FISTA is an automatic geometrically optimized algorithm for strongly convex functions

Aude Rondepierre

Joint work with Jean-François Aujol, Charles Dossal

and Hippolyte Labarrière

Institut de Mathématiques de Toulouse, INSA de Toulouse

Workshop DIPOpt - Deep learning, image analysis, inverse problems, and optimization, 2023

The setting: composite optimization

Minimize
$$F(x) = f(x) + h(x)$$
, $x \in \mathbb{R}^N$

where:

• f is a convex differentiable function with a L-Lipschitz gradient:

For all $(x, y) \in \mathbb{R}^N imes \mathbb{R}^N$, we have:

$$f(y) \leq \underbrace{f(x) + \langle \nabla f(x), y - x \rangle}_{2} + \frac{L}{2} ||y - x||^{2}$$

linear approximation

- *h* is a convex lower semicontinuous (lsc) *simple* function.
- \hookrightarrow Application to least square problems, LASSO (min_{$x \in \mathbb{R}^N$} $\frac{1}{2} ||Ax b||^2 + ||x||_1$).
- \hookrightarrow Applications in Image and Signal processing, machine learning, deep learning, Al,...

The setting: local geometry of convex functions

In this talk we assume that the composite convex function F = f + h satisfies a quadratic growth condition around its set of minimizers:

Quadratic growth condition

Let $X^* = \arg \min F$ and $F^* = \min F$. There exists $\mu > 0$ such that:

$$\forall x \in \mathbb{R}^N, \ F(x) - F(x^*) \geq \frac{\mu}{2} d(x, X^*)^2.$$

Strong convexity

F is μ -strongly convex iff $F - \frac{\mu}{2} \| \cdot \|^2$ is convex. In the differentiable case:

$$orall (x,y)\in \mathbb{R}^{N} imes \mathbb{R}^{N}, \ F(y)\geqslant F(x)+\langle
abla F(x),y-x
angle+rac{\mu}{2}\|y-x\|^{2}.$$

LASSO problem with A invertible

$$F(x) = \frac{1}{2} \|Ax - b\|_2^2 + \|x\|_1$$

Then there exists $\mu > 0$ such that *F* is μ -strongly convex.

LASSO problem with A non injective

$$F(x) = \frac{1}{2} \|Ax - b\|_2^2 + \|x\|_1$$

Then there exists $\mu > 0$ such that F satisfies \mathcal{G}^2_{μ} , but F is not μ -strongly convex. [Bolte et al 2013]

The setting: Large scale optimization

Minimize
$$F(x) = f(x) + h(x)$$
, $x \in \mathbb{R}^N$

where:

- f is a convex differentiable function with a L-Lipschitz gradient.
- *h* is a convex l.s.c. function.
- *F* satisfies some quadratic growth condition \mathcal{G}^2_{μ} where μ is not perfectly known.

Goal

- First order optimization methods i.e. methods that can only use the values of the function *F* and/or the values of its gradient (or subgradient).
- Assume that F has at least one minimizer x^* .
 - Speed in term of decrease of $F(x_k) F(x^*)$
 - How to define a tractable stopping criterium ?

Outline

Analyzing optimization algorithms for a given accuracy $\boldsymbol{\varepsilon}$

- Notion of ε -solution
- A tractable stopping criterion

The Forward-Backward and FISTA algorithms

- The Forward-Backward algorithm
- FISTA a fast proximal gradient method
- FB vs FISTA in the strongly convex case

3 FISTA is an automatic geometrically optimized algorithm for strongly convex functions

- The dynamical system intuition
- Convergence rates under some quadratic growth condition
- Comparisons

Analyzing optimization algorithms for a given accuracy ε Notion of $\varepsilon\text{-solution}$

The minimizers of F = f + h are characterized: $0 \in \partial F(x)$, or equivalently for any $\gamma > 0$,

$$x = \operatorname{prox}_{\gamma h} \left(x - \gamma \nabla f(x) \right)$$

where:

$$\operatorname{prox}_{\gamma h}(x) = \arg\min_{y \in \mathbb{R}^N} \gamma h(y) + \frac{1}{2} \|y - x\|^2.$$

Definition (ε -solution)

Let

$$g(x) := L\left(x - \operatorname{prox}_{\gamma h}(x - \frac{1}{L}\nabla f(x))\right)$$

be the composite gradient mapping associated to F, and $\varepsilon > 0$. An iterate x_n is said to be an ε -solution of $\min_{x \in \mathbb{R}^N} F(x)$ if:

$$\|g(x_n)\| \leq \varepsilon.$$

NB: in the differentiable case (h = 0) we have: $g(x) = \nabla f(x)$.

Analyzing optimization algorithms in terms of ε -solution

A tractable stopping criterion

A tractable stopping criterion

$$\|g(x_n)\| \leq \varepsilon$$

Two useful properties:

[Aujol Dossal Labarrière R. 2021]

2 $\forall x \in \mathbb{R}^N, \ \frac{1}{2L} \|g(x)\|^2 \leq F(x) - F^*$

[Nesterov 2007]

A sufficient condition

If:

$$F(x_n)-F^*\leqslant rac{1}{2L}\varepsilon^2,$$

then x_n is an ε -solution of $\min_{x \in \mathbb{R}^N} F(x)$.

Analyzing optimization algorithms in terms of ε -solution Keep in mind...

General methodology

1 Getting bounds in finite time on $F(x_n) - F^*$.

Output: Interpretation in terms of ε-solution: compute the number n of iterations required to reach an ε-solution of min_{x∈ℝ^N} F(x) i.e. such that:

$$F(x_n) - F^* \leqslant \frac{1}{2L}\varepsilon^2$$

	Convergence rate	Nb <i>n</i> of iterations to reach	
	$F(x_n) - F^*$	a $arepsilon$ -solution prop. to	
Polynomial decrease	$\frac{1}{n^{eta}}$	$n \geqslant \left(\frac{2L}{\varepsilon^2}\right)^{\frac{1}{\beta}}$	
Exponential decrease	$(1-\kappa)^n$	$n \geqslant \frac{2}{ \log(1-\kappa) } \log\left(\frac{\sqrt{2L}}{\varepsilon}\right)$	

Forward-Backward algorithm A fixed point algorithm

Let $\gamma > 0$. The minimizers of the composite convex function F = f + h are exactly characterized by:

$$x = prox_{\gamma h} (x - \gamma \nabla f(x))$$

Forward-Backward algorithm

$$\begin{aligned} x_0 \in \mathbb{R}^N \\ x_{n+1} = \textit{prox}_{\gamma h}(x_n - \gamma \nabla f(x_n)), \quad \gamma > 0. \end{aligned}$$

Interpretation

Instead of minimizing F = f + g, minimize at each iteration *n* its quadratic upper bound:

$$x \mapsto f(x_n) + \langle \nabla f(x_n), x - x_n \rangle + \frac{L}{2} ||x - x_n||^2 + h(x)$$

Basic examples

• Gradient method (h = 0, unconstrained optimization). Then:

$$prox_{\gamma h}(x) = \arg\min_{y \in \mathbb{R}^N} \left(0 + \frac{1}{2} \|y - x\|^2\right) = x$$

Hence: $x_{n+1} = x_n - \frac{1}{L}\nabla f(x_n)$.

Basic examples

• Gradient method (h = 0, unconstrained optimization). Then:

$$prox_{\gamma h}(x) = \arg\min_{y \in \mathbb{R}^N} \left(0 + \frac{1}{2} \|y - x\|^2\right) = x$$

Hence: $x_{n+1} = x_n - \frac{1}{L}\nabla f(x_n)$.

• Gradient projection method ($h = i_C$, constrained convex optimization).

$$prox_{\gamma h}(x) = \arg\min_{y \in \mathbb{R}^N} \left(i_C(y) + \frac{1}{2} \|y - x\|^2 \right) = P_C^{\perp}(x).$$

Hence: $x_{n+1} = p_C^{\perp}(x_n - \frac{1}{L}\nabla f(x_n)).$

Basic examples

• Gradient method (*h* = 0, unconstrained optimization). Then:

$$prox_{\gamma h}(x) = \arg\min_{y \in \mathbb{R}^N} \left(0 + \frac{1}{2} \|y - x\|^2\right) = x$$

Hence: $x_{n+1} = x_n - \frac{1}{L}\nabla f(x_n)$.

• Gradient projection method ($h = i_C$, constrained convex optimization).

$$prox_{\gamma h}(x) = \arg \min_{y \in \mathbb{R}^{N}} \left(i_{C}(y) + \frac{1}{2} \|y - x\|^{2} \right) = P_{C}^{\perp}(x).$$

Hence: $x_{n+1} = p_{C}^{\perp}(x_{n} - \frac{1}{L} \nabla f(x_{n})).$

• Iterative Soft-Thresholding Algorithm (ISTA) $(h = \| \cdot \|_1)$:

$$prox_{\gamma h}(x) = sign(x) \max(0, |x| - \gamma).$$

and: $x_{n+1} = prox_{\frac{1}{L}h}(x_n - \frac{1}{L}\nabla f(x_n)).$

Convergence results in the convex case

(FB)
$$x_{n+1} = prox_{\gamma h}(x_n - \gamma \nabla f(x_n)), \quad \gamma > 0.$$

Convergence rates in the convex case

• If $\gamma < \frac{2}{L}$ then (FB) is a descent algorithm and the iterates $(x_n)_{n \in \mathbb{N}}$ cv to a minimizer of F.

2 Let
$$\gamma = \frac{1}{L}$$
.
 $\forall n \ge 1, \ F(x_n) - F^* \le \frac{2L ||x_0 - x^*||^2}{n}$

Convergence results in the convex case

(FB)
$$x_{n+1} = prox_{\gamma h}(x_n - \gamma \nabla f(x_n)), \quad \gamma > 0.$$

Convergence rates in the convex case

If $\gamma < \frac{2}{L}$ then (FB) is a descent algorithm and the iterates $(x_n)_{n \in \mathbb{N}}$ cv to a minimizer of F.

2 Let
$$\gamma = \frac{1}{L}$$

$$\forall n \ge 1, \ F(x_n) - F^* \leqslant \frac{2L \|x_0 - x^*\|^2}{n} \leqslant \frac{1}{2L} \varepsilon^2$$

The number of iterations required by FB to reach an ε -solution is at most:

$$n_{\varepsilon} \geq \frac{4L^2}{\varepsilon^2} \|x_0 - x^*\|^2 = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\right).$$

FISTA an accelerated proximal gradient method

FISTA - Beck Teboulle 2009, Nesterov 1984

$$y_{n} = x_{n} + \frac{t_{n} - 1}{t_{n+1}} (x_{n} - x_{n-1})$$
$$x_{n+1} = prox_{\frac{1}{L}h} \left(y_{n} - \frac{1}{L} \nabla f(y_{n}) \right) \right).$$

where $t_1 = 1$ and the sequence $(t_n)_{n \in \mathbb{N}}$ is determined as the positive root of:

$$t_{n+1}^2 - t_{n+1} = t_n^2$$
.

For the class of convex functions, they prove:

$$F(x_n) - F^* \leq \frac{2L \|x_0 - x^*\|^2}{(n+1)^2}$$

[Nesterov 1984] The $\mathcal{O}\left(\frac{1}{n^2}\right)$ rate is optimal for first order methods in the class of convex functions.

FISTA a fast proximal gradient method

FISTA - Chambolle Dossal 2015, Su Boyd Candès 2016

$$y_n = x_n + \frac{n}{n+\alpha}(x_n - x_{n-1}) \qquad \alpha \ge 3$$

$$x_{n+1} = \operatorname{prox}_{\frac{1}{L}h}\left(y_n - \frac{1}{L}\nabla f(y_n)\right).$$

- Initially Nesterov (1984) proposed a choice equivalent to α = 3.
 Convergence of iterates for α > 3 [Chambolle-Dossal 2015].
- For the class of composite convex functions:

$$\forall n \ge 1, \ F(x_n) - F^* \le \frac{L(\alpha - 1)^2 \|x_0 - x^*\|^2}{2(n + \alpha - 2)^2}$$

The number of iterations required for FISTA to reach an ε -solution is in $\mathcal{O}\left(\frac{L^2}{\varepsilon}\right)$ which is better than FB.

FB vs FISTA in the strongly convex case Exponential rate vs Polynomial rate (1/3)

Assume now that F additionally satisfies some quadratic growth condition:

$$orall x \in \mathbb{R}^N, \ F(x) - F^* \geqslant rac{\mu}{2} d(x, X^*)^2.$$

Let $\kappa = \frac{\mu}{I}$ be the inverse of the conditioning.

Convergence rate for FB [Garrigos, Rosasco, Villa 2017]

$$\forall n \in \mathbb{N}, \ F(x_n) - F^* \leq (1 - \kappa)^n (F(x_0) - F^*).$$

The number of iterations required to reach an ε -solution is:

$$n_{\varepsilon}^{FB} = rac{1}{|\log(1-\kappa)|} \log\left(rac{2L}{arepsilon^2}(F(x_0)-F^*)
ight) \sim rac{1}{\kappa} \log\left(rac{2L}{arepsilon^2}M_0
ight).$$

Convergence rate for FISTA [Candès et al 2015], [Attouch Cabot 2017], [ADR 2018]. Assume additionally that F has a unique minimizer.

$$\forall \alpha > 0, \ \forall n \in \mathbb{N}, \ F(x_n) - F^* = \mathcal{O}\left(n^{-\frac{2\alpha}{3}}\right).$$

FB vs FISTA in the strongly convex case Exponential rate vs Polynomial rate (2/3)

 $\log(||g(x_n)||)$ along the iterations n

FB, FISTA-restart, FISTA with $\alpha = 3$, FISTA with $\alpha = 12$, FISTA with $\alpha = 30$.

Motivation to provide a non-asymptotic analysis of FISTA and to compare rates in finite time !

Nesterov accelerated algorithm for strongly convex functions Differentiable case

Nesterov accelerated algorithm for strongly convex functions

$$y_n = x_n + \frac{1 - \sqrt{\kappa}}{1 + \sqrt{\kappa}} (x_n - x_{n-1})$$
$$x_{n+1} = y_n - \frac{1}{L} \nabla F(y_n)$$

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is μ -strongly convex for some $\mu > 0$. Let $\varepsilon > 0$. Then for $\kappa = \frac{\mu}{L}$ small enough,

$$\forall n \in \mathbb{N}, \ F(x_n) - F(x^*) \leq 2(1 - \sqrt{\kappa})^n \left(F(x_0) - F(x^*)\right)$$

which means that an ε -solution can be obtained in at most:

$$\eta_{\varepsilon}^{NSC} = \frac{1}{\left|\log(1-\sqrt{\kappa})\right|} \log\left(\frac{4LM_0}{\varepsilon^2}\right).$$
 (1)

The iterations require an estimation of $\kappa = \frac{\mu}{L}$!

FISTA in the strongly convex case Differentiable case

 $\log(||g(x_n)||)$ along the iterations

FB, FISTA with $\alpha = 8$, FISTA with $\alpha = 30$,

NSC with the true value of μ , NSC with $\tilde{\mu} = \frac{\mu}{10}$.

FISTA is efficient without knowing μ and its convergence rate does not suffer from any underestimation of μ

How to get bounds in finite time on $F(x_n) - F^*$ for FISTA ? The dynamical system intuition

General methodology to analyze optimization algorithms

• Interpreting the optimization algorithm as a discretization of a given ODE:

Gradient descent iteration:
$$\frac{x_{n+1} - x_n}{h} + \nabla F(x_n) = 0$$
Associated ODE: $\dot{x}(t) + \nabla F(x(t)) = 0.$

• Analysis of ODEs using a Lyapunov approach:

$$\mathcal{E}(t) = t(F(x(t)) - F^*) + rac{1}{2} \|x(t) - x^*\|^2.$$

 \mathcal{E} is decreasing along the trajectory, and thus $F(x(t)) - F^* = \mathcal{O}\left(\frac{1}{t}\right)$.

• Building a sequence of discrete Lyapunov energies adapted to the optimization scheme to get the same decay rates

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

$$x_{n+1} = y_n - h \nabla F(y_n)$$
 with $y_n = x_n + \frac{n}{n+\alpha}(x_n - x_{n-1})$

can be seen as a semi-implicit discretization of a solution of

$$\ddot{x}(t) + \frac{\alpha}{t}\dot{x}(t) + \nabla F(x(t)) = 0$$
 (ODE)

With $\dot{x}(t_0) = 0$. Move of a solid in a potential field with a vanishing viscosity $\frac{\alpha}{t}$.

(Discretization step: $h = \sqrt{s}$ and $x_n \simeq x(n\sqrt{s})$)

Convergence rate analysis for FISTA in finite time Sketch of proof

$$\mathcal{E}(t) = t^2(F(x(t)) - F(x^*)) + \frac{1}{2} \|\lambda(x(t) - x^*) + t\dot{x}(t)\|^2, \quad \lambda = \frac{2\alpha}{3}.$$

Assume that F has a quadratic growth and a unique minimizer x^* .

Prove some differential inequation:

$$orall t \geqslant t_0, \ \mathcal{E}'(t) + rac{\lambda-2}{t}\mathcal{E}(t) \leqslant arphi(t)\mathcal{E}(t).$$

2 Integrate it between any t_1 and t:

$$orall t \geqslant t_1, \ \mathcal{E}(t) \leqslant \mathcal{E}(t_1) \left(rac{t_1}{t}
ight)^{\lambda-2} e^{\phi(t_1)}.$$

Solution Choose t_1 such that the previous bound is as tight as possible:

$$\forall t \geq t_1, \ F(x(t)) - F^* \leq C_1 e^{\frac{2}{3}C_2(\alpha-3)} \left(\frac{\alpha}{t\sqrt{\mu}}\right)^{\frac{2\alpha}{3}}$$

Convergence rate analysis for FISTA in finite time How to tune α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

• For any $\alpha > 3$, we have:

$$\left(\frac{\alpha}{t\sqrt{\mu}}\right)^{\frac{2\alpha}{3}}\leqslant\varepsilon\quad\Longleftrightarrow\quad t\geqslant\frac{\alpha}{\sqrt{\mu}}\left(\frac{1}{\varepsilon}\right)^{\frac{3}{2\alpha}}$$

 \hookrightarrow Polynomial decay.

Convergence rate analysis for FISTA in finite time How to tune α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

• For any $\alpha > 3$, we have:

$$\left(\frac{\alpha}{t\sqrt{\mu}}\right)^{\frac{2\alpha}{3}}\leqslant\varepsilon\quad\Longleftrightarrow\quad t\geqslant\frac{\alpha}{\sqrt{\mu}}\left(\frac{1}{\varepsilon}\right)^{\frac{3}{2\alpha}}$$

 \hookrightarrow Polynomial decay.

Choose now:

$$\alpha = C \log \left(\frac{1}{\varepsilon}\right).$$

Then

$$\left(\frac{\alpha}{t\sqrt{\mu}}\right)^{\frac{2\alpha}{3}}\leqslant \varepsilon \quad \Longleftrightarrow \quad t \geqslant \frac{Ce^{\frac{3}{2C}}}{\sqrt{\mu}}\log\left(\frac{1}{\varepsilon}\right)$$

 \hookrightarrow Exponential decay !

Convergence rate analysis in finite time [ADR 2021] FISTA for composite optimization with a quadratic growth condition

Theorem

Let $\varepsilon > 0$ and

$$\alpha_{\varepsilon} := 3 \log \left(\frac{5\sqrt{LM_0}}{e\varepsilon} \right) \quad \text{where:} \quad M_0 = F(x_0) - F^*$$

Let $(x_n)_{n \in \mathbb{R}^N}$ be a sequence of iterates generated by the FISTA algorithm with parameter $\alpha_{1,\varepsilon}$. Then for $\kappa = \frac{\mu}{L}$ small enough, an ε -solution is reached in at most:

$$n_{\varepsilon}^{FISTA} := \frac{8e^2}{3\sqrt{\kappa}} \alpha_{\varepsilon} = \frac{8e^2}{\sqrt{\kappa}} \log\left(\frac{5\sqrt{LM_0}}{e\varepsilon}\right)$$

iterations.

- α_{ε} does not depend on μ or any estimation of μ .
- n_{ε}^{FISTA} depends on the real value of μ .
- Fast exponential decay.

Comparisons with Forward-Backward and Nesterov SC

Let
$$\varepsilon > 0$$
 and $\alpha = 3 \log \left(\frac{5\sqrt{LM_0}}{e\varepsilon} \right)$.

Comparison with Forward-Backward algorithm

For $\kappa = \frac{\mu}{L}$ small enough,

$$n_{\varepsilon}^{\textit{FISTA}} = \frac{4e^2}{\sqrt{\kappa}} \log\left(\frac{5LM_0}{e^2 \varepsilon^2}\right) \leqslant n_{\varepsilon}^{\textit{FB}} = \frac{1}{|\log(1-\kappa)|} \log\left(\frac{2LM_0}{\varepsilon^2}\right)$$

Comparison with Nesterov for strongly convex functions

Let $\varepsilon > 0$. If μ is known, for $\kappa = \frac{\mu}{L}$ small enough, NSC is faster than FISTA. But if μ is not perfectly known and for $\tilde{\mu} \leq \mu$

$$n_{\varepsilon}^{NSC} = \frac{1}{\left|\log(1-\sqrt{\frac{\tilde{\mu}}{L}})\right|} \log\left(\frac{4LM_{0}}{\varepsilon^{2}}\right) \ge \frac{1}{\left|\log(1-\sqrt{\kappa})\right|} \log\left(\frac{4LM_{0}}{\varepsilon^{2}}\right) \quad (2)$$

In practice, FISTA may outperform NSC even for smaller underestimations of $\mu.$

A first conclusion

	Geometry	References	Convergence rate	Number of iterations
	of F		for $F(x_n) - F^*$	to reach an ε solution
FB	Convex	N84, BT09	$\frac{2L\ x_0 - x^*\ ^2}{n}$	$\frac{4L^2}{\varepsilon^2} \ x_0 - x^*\ ^2$
FISTA with $\alpha = 3$	Convex	N84, <i>BT</i> 09	$\frac{2L\ x_0 - x^*\ ^2}{(n+1)^2}$	$\frac{2L}{\varepsilon} \ x_0 - x^*\ $
FB	Convex and ${\cal G}_{\mu}^2$	Garrigos 17	$(1+\kappa)^{-n}(F(x_0)-F^*)$	$\mathcal{O}\left(\frac{1}{\kappa}\log\left(\frac{1}{\varepsilon}\right)\right)$
NSC	Strongly convex	Nesterov 13	$2(1-\sqrt{\kappa})^n(F(x_0)-F^*)$	$\mathcal{O}\left(\frac{1}{\sqrt{\kappa}}\log\left(\frac{1}{\varepsilon}\right)\right)$
	Requires estimate of μ			
FISTA	Convex and ${\cal G}^2_\mu$	Attouch 18	$\mathcal{O}\left(n^{-\frac{2\alpha}{3}}\right)$	Unknown
$\alpha \geqslant 3$	Uniqueness of minimizer	ADR19		
FISTA	Convex and ${\cal G}^2_\mu$	ADR23	$\mathcal{O}\left(e^{-Cn\sqrt{\kappa}}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{\kappa}}\log\left(\frac{1}{\varepsilon}\right)\right)$
$\alpha = 3 \log \left(\frac{5\sqrt{LM_0}}{e \varepsilon} \right)$	Uniqueness of minimizer			

 No need to estimate the growth parameter μ and the convergence rate does not suffer from an underestimation of μ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for strongly convex functions. Mathematical Programming 2023.

All known improved convergence rates for first-order inertial methods rely on the assumption that F has a unique minimizer:

Algorithm	Strong convexity	\mathcal{G}^2_μ and unique	\mathcal{G}^2_μ
		minimizer	
Forward-	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$
Backward			· · · ·
Heavy-Ball	$\mathcal{O}\left(e^{-2\sqrt{\frac{\mu}{L}}k}\right)$	$\mathcal{O}\left(e^{-(2-\sqrt{2})\sqrt{\frac{\mu}{L}}k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$
methods			
FISTA ($lpha$ > 3)	$\mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$	$\mathcal{O}\left(k^{-rac{2lpha}{3}} ight)$	$\mathcal{O}\left(k^{-2} ight)$

Is this hypothesis necessary to get fast convergence rates?

Theorem

If F satisfies some flat growth condition i.e. if there exists $\gamma \ge 2$ and $\eta > 0$ such that for any minimizer x^* ,

$$\exists \eta > 0, \ \forall x \in B(x^*, \eta), \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*$$

then, for α large enough, the sequence $(x_k)_{k \in \mathbb{N}}$ generated by FISTA converges **strongly** to a minimizer of F. More precisely:

1 If $\gamma = 2$ and $\alpha > 3$, previous results are still valid and:

$$\|x_n-x_{n-1}\|=\mathcal{O}\left(n^{-\frac{\alpha}{3}}\right).$$

2 If $\gamma > 2$ and $\alpha > 5 + \frac{8}{\gamma - 2}$, we get:

$$F(x_n) - F^* = \mathcal{O}\left(n^{-\frac{2\gamma}{\gamma-2}}\right), \qquad ||x_n - x_{n-1}|| = \mathcal{O}\left(n^{-\frac{\gamma}{\gamma-2}}\right).$$

Strong convergence of FISTA Main idea

In the continuous setting

$$\mathcal{E}(t) = t^2(F(x(t)) - F(x^*)) + \frac{1}{2} \left\|\lambda(x(t) - x^*(t)) + t\dot{x}(t)\right\|^2, \quad \lambda = \frac{2\alpha}{3}.$$

• Requires some additional properties on the set of minimizers.

In the discrete setting for $\gamma = 2$

$$E_{n} = \frac{2n^{2}}{L}(F(x_{n}) - F^{*}) + \left\|\lambda(x_{n-1} - x_{n-1}^{*}) + n(x_{n} - x_{n-1})\right\|^{2}$$

• No additional properties required on the set of minimizers !

 No need to estimate the growth parameter μ and the convergence rate does not suffer from an underestimation of μ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for strongly convex functions. Mathematical Programming 2023.

• The iterates generated by FISTA strongly converge to a minimizer for the class composite convex functions *F* satisfying some local/global growth condition.

Article in preparation with JF Aujol, C Dossal and H Labarriere.

- Inertial methods are more efficient than the gradient descent without the assumption of uniqueness of the minimizer.
- Next step: removing the convexity assumption.