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The setting: composite optimization

Minimize F (x) = f (x) + h(x), x ∈ RN

where:

f is a convex differentiable function with a L-Lipschitz gradient:

For all (x , y) ∈ RN × RN , we have:

f (y) 6 f (x) + 〈∇f (x), y − x〉︸ ︷︷ ︸
linear approximation

+
L

2
‖y − x‖2

h is a convex lower semicontinuous (lsc) simple function.

↪→ Application to least square problems, LASSO (minx∈RN
1
2‖Ax − b‖2 + ‖x‖1).

↪→ Applications in Image and Signal processing, machine learning, deep
learning, AI,...
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The setting: local geometry of convex functions

In this talk we assume that the composite convex function F = f + h satisfies a
quadratic growth condition around its set of minimizers:

Quadratic growth condition

Let X ∗ = arg minF and F ∗ = minF . There exists µ > 0 such that:

∀x ∈ RN , F (x)− F (x∗) >
µ

2
d(x ,X ∗)2.

Strong convexity

F is µ-strongly convex iff F − µ
2 ‖ · ‖

2 is convex. In the differentiable case:

∀(x , y) ∈ RN × RN , F (y) > F (x) + 〈∇F (x), y − x〉+
µ

2
‖y − x‖2.
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Quadratic growth is a relaxation of strong convexity

LASSO problem with A invertible

F (x) =
1

2
‖Ax − b‖2

2 + ‖x‖1

Then there exists µ > 0 such that F is µ-strongly convex.

LASSO problem with A non injective

F (x) =
1

2
‖Ax − b‖2

2 + ‖x‖1

Then there exists µ > 0 such that F satisfies G2
µ, but F is not µ-strongly convex.

[Bolte et al 2013]



5/29

The setting: Large scale optimization

Minimize F (x) = f (x) + h(x), x ∈ RN

where:

f is a convex differentiable function with a L-Lipschitz gradient.

h is a convex l.s.c. function.

F satisfies some quadratic growth condition G2
µ where µ is not perfectly

known.

Goal

First order optimization methods i.e. methods that can only use the values
of the function F and/or the values of its gradient (or subgradient).

Assume that F has at least one minimizer x∗.

I Speed in term of decrease of F (xk)− F (x∗)
I How to define a tractable stopping criterium ?
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Outline

1 Analyzing optimization algorithms for a given accuracy ε
Notion of ε-solution
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Analyzing optimization algorithms for a given accuracy ε
Notion of ε-solution

The minimizers of F = f + h are characterized: 0 ∈ ∂F (x), or equivalently for
any γ > 0,

x = proxγh (x − γ∇f (x))

where:
proxγh(x) = arg min

y∈RN
γh(y) +

1

2
‖y − x‖2.

Definition (ε-solution)

Let

g(x) := L

(
x − proxγh(x − 1

L
∇f (x))

)
be the composite gradient mapping associated to F , and ε > 0. An iterate xn is
said to be an ε-solution of minx∈RN F (x) if:

‖g(xn)‖ 6 ε.

NB: in the differentiable case (h = 0) we have: g(x) = ∇f (x).
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Analyzing optimization algorithms in terms of ε-solution
A tractable stopping criterion

A tractable stopping criterion

‖g(xn)‖ 6 ε

Two useful properties:

1 ∀x ∈ RN , F (x+)− F ∗ 6 2
µ‖g(x)‖2 [Aujol Dossal Labarrière R. 2021]

2 ∀x ∈ RN , 1
2L‖g(x)‖2 6 F (x)− F ∗ [Nesterov 2007]

A sufficient condition

If:

F (xn)− F ∗ 6
1

2L
ε2,

then xn is an ε-solution of minx∈RN F (x).
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Analyzing optimization algorithms in terms of ε-solution
Keep in mind...

General methodology

1 Getting bounds in finite time on F (xn)− F ∗.

2 Interpretation in terms of ε-solution: compute the number n of iterations
required to reach an ε-solution of minx∈RN F (x) i.e. such that:

F (xn)− F ∗ 6
1

2L
ε2.

Convergence rate Nb n of iterations to reach
F (xn)− F ∗ a ε-solution prop. to

Polynomial decrease
1

nβ
n >

(
2L

ε2

) 1
β

Exponential decrease (1− κ)n n >
2

| log(1− κ)|
log

(√
2L

ε

)
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Forward-Backward algorithm
A fixed point algorithm

Let γ > 0.The minimizers of the composite convex function F = f + h are exactly
characterized by:

x = proxγh (x − γ∇f (x))

Forward-Backward algorithm

x0 ∈ RN

xn+1 = proxγh(xn − γ∇f (xn)), γ > 0.

Interpretation

Instead of minimizing F = f +g , minimize at
each iteration n its quadratic upper bound:

x 7→ f (xn)+〈∇f (xn), x−xn〉+
L

2
‖x−xn‖2+h(x)
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Forward-Backward algorithm
Basic examples

Gradient method (h = 0, unconstrained optimization). Then:

proxγh(x) = arg min
y∈RN

(
0 +

1

2
‖y − x‖2

)
= x

Hence: xn+1 = xn − 1
L∇f (xn).

Gradient projection method (h = iC , constrained convex optimization).

proxγh(x) = arg min
y∈RN

(
iC (y) +

1

2
‖y − x‖2

)
= P⊥C (x).

Hence: xn+1 = p⊥C (xn − 1
L∇f (xn)).

Iterative Soft-Thresholding Algorithm (ISTA) (h = ‖ · ‖1):

proxγh(x) = sign(x) max(0, |x | − γ).

and: xn+1 = prox 1
L h

(xn − 1
L∇f (xn)).
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Forward-Backward algorithm
Convergence results in the convex case

(FB) xn+1 = proxγh(xn − γ∇f (xn)), γ > 0.

Convergence rates in the convex case

1 If γ < 2
L then (FB) is a descent algorithm and the iterates (xn)n∈N cv to a

minimizer of F .

2 Let γ = 1
L .

∀n > 1, F (xn)− F ∗ 6
2L‖x0 − x∗‖2

n
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Convergence rates in the convex case

1 If γ < 2
L then (FB) is a descent algorithm and the iterates (xn)n∈N cv to a

minimizer of F .

2 Let γ = 1
L .

∀n > 1, F (xn)− F ∗ 6
2L‖x0 − x∗‖2

n
6

1

2L
ε2

The number of iterations required by FB to reach an ε-solution is at most:

nε >
4L2

ε2
‖x0 − x∗‖2 = O

(
L2

ε2

)
.
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FISTA an accelerated proximal gradient method

FISTA - Beck Teboulle 2009, Nesterov 1984

yn = xn +
tn − 1

tn+1
(xn − xn−1)

xn+1 = prox 1
L h

(
yn −

1

L
∇f (yn))

)
.

where t1 = 1 and the sequence (tn)n∈N is determined as the positive root of:

t2
n+1 − tn+1 = t2

n .

For the class of convex functions, they prove:

F (xn)− F ∗ 6
2L‖x0 − x∗‖2

(n + 1)2

[Nesterov 1984] The O
(

1
n2

)
rate is optimal for first order methods in the class of

convex functions.
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FISTA a fast proximal gradient method

FISTA - Chambolle Dossal 2015, Su Boyd Candès 2016

yn = xn +
n

n + α
(xn − xn−1) α > 3

xn+1 = prox 1
L h

(
yn −

1

L
∇f (yn))

)
.

Initially Nesterov (1984) proposed a choice equivalent to α = 3.

Convergence of iterates for α > 3 [Chambolle-Dossal 2015].

For the class of composite convex functions:

∀n > 1, F (xn)− F ∗ 6
L(α− 1)2‖x0 − x∗‖2

2(n + α− 2)2

The number of iterations required for FISTA to reach an ε-solution is in O
(
L2

ε

)
which is better than FB.
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FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (1/3)

Assume now that F additionally satisfies some quadratic growth condition:

∀x ∈ RN , F (x)− F ∗ >
µ

2
d(x ,X ∗)2.

Let κ = µ
L be the inverse of the conditioning.

Convergence rate for FB [Garrigos, Rosasco, Villa 2017]

∀n ∈ N, F (xn)− F ∗ 6 (1− κ)n(F (x0)− F ∗).

The number of iterations required to reach an ε-solution is:

nFBε =
1

| log(1− κ)|
log

(
2L

ε2
(F (x0)− F ∗)

)
∼ 1

κ
log

(
2L

ε2
M0

)
.

Convergence rate for FISTA [Candès et al 2015], [Attouch Cabot 2017], [ADR 2018].

Assume additionally that F has a unique minimizer.

∀α > 0, ∀n ∈ N, F (xn)− F ∗ = O
(
n−

2α
3

)
.
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FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (2/3)

log(‖g(xn)‖) along the iterations n

FB, FISTA-restart, FISTA with α = 3, FISTA with α = 12, FISTA with α = 30.

Motivation to provide a non-asymptotic analysis of FISTA and to compare rates
in finite time !
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Nesterov accelerated algorithm for strongly convex functions
Differentiable case

Nesterov accelerated algorithm for strongly convex functions

yn = xn +
1−
√
κ

1 +
√
κ

(xn − xn−1)

xn+1 = yn − 1
L∇F (yn)

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is µ-strongly convex for some µ > 0. Let ε > 0. Then for κ = µ
L

small enough,

∀n ∈ N, F (xn)− F (x∗) 6 2(1−
√
κ)n (F (x0)− F (x∗)) ,

which means that an ε-solution can be obtained in at most:

nNSCε =
1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
. (1)

The iterations require an estimation of κ = µ
L !
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FISTA in the strongly convex case
Differentiable case

log(‖g(xn)‖) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .

FISTA is efficient without knowing µ and its convergence rate does not suffer
from any underestimation of µ
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How to get bounds in finite time on F (xn)− F ∗ for FISTA ?
The dynamical system intuition

General methodology to analyze optimization algorithms

Interpreting the optimization algorithm as a discretization of a given ODE:

Gradient descent iteration:
xn+1 − xn

h
+∇F (xn) = 0

Associated ODE: ẋ(t) +∇F (x(t)) = 0.

Analysis of ODEs using a Lyapunov approach:

E(t) = t(F (x(t))− F ∗) +
1

2
‖x(t)− x∗‖2.

I E is decreasing along the trajectory, and thus F (x(t))− F ∗ = O
(

1
t

)
.

Building a sequence of discrete Lyapunov energies adapted to the
optimization scheme to get the same decay rates
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The Nesterov’s accelerated gradient method
Link with the ODEs

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

xn+1 = yn − h∇F (yn) with yn = xn +
n

n + α
(xn − xn−1)

can be seen as a semi-implicit discretization of a solution of

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0 (ODE)

With ẋ(t0) = 0. Move of a solid in a potential field with a vanishing viscosity α
t .

(Discretization step: h =
√
s and xn ' x(n

√
s))
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Convergence rate analysis for FISTA in finite time
Sketch of proof

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖λ(x(t)− x∗) + tẋ(t)‖2

, λ =
2α

3
.

Assume that F has a quadratic growth and a unique minimizer x∗.

1 Prove some differential inequation:

∀t > t0, E ′(t) +
λ− 2

t
E(t) 6 ϕ(t)E(t).

2 Integrate it between any t1 and t:

∀t > t1, E(t) 6 E(t1)
( t1

t

)λ−2

eφ(t1).

3 Choose t1 such that the previous bound is as tight as possible:

∀t > t1, F (x(t))− F ∗ 6 C1e
2
3 C2(α−3)

(
α

t
√
µ

) 2α
3

.
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Convergence rate analysis for FISTA in finite time
How to tune α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

For any α > 3, we have:(
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
α
√
µ

(
1

ε

) 3
2α

↪→ Polynomial decay.

Choose now:

α = C log

(
1

ε

)
.

Then (
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
Ce

3
2C

√
µ

log

(
1

ε

)

↪→ Exponential decay !
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Convergence rate analysis in finite time [ADR 2021]

FISTA for composite optimization with a quadratic growth condition

Theorem

Let ε > 0 and

αε := 3 log

(
5
√
LM0

eε

)
where: M0 = F (x0)− F ∗.

Let (xn)n∈RN be a sequence of iterates generated by the FISTA algorithm with
parameter α1,ε. Then for κ = µ

L small enough, an ε-solution is reached in at most:

nFISTAε :=
8e2

3
√
κ
αε =

8e2

√
κ

log

(
5
√
LM0

eε

)
iterations.

αε does not depend on µ or any estimation of µ.

nFISTAε depends on the real value of µ.

Fast exponential decay.



24/29

Comparisons with Forward-Backward and Nesterov SC

Let ε > 0 and α = 3 log
(

5
√
LM0

eε

)
.

Comparison with Forward-Backward algorithm

For κ = µ
L small enough,

nFISTAε =
4e2

√
κ

log

(
5LM0

e2ε2

)
6 nFBε =

1

| log(1− κ)|
log

(
2LM0

ε2

)
.

Comparison with Nesterov for strongly convex functions

Let ε > 0. If µ is known, for κ = µ
L small enough, NSC is faster than FISTA. But

if µ is not perfectly known and for µ̃ 6 µ

nNSCε =
1∣∣∣∣log(1−
√

µ̃
L )

∣∣∣∣ log

(
4LM0

ε2

)
>

1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
(2)

In practice, FISTA may outperform NSC even for smaller underestimations of µ.
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A first conclusion

Geometry References Convergence rate Number of iterations
of F for F (xn)− F∗ to reach an ε solution

FB Convex N84, BT09
2L‖x0 − x∗‖2

n

4L2

ε2
‖x0 − x∗‖2

FISTA with α = 3 Convex N84, BT09
2L‖x0 − x∗‖2

(n + 1)2

2L

ε
‖x0 − x∗‖

FB Convex and G2
µ Garrigos 17 (1 + κ)−n(F (x0)− F∗) O

(
1

κ
log

(
1

ε

))
NSC Strongly convex Nesterov 13 2(1−

√
κ)n(F (x0)− F∗) O

(
1
√
κ

log

(
1

ε

))
Requires estimate of µ

FISTA Convex and G2
µ Attouch 18 O

(
n
− 2α

3

)
Unknown

α > 3 Uniqueness of minimizer ADR19

FISTA Convex and G2
µ ADR23 O

(
e−Cn

√
κ
)

O
(

1
√
κ

log

(
1

ε

))
α = 3 log

(
5
√

LM0
e ε

)
Uniqueness of minimizer

No need to estimate the growth parameter µ and the convergence rate does not suffer
from an underestimation of µ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for
strongly convex functions. Mathematical Programming 2023.
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Inertial methods without the uniqueness of the minimizer

All known improved convergence rates for first-order inertial methods rely on the
assumption that F has a unique minimizer:

Algorithm Strong convexity G2
µ and unique
minimizer

G2
µ

Forward-
Backward

O
(
e−

µ
L k
)

O
(
e−

µ
L k
)

O
(
e−

µ
L k
)

Heavy-Ball
methods

O
(
e−2
√

µ
L k
)

O
(
e−(2−

√
2)
√

µ
L k
)

O
(
e−

µ
L k
)

FISTA (α > 3) O
(
k−

2α
3

)
O
(
k−

2α
3

)
O
(
k−2

)
Is this hypothesis necessary to get fast convergence rates?
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Strong convergence of FISTA

Theorem

If F satisfies some flat growth condition i.e. if there exists γ > 2 and η > 0 such
that for any minimizer x∗,

∃η > 0, ∀x ∈ B(x∗, η), Kd(x ,X ∗)γ 6 F (x)− F ∗

then, for α large enough, the sequence (xk)k∈N generated by FISTA converges
strongly to a minimizer of F . More precisely:

1 If γ = 2 and α > 3, previous results are still valid and:

‖xn − xn−1‖ = O
(
n−

α
3

)
.

2 If γ > 2 and α > 5 + 8
γ−2 , we get:

F (xn)− F ∗ = O
(
n−

2γ
γ−2

)
, ‖xn − xn−1‖ = O

(
n−

γ
γ−2

)
.
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Strong convergence of FISTA
Main idea

In the continuous setting

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖λ(x(t)− x∗(t)) + tẋ(t)‖2

, λ =
2α

3
.

Requires some additional properties on the set of minimizers.

In the discrete setting for γ = 2

En =
2n2

L
(F (xn)− F ∗) +

∥∥λ(xn−1 − x∗n−1) + n(xn − xn−1)
∥∥2

No additional properties required on the set of minimizers !
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Conclusion about FISTA and inertial methods

No need to estimate the growth parameter µ and the convergence rate does
not suffer from an underestimation of µ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for

strongly convex functions. Mathematical Programming 2023.

The iterates generated by FISTA strongly converge to a minimizer for the
class composite convex functions F satisfying some local/global growth
condition.

Article in preparation with JF Aujol, C Dossal and H Labarriere.

Inertial methods are more efficient than the gradient descent without the
assumption of uniqueness of the minimizer.

Next step: removing the convexity assumption.


	Analyzing optimization algorithms for a given accuracy 
	Notion of -solution
	A tractable stopping criterion

	The Forward-Backward and FISTA algorithms
	The Forward-Backward algorithm
	FISTA a fast proximal gradient method
	FB vs FISTA in the strongly convex case

	FISTA is an automatic geometrically optimized algorithm for strongly convex functions
	The dynamical system intuition
	Convergence rates under some quadratic growth condition
	Comparisons

	Strong convergence of FISTA

