of the neg-log-likelihood associated to a Gauss-Poisson noise model).

Numerical Example

Optimization Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} f(x)+g(x)+\alpha \frac{\|L x-c\|^{2}}{2}+h(L x) \tag{43}
\end{equation*}
$$

Monotone Inclusion

find $x \in \mathcal{H}$ such that $\partial f(x)+\partial g(x)+\alpha L^{*}(L x-c)+L^{*} \nabla h(L x)$.

Mismatch Monotone Inclusion
find $x \in \mathcal{H}$ such that $\partial f(x)+\partial g(x)+\alpha K(L x-c)+K \nabla h(L x)$.

- L: line length ray-drive projector (ASTRA ${ }^{1}$ toolbox in MATLAB). $180^{\circ}, 90$ regularly spaced angular steps. Distance source to object 800 mm , source-to-image distance is 1200 mm .
- K: adjoint of the strip fan-beam projector.
- $\lambda_{\text {min }} \approx-6.0082$. We set $\hat{\rho}=-\alpha \lambda_{\text {min }}+\hat{\zeta}_{L^{*}-K}+10^{-3}$.
- \bar{x} represents a part of 128×128 pixels of a high resolution scan of a phase-separated barium borosilicate glass imaged at the ESRF synchrotron ${ }^{2}$.
- $c=z+e$, where z is a Poisson distribution with mean $L \bar{x}$, and e is a Gaussian distribution with zero-mean and variance $\sigma^{2}(\sigma=200)$.
- $\lambda=150, \delta=5$, and $\alpha=0.1$.

[^0]
(a) Tomographic projection $L \bar{x}$

(b) Noisy projection c.

Figure: Clean projection and its noisy version, with SNR $_{\text {input }}=42.18 \mathrm{~dB}$

Figure: Original and reconstructed images after 1500 iterations.

Figure: SNR (dB) evolution along iterations.
L. M. Briceño-Arias and D. Davis, Forward-backward-half forward algorithm for solving monotone inclusions, SIAM J. Optim., 28 (2018), pp. 2839-2871, https://doi.org/10.1137/17M1120099.
E. Chouzenoux, A. Contreras, J.-C. Pesquet, And M. Savanier, Convergence results for primal-dual algorithms in the presence of adjoint mismatch, SIAM Journal on Imaging Sciences, 16 (2023), pp. 1-34.
E. Chouzenoux, J.-C. Pesquet, C. Riddell, M. Savanier, and Y. Trousset, Convergence of proximal gradient algorithm in the presence of adjoint mismatch, Inverse Problems, 37 (2021), pp. Paper No. 065009, 29, https://doi.org/10.1088/1361-6420/abd85c.
E. Chouzenoux, J.-C. Pesquet, and F. Roldán, Solution of Mismatched Monotone+Lipschitz Inclusion Problems https://arxiv.org/abs/2310.06402
D. A. Lorenz and F. Schneppe, Chambolle-Pock's primal-dual method with mismatched adjoint, Appl. Math. Optim., 87 (2023), pp. Paper No. 22, 26, https://doi.org/10.1007/s00245-022-09933-5.
E. K. Ryu and B. C. VŨ, Finding the forward-Douglas-Rachford-forward method, J. Optim. Theory Appl., 184 (2020), pp. 858-876, https://doi.org/10.1007/s10957-019-01601-z.

Thanks!

[^0]: ${ }^{1}$ W. van Aarle, W.J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K.J. Batenburg, J. Sijbers: The astra toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35-47 (2015). https://doi.org/10.1016/j.ultramic.2015.05.002
 ${ }^{2}$ https://www.esrf.fr/ - The dataset is a courtesy of David Bouttes.

