FISTA is an automatic geometrically optimized algorithm for strongly convex functions

Aude Rondepierre
Joint work with Jean-François Aujol, Charles Dossal and Hippolyte Labarrière

Institut de Mathématiques de Toulouse, INSA de Toulouse

Workshop DIPOpt - Deep learning, image analysis, inverse problems, and optimization, 2023

The setting: composite optimization

$$
\text { Minimize } F(x)=f(x)+h(x), \quad x \in \mathbb{R}^{N}
$$

where:

- f is a convex differentiable function with a L-Lipschitz gradient:

$$
\begin{aligned}
& \text { For all }(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{N} \text {, we have: } \\
& \qquad f(y) \leqslant \underbrace{f(x)+\langle\nabla f(x), y-x\rangle}_{\text {linear approximation }}+\frac{L}{2}\|y-x\|^{2}
\end{aligned}
$$

- h is a convex lower semicontinuous (Isc) simple function.
\hookrightarrow Application to least square problems, LASSO $\left(\min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|A x-b\|^{2}+\|x\|_{1}\right)$.
\hookrightarrow Applications in Image and Signal processing, machine learning, deep learning, Al, \ldots

The setting: local geometry of convex functions

In this talk we assume that the composite convex function $F=f+h$ satisfies a quadratic growth condition around its set of minimizers:

Quadratic growth condition

Let $X^{*}=\arg \min F$ and $F^{*}=\min F$. There exists $\mu>0$ such that:

$$
\forall x \in \mathbb{R}^{N}, F(x)-F\left(x^{*}\right) \geqslant \frac{\mu}{2} d\left(x, X^{*}\right)^{2}
$$

Strong convexity

F is μ-strongly convex iff $F-\frac{\mu}{2}\|\cdot\|^{2}$ is convex. In the differentiable case:

$$
\forall(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \quad F(y) \geqslant F(x)+\langle\nabla F(x), y-x\rangle+\frac{\mu}{2}\|y-x\|^{2} .
$$

Quadratic growth is a relaxation of strong convexity

LASSO problem with A invertible

$$
F(x)=\frac{1}{2}\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

Then there exists $\mu>0$ such that F is μ-strongly convex.

LASSO problem with A non injective

$$
F(x)=\frac{1}{2}\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

Then there exists $\mu>0$ such that F satisfies \mathcal{G}_{μ}^{2}, but F is not μ-strongly convex. [Bolte et al 2013]

The setting: Large scale optimization

$$
\text { Minimize } F(x)=f(x)+h(x), \quad x \in \mathbb{R}^{N}
$$

where:

- f is a convex differentiable function with a L-Lipschitz gradient.
- h is a convex I.s.c. function.
- F satisfies some quadratic growth condition \mathcal{G}_{μ}^{2} where μ is not perfectly known.

Goal

- First order optimization methods i.e. methods that can only use the values of the function F and/or the values of its gradient (or subgradient).
- Assume that F has at least one minimizer x^{*}.

Speed in term of decrease of $F\left(x_{k}\right)-F\left(x^{*}\right)$ How to define a tractable stopping criterium ?

Outline

(1) Analyzing optimization algorithms for a given accuracy ε

- Notion of ε-solution
- A tractable stopping criterion
(2) The Forward-Backward and FISTA algorithms
- The Forward-Backward algorithm
- FISTA a fast proximal gradient method
- FB vs FISTA in the strongly convex case
(3) FISTA is an automatic geometrically optimized algorithm for strongly convex functions
- The dynamical system intuition
- Convergence rates under some quadratic growth condition
- Comparisons
(4) Strong convergence of FISTA

Analyzing optimization algorithms for a given accuracy ε

Notion of ε-solution

The minimizers of $F=f+h$ are characterized: $0 \in \partial F(x)$, or equivalently for any $\gamma>0$,

$$
x=\operatorname{prox}_{\gamma h}(x-\gamma \nabla f(x))
$$

where:

$$
\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{N}} \gamma h(y)+\frac{1}{2}\|y-x\|^{2} .
$$

Definition (ε-solution)

Let

$$
g(x):=L\left(x-\operatorname{prox}_{\gamma h}\left(x-\frac{1}{L} \nabla f(x)\right)\right)
$$

be the composite gradient mapping associated to F, and $\varepsilon>0$. An iterate x_{n} is said to be an ε-solution of $\min _{x \in \mathbb{R}^{N}} F(x)$ if:

$$
\left\|g\left(x_{n}\right)\right\| \leqslant \varepsilon
$$

NB: in the differentiable case $(h=0)$ we have: $g(x)=\nabla f(x)$.

Analyzing optimization algorithms in terms of ε-solution

 A tractable stopping criterionA tractable stopping criterion

$$
\left\|g\left(x_{n}\right)\right\| \leqslant \varepsilon
$$

Two useful properties:
(1) $\forall x \in \mathbb{R}^{N}, F\left(x^{+}\right)-F^{*} \leqslant \frac{2}{\mu}\|g(x)\|^{2} \quad$ [Aujol Dossal Labarrière R. 2021]
(2) $\forall x \in \mathbb{R}^{N}, \frac{1}{2 L}\|g(x)\|^{2} \leqslant F(x)-F^{*} \quad$ [Nesterov 2007]

A sufficient condition

If:

$$
F\left(x_{n}\right)-F^{*} \leqslant \frac{1}{2 L} \varepsilon^{2},
$$

then x_{n} is an ε-solution of $\min _{x \in \mathbb{R}^{N}} F(x)$.

Analyzing optimization algorithms in terms of ε-solution

Keep in mind...

General methodology

(1) Getting bounds in finite time on $F\left(x_{n}\right)-F^{*}$.
(2) Interpretation in terms of ε-solution: compute the number n of iterations required to reach an ε-solution of $\min _{x \in \mathbb{R}^{N}} F(x)$ i.e. such that:

$$
F\left(x_{n}\right)-F^{*} \leqslant \frac{1}{2 L} \varepsilon^{2} .
$$

	Convergence rate $F\left(x_{n}\right)-F^{*}$	Nb n of iterations to reach a ε-solution prop. to			
Polynomial decrease	$\frac{1}{n^{\beta}}$	$n \geqslant\left(\frac{2 L}{\varepsilon^{2}}\right)^{\frac{1}{\beta}}$	$	$	$(1-\kappa)^{n}$
:---:	$n \geqslant \frac{2}{	\log (1-\kappa)	} \log \left(\frac{\sqrt{2 L}}{\varepsilon}\right)$.		

Forward-Backward algorithm

A fixed point algorithm

Let $\gamma>0$. The minimizers of the composite convex function $F=f+h$ are exactly characterized by:

$$
x=\operatorname{prox}_{\gamma h}(x-\gamma \nabla f(x))
$$

Forward-Backward algorithm

$$
\begin{aligned}
& x_{0} \in \mathbb{R}^{N} \\
& x_{n+1}=\operatorname{prox}_{\gamma h}\left(x_{n}-\gamma \nabla f\left(x_{n}\right)\right), \quad \gamma>0 .
\end{aligned}
$$

Interpretation

Instead of minimizing $F=f+g$, minimize at each iteration n its quadratic upper bound:
$x \mapsto f\left(x_{n}\right)+\left\langle\nabla f\left(x_{n}\right), x-x_{n}\right\rangle+\frac{L}{2}\left\|x-x_{n}\right\|^{2}+h(x)$

Forward-Backward algorithm

Basic examples

- Gradient method ($h=0$, unconstrained optimization). Then:

$$
\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{N}}\left(0+\frac{1}{2}\|y-x\|^{2}\right)=x
$$

Hence: $x_{n+1}=x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)$.

Forward-Backward algorithm

Basic examples

- Gradient method ($h=0$, unconstrained optimization). Then:

$$
\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{N}}\left(0+\frac{1}{2}\|y-x\|^{2}\right)=x
$$

Hence: $x_{n+1}=x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)$.

- Gradient projection method ($h=i_{C}$, constrained convex optimization).

$$
\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{N}}\left(i_{C}(y)+\frac{1}{2}\|y-x\|^{2}\right)=P_{C}^{\perp}(x) .
$$

Hence: $x_{n+1}=p_{C}^{\perp}\left(x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)\right)$.

Forward-Backward algorithm

Basic examples

- Gradient method ($h=0$, unconstrained optimization). Then:

$$
\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{N}}\left(0+\frac{1}{2}\|y-x\|^{2}\right)=x
$$

Hence: $x_{n+1}=x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)$.

- Gradient projection method ($h=i_{C}$, constrained convex optimization).

$$
\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{N}}\left(i_{C}(y)+\frac{1}{2}\|y-x\|^{2}\right)=P_{C}^{\perp}(x) .
$$

Hence: $x_{n+1}=p_{C}^{\perp}\left(x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)\right)$.

- Iterative Soft-Thresholding Algorithm (ISTA) $\left(h=\|\cdot\|_{1}\right)$:

$$
\operatorname{prox}_{\gamma h}(x)=\operatorname{sign}(x) \max (0,|x|-\gamma) .
$$

and: $x_{n+1}=\operatorname{prox}_{\frac{1}{L} h}\left(x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)\right)$.

Forward-Backward algorithm

Convergence results in the convex case
(FB) $\quad x_{n+1}=\operatorname{prox}_{\gamma h}\left(x_{n}-\gamma \nabla f\left(x_{n}\right)\right), \quad \gamma>0$.
Convergence rates in the convex case
(1) If $\gamma<\frac{2}{L}$ then (FB) is a descent algorithm and the iterates $\left(x_{n}\right)_{n \in \mathbb{N}} \mathrm{cv}$ to a minimizer of F.
(2) Let $\gamma=\frac{1}{L}$.

$$
\forall n \geqslant 1, F\left(x_{n}\right)-F^{*} \leqslant \frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{n}
$$

Forward-Backward algorithm

Convergence results in the convex case

$$
(F B) \quad x_{n+1}=\operatorname{prox}_{\gamma h}\left(x_{n}-\gamma \nabla f\left(x_{n}\right)\right), \quad \gamma>0 .
$$

Convergence rates in the convex case

(1) If $\gamma<\frac{2}{L}$ then (FB) is a descent algorithm and the iterates $\left(x_{n}\right)_{n \in \mathbb{N}} \mathrm{cv}$ to a minimizer of F.
(2) Let $\gamma=\frac{1}{L}$.

$$
\forall n \geqslant 1, F\left(x_{n}\right)-F^{*} \leqslant \frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{n} \leqslant \frac{1}{2 L} \varepsilon^{2}
$$

The number of iterations required by FB to reach an ε-solution is at most:

$$
n_{\varepsilon} \geqslant \frac{4 L^{2}}{\varepsilon^{2}}\left\|x_{0}-x^{*}\right\|^{2}=\mathcal{O}\left(\frac{L^{2}}{\varepsilon^{2}}\right) .
$$

FISTA an accelerated proximal gradient method

FISTA - Beck Teboulle 2009, Nesterov 1984

$$
\begin{aligned}
y_{n} & =x_{n}+\frac{t_{n}-1}{t_{n+1}}\left(x_{n}-x_{n-1}\right) \\
x_{n+1} & \left.=\operatorname{prox}_{\frac{1}{L} h}\left(y_{n}-\frac{1}{L} \nabla f\left(y_{n}\right)\right)\right) .
\end{aligned}
$$

where $t_{1}=1$ and the sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ is determined as the positive root of:

$$
t_{n+1}^{2}-t_{n+1}=t_{n}^{2} .
$$

For the class of convex functions, they prove:

$$
F\left(x_{n}\right)-F^{*} \leqslant \frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{(n+1)^{2}}
$$

[Nesterov 1984] The $\mathcal{O}\left(\frac{1}{n^{2}}\right)$ rate is optimal for first order methods in the class of convex functions.

FISTA a fast proximal gradient method

FISTA - Chambolle Dossal 2015, Su Boyd Candès 2016

$$
\begin{aligned}
y_{n} & =x_{n}+\frac{n}{n+\alpha}\left(x_{n}-x_{n-1}\right) \quad \alpha \geqslant 3 \\
x_{n+1} & \left.=\operatorname{prox}_{\frac{1}{L} h}\left(y_{n}-\frac{1}{L} \nabla f\left(y_{n}\right)\right)\right) .
\end{aligned}
$$

- Initially Nesterov (1984) proposed a choice equivalent to $\alpha=3$.

Convergence of iterates for $\alpha>3$ [Chambolle-Dossal 2015].

- For the class of composite convex functions:

$$
\forall n \geqslant 1, F\left(x_{n}\right)-F^{*} \leqslant \frac{L(\alpha-1)^{2}\left\|x_{0}-x^{*}\right\|^{2}}{2(n+\alpha-2)^{2}}
$$

The number of iterations required for FISTA to reach an ε-solution is in $\mathcal{O}\left(\frac{L^{2}}{\varepsilon}\right)$ which is better than FB.

FB vs FISTA in the strongly convex case

Exponential rate vs Polynomial rate (1/3)
Assume now that F additionally satisfies some quadratic growth condition:

$$
\forall x \in \mathbb{R}^{N}, F(x)-F^{*} \geqslant \frac{\mu}{2} d\left(x, X^{*}\right)^{2}
$$

Let $\kappa=\frac{\mu}{L}$ be the inverse of the conditioning.
Convergence rate for FB [Garrigos, Rosasco, Villa 2017]

$$
\forall n \in \mathbb{N}, F\left(x_{n}\right)-F^{*} \leqslant(1-\kappa)^{n}\left(F\left(x_{0}\right)-F^{*}\right) .
$$

The number of iterations required to reach an ε-solution is:

$$
n_{\varepsilon}^{F B}=\frac{1}{|\log (1-\kappa)|} \log \left(\frac{2 L}{\varepsilon^{2}}\left(F\left(x_{0}\right)-F^{*}\right)\right) \sim \frac{1}{\kappa} \log \left(\frac{2 L}{\varepsilon^{2}} M_{0}\right) .
$$

Convergence rate for FISTA [Candès et al 2015], [Attouch Cabot 2017], [ADR 2018]. Assume additionally that F has a unique minimizer.

$$
\forall \alpha>0, \forall n \in \mathbb{N}, F\left(x_{n}\right)-F^{*}=\mathcal{O}\left(n^{-\frac{2 \alpha}{3}}\right) .
$$

FB vs FISTA in the strongly convex case

Exponential rate vs Polynomial rate $(2 / 3)$

$\log \left(\left\|g\left(x_{n}\right)\right\|\right)$ along the iterations n
FB, FISTA-restart, FISTA with $\alpha=3$, FISTA with $\alpha=12$, FISTA with $\alpha=30$.
Motivation to provide a non-asymptotic analysis of FISTA and to compare rates in finite time!

Nesterov accelerated algorithm for strongly convex functions Differentiable case

Nesterov accelerated algorithm for strongly convex functions

$$
\begin{aligned}
& y_{n}=x_{n}+\frac{1-\sqrt{\kappa}}{1+\sqrt{\kappa}}\left(x_{n}-x_{n-1}\right) \\
& x_{n+1}=y_{n}-\frac{1}{L} \nabla F\left(y_{n}\right)
\end{aligned}
$$

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is μ-strongly convex for some $\mu>0$. Let $\varepsilon>0$. Then for $\kappa=\frac{\mu}{L}$ small enough,

$$
\forall n \in \mathbb{N}, F\left(x_{n}\right)-F\left(x^{*}\right) \leqslant 2(1-\sqrt{\kappa})^{n}\left(F\left(x_{0}\right)-F\left(x^{*}\right)\right),
$$

which means that an ε-solution can be obtained in at most:

$$
\begin{equation*}
n_{\varepsilon}^{N S C}=\frac{1}{|\log (1-\sqrt{\kappa})|} \log \left(\frac{4 L M_{0}}{\varepsilon^{2}}\right) . \tag{1}
\end{equation*}
$$

The iterations require an estimation of $\kappa=\frac{\mu}{L}$!

FISTA in the strongly convex case

Differentiable case

$\log \left(\left\|g\left(x_{n}\right)\right\|\right)$ along the iterations
FB, FISTA with $\alpha=8$, FISTA with $\alpha=30$,
NSC with the true value of μ, NSC with $\widetilde{\mu}=\frac{\mu}{10}$.
FISTA is efficient without knowing μ and its convergence rate does not suffer from any underestimation of μ

How to get bounds in finite time on $F\left(x_{n}\right)-F^{*}$ for FISTA ?

The dynamical system intuition

General methodology to analyze optimization algorithms

- Interpreting the optimization algorithm as a discretization of a given ODE:

Gradient descent iteration: $\frac{x_{n+1}-x_{n}}{h}+\nabla F\left(x_{n}\right)=0$

$$
\text { Associated ODE: } \quad \dot{x}(t)+\nabla F(x(t))=0 .
$$

- Analysis of ODEs using a Lyapunov approach:

$$
\mathcal{E}(t)=t\left(F(x(t))-F^{*}\right)+\frac{1}{2}\left\|x(t)-x^{*}\right\|^{2} .
$$

\mathcal{E} is decreasing along the trajectory, and thus $F(x(t))-F^{*}=\mathcal{O}\left(\frac{1}{t}\right)$.

- Building a sequence of discrete Lyapunov energies adapted to the optimization scheme to get the same decay rates

The Nesterov's accelerated gradient method

 Link with the ODEs
Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

$$
x_{n+1}=y_{n}-h \nabla F\left(y_{n}\right) \text { with } y_{n}=x_{n}+\frac{n}{n+\alpha}\left(x_{n}-x_{n-1}\right)
$$

can be seen as a semi-implicit discretization of a solution of

$$
\begin{equation*}
\ddot{x}(t)+\frac{\alpha}{t} \dot{x}(t)+\nabla F(x(t))=0 \tag{ODE}
\end{equation*}
$$

With $\dot{x}\left(t_{0}\right)=0$. Move of a solid in a potential field with a vanishing viscosity $\frac{\alpha}{t}$.
(Discretization step: $h=\sqrt{s}$ and $x_{n} \simeq x(n \sqrt{s})$)

Convergence rate analysis for FISTA in finite time

 Sketch of proof$$
\mathcal{E}(t)=t^{2}\left(F(x(t))-F\left(x^{*}\right)\right)+\frac{1}{2}\left\|\lambda\left(x(t)-x^{*}\right)+t \dot{x}(t)\right\|^{2}, \quad \lambda=\frac{2 \alpha}{3} .
$$

Assume that F has a quadratic growth and a unique minimizer x^{*}.
(1) Prove some differential inequation:

$$
\forall t \geqslant t_{0}, \mathcal{E}^{\prime}(t)+\frac{\lambda-2}{t} \mathcal{E}(t) \leqslant \varphi(t) \mathcal{E}(t)
$$

(2) Integrate it between any t_{1} and t :

$$
\forall t \geqslant t_{1}, \mathcal{E}(t) \leqslant \mathcal{E}\left(t_{1}\right)\left(\frac{t_{1}}{t}\right)^{\lambda-2} e^{\phi\left(t_{1}\right)}
$$

(3) Choose t_{1} such that the previous bound is as tight as possible:

$$
\forall t \geqslant t_{1}, F(x(t))-F^{*} \leqslant C_{1} e^{\frac{2}{3} C_{2}(\alpha-3)}\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} .
$$

Convergence rate analysis for FISTA in finite time

How to tune α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

- For any $\alpha>3$, we have:

$$
\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} \leqslant \varepsilon \Longleftrightarrow t \geqslant \frac{\alpha}{\sqrt{\mu}}\left(\frac{1}{\varepsilon}\right)^{\frac{3}{2 \alpha}}
$$

\hookrightarrow Polynomial decay.

Convergence rate analysis for FISTA in finite time

How to tune α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

- For any $\alpha>3$, we have:

$$
\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} \leqslant \varepsilon \Longleftrightarrow t \geqslant \frac{\alpha}{\sqrt{\mu}}\left(\frac{1}{\varepsilon}\right)^{\frac{3}{2 \alpha}}
$$

\hookrightarrow Polynomial decay.

- Choose now:

$$
\alpha=C \log \left(\frac{1}{\varepsilon}\right) .
$$

Then

$$
\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} \leqslant \varepsilon \Longleftrightarrow t \geqslant \frac{C e^{\frac{3}{2 c}}}{\sqrt{\mu}} \log \left(\frac{1}{\varepsilon}\right)
$$

\hookrightarrow Exponential decay!

Convergence rate analysis in finite time [ADR 2021]

FISTA for composite optimization with a quadratic growth condition

Theorem

Let $\varepsilon>0$ and

$$
\alpha_{\varepsilon}:=3 \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right) \quad \text { where: } \quad M_{0}=F\left(x_{0}\right)-F^{*} .
$$

Let $\left(x_{n}\right)_{n \in \mathbb{R}^{N}}$ be a sequence of iterates generated by the FISTA algorithm with parameter $\alpha_{1, \varepsilon}$. Then for $\kappa=\frac{\mu}{L}$ small enough, an ε-solution is reached in at most:

$$
n_{\varepsilon}^{\text {FISTA }}:=\frac{8 e^{2}}{3 \sqrt{\kappa}} \alpha_{\varepsilon}=\frac{8 e^{2}}{\sqrt{\kappa}} \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right)
$$

iterations.

- α_{ε} does not depend on μ or any estimation of μ.
- $n_{\varepsilon}^{\text {FISTA }}$ depends on the real value of μ.
- Fast exponential decay.

Comparisons with Forward-Backward and Nesterov SC

$$
\text { Let } \varepsilon>0 \text { and } \alpha=3 \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right) .
$$

Comparison with Forward-Backward algorithm

For $\kappa=\frac{\mu}{L}$ small enough,

$$
n_{\varepsilon}^{F I S T A}=\frac{4 e^{2}}{\sqrt{\kappa}} \log \left(\frac{5 L M_{0}}{e^{2} \varepsilon^{2}}\right) \leqslant n_{\varepsilon}^{F B}=\frac{1}{|\log (1-\kappa)|} \log \left(\frac{2 L M_{0}}{\varepsilon^{2}}\right)
$$

Comparison with Nesterov for strongly convex functions

Let $\varepsilon>0$. If μ is known, for $\kappa=\frac{\mu}{L}$ small enough, NSC is faster than FISTA. But if μ is not perfectly known and for $\tilde{\mu} \leqslant \mu$

$$
\begin{equation*}
n_{\varepsilon}^{N S C}=\frac{1}{\left|\log \left(1-\sqrt{\frac{\tilde{\mu}}{L}}\right)\right|} \log \left(\frac{4 L M_{0}}{\varepsilon^{2}}\right) \geqslant \frac{1}{|\log (1-\sqrt{\kappa})|} \log \left(\frac{4 L M_{0}}{\varepsilon^{2}}\right) \tag{2}
\end{equation*}
$$

In practice, FISTA may outperform NSC even for smaller underestimations of μ.

A first conclusion

	Geometry of F	References	Convergence rate for $F\left(x_{n}\right)-F^{*}$	Number of iterations to reach an ε solution				
FB	Convex	N84, BT09	$\frac{2 L\left\\|x_{0}-x^{*}\right\\|^{2}}{n}$	$\frac{4 L^{2}}{\varepsilon^{2}}\left\\|x_{0}-x^{*}\right\\|^{2}$				
FISTA with $\alpha=3$	Convex	N84, BT09	$\frac{2 L\left\\|x_{0}-x^{*}\right\\|^{2}}{(n+1)^{2}}$	$\frac{2 L}{\varepsilon}\left\\|x_{0}-x^{*}\right\\|$				
FB	Convex and \mathcal{G}_{μ}^{2}	Garrigos 17	$(1+\kappa)^{-n}\left(F\left(x_{0}\right)-F^{*}\right)$	$\mathcal{O}\left(\frac{1}{\kappa} \log \left(\frac{1}{\varepsilon}\right)\right)$				
NSC	Strongly convex Requires estimate of μ	Nesterov 13	$2(1-\sqrt{\kappa})^{n}\left(F\left(x_{0}\right)-F^{*}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{\kappa}} \log \left(\frac{1}{\varepsilon}\right)\right)$				
FISTA	Convex and \mathcal{G}_{μ}^{2} $\alpha \geqslant 3$	Attouch 18	$\mathcal{O}\left(n^{-\frac{2 \alpha}{3}}\right)$	Unknown				
FISTA	Uniqueness of minimizer	ADR19	$\mathcal{O}\left(e^{-C n \sqrt{\kappa}}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{\kappa}} \log \left(\frac{1}{\varepsilon}\right)\right)$				
$\alpha=3 \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right)$	Uniqueness of minimizer		ADR23					

- No need to estimate the growth parameter μ and the convergence rate does not suffer from an underestimation of μ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for strongly convex functions. Mathematical Programming 2023.

Inertial methods without the uniqueness of the minimizer

All known improved convergence rates for first-order inertial methods rely on the assumption that F has a unique minimizer:

Algorithm	Strong convexity	\mathcal{G}_{μ}^{2} and unique minimizer	\mathcal{G}_{μ}^{2}
Forward- Backward	$\mathcal{O}\left(e^{-\frac{\mu}{L} k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L} k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L} k}\right)$
Heavy-Ball methods	$\mathcal{O}\left(e^{-2 \sqrt{\frac{\mu}{L}} k}\right)$	$\mathcal{O}\left(e^{-(2-\sqrt{2}) \sqrt{\frac{\mu}{L}} k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L} k}\right)$
FISTA $(\alpha>3)$	$\mathcal{O}\left(k^{-\frac{2 \alpha}{3}}\right)$	$\mathcal{O}\left(k^{-\frac{2 \alpha}{3}}\right)$	$\mathcal{O}\left(k^{-2}\right)$

Is this hypothesis necessary to get fast convergence rates?

Strong convergence of FISTA

Theorem

If F satisfies some flat growth condition i.e. if there exists $\gamma \geqslant 2$ and $\eta>0$ such that for any minimizer x^{*},

$$
\exists \eta>0, \forall x \in B\left(x^{*}, \eta\right), K d\left(x, X^{*}\right)^{\gamma} \leqslant F(x)-F^{*}
$$

then, for α large enough, the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ generated by FISTA converges strongly to a minimizer of F. More precisely:
(1) If $\gamma=2$ and $\alpha>3$, previous results are still valid and:

$$
\left\|x_{n}-x_{n-1}\right\|=\mathcal{O}\left(n^{-\frac{\alpha}{3}}\right) .
$$

(2) If $\gamma>2$ and $\alpha>5+\frac{8}{\gamma-2}$, we get:

$$
F\left(x_{n}\right)-F^{*}=\mathcal{O}\left(n^{-\frac{2 \gamma}{\gamma-2}}\right), \quad\left\|x_{n}-x_{n-1}\right\|=\mathcal{O}\left(n^{-\frac{\gamma}{\gamma-2}}\right) .
$$

Strong convergence of FISTA

Main idea

In the continuous setting

$$
\mathcal{E}(t)=t^{2}\left(F(x(t))-F\left(x^{*}\right)\right)+\frac{1}{2}\left\|\lambda\left(x(t)-x^{*}(t)\right)+t \dot{x}(t)\right\|^{2}, \quad \lambda=\frac{2 \alpha}{3} .
$$

- Requires some additional properties on the set of minimizers.

In the discrete setting for $\gamma=2$

$$
E_{n}=\frac{2 n^{2}}{L}\left(F\left(x_{n}\right)-F^{*}\right)+\left\|\lambda\left(x_{n-1}-x_{n-1}^{*}\right)+n\left(x_{n}-x_{n-1}\right)\right\|^{2}
$$

- No additional properties required on the set of minimizers !

Conclusion about FISTA and inertial methods

- No need to estimate the growth parameter μ and the convergence rate does not suffer from an underestimation of μ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for strongly convex functions. Mathematical Programming 2023.

- The iterates generated by FISTA strongly converge to a minimizer for the class composite convex functions F satisfying some local/global growth condition.

Article in preparation with JF Aujol, C Dossal and H Labarriere.

- Inertial methods are more efficient than the gradient descent without the assumption of uniqueness of the minimizer.
- Next step: removing the convexity assumption.

