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Some signals and images with
discontinuities/jumps/steps

  

Image and two human segmentations from the Berkeley image segmentation data set

(Martin et al., ICCV 2001, Arbelaez et al. IEEE TPAMI, 2011)



 

Direct observation of steps in rotation of the bacterial flagellar

(Sowa et al., Nature 2005)



Diffusion Tensor Image of the human brain

(Baust et al., IEEE TMI, 2016; Data from Camino project)



Widefield microscopy image of a C-Elegans embryo

(Sage et al., Methods, 2017; Storath et al., IEEE TIP, 2017)



Fast algorithms for discontinuity-preserving smoothing: Contents
The 1D Case

-Potts model for robust piecewise constant regression
Potts model for circle valued data
Cubic smoothing splines with discontinuities (CSSD)

The 2D Case
Potts model for unsupervised image segmentation
Piecewise affine models and piecewise smooth models
Discretizations
Taylor jet based solvers

L
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Piecewise constant regression
Potts model

Data   number of jumps, non-convex

Related to total variation , convex

Piecewise constant signal with Gaussian noise

u∗ ∈ arg min
u∈RN

γ∥∇u∥0 + ∥u − f∥p
p

f ∈ R
N , ∥∇u∥0 = |i : ui ≠ ui+1|

∥∇u∥1 = ∑i |ui − ui+1|



Laplace noise

Salt and pepper noise



Blind deconvolution property of -Potts
Assume that  is symmetric, compactly supported, nonnegative with  in a
neighborhood of the origin, and that it has total mass 

Theorem (Weinmann/S./Demaret, SINUM 2015)
If  is piecewise constant and the support size of K is sufficiently small then we find a
range of -values such that

L1

K K > 0
1.

g

γ

g = arg min
u∈RN

γ∥∇u∥0 + ∥u − K ∗ g∥1.



Fast algorithms of the 1D Potts problem
General approach for 1D Potts problems (Winkler/Liebscher 2002)

by dynamic programming only  configurations to be checked
need value  for all discrete intervals 

Time complexity:

for -Potts:  (Winkler/Liebscher 2002) and  if the number of jumps
grows linearly (Killick et al. 2012)
for -Potts:  (Weinmann/S./Demaret 2015)

O(N 2)
minμ∈R∑

r
n=l |μ − fn|p l, l + 1, … , r

L2 O(N 2) O(N)

L1 O(N 2)



Absolute deviation update scheme for fast -Potts solverL1



Circle-valued data

-Potts model for 

where  the arc length between two points on the unit circle, and 

Time series of angles of the bacterial flagellar motor and -Potts model on the circle.
(S./Weinmann/Unser, 2017; Data courtesy of Sowa et al.)

L1 f ∈ TN

arg min
u∈RN

γ∥∇u∥0 +
N

∑
n=1

wnd(un, fn)

d(x, y) w ∈ RN .

L1



Fast algorithm for the Potts problem with circle-valued data
Challenge: fast histogram update of real-valued problem cannot be used directly

Proposed approach (S./Weinmann/Unser 2017)
1. May reduce search space to the finite set  so that

2. Use a Viterbi-type algorithm: Set  for  and

3. Can save a factor  by a result of Felzenszwalb/Huttenlocher (2006)
4. The optimal solution is obtained via backtracking.

Resulting time complexity:  where 

V = {fn|n = 1, . . . ,N}

arg min
u∈V N

γ∥∇u∥0 +
N

∑
n=1

wnd(un, fn)

B1
k = w1d(vk, y1) k = 1, … ,K

Bn
k = wnd(vk, yn) + min

l
{Bn−1

l
+ γ 1vk≠vl},  for k = 1, … ,K,n = 1, … ,N .

K

O(NK) K = |V | ≤ N





Further aspects of 1D Potts models
Hyperparameter selection

General methods: AIC, BIC, crossvalidation
Modified BIC (Zhang 2007)
Bayesian approach (Frecon et al. 2017)

Extensions

Extension to vector-valued data
straightforward in  case
more challenging for  case for vector median

Potts penalty on slope for piecewise linear estimation (Fearnhead et al. 2017)
“Inverse” Potts problem for indirectly measured data

Splitting methods (S. et al, 2014)
Iterative method based on surrogate functionals (Weinmann/S. 2015)

Extension to manifold-valued data possible (Weinmann et al. 2016)

L2

L1

u∗ ∈ arg minu∈RN γ∥∇u∥0 + ∥Au − f∥p
p



Piecewise smooth models
Reminder: Smoothing splines are solutions of

non-parametric regressors with adjustable degree of smoothness 
 measured data at data sites 
 standard deviations of the data sites

Popular tool for smoothing/denoising signals and time series because

they provide flexible approximation,
are computationally efficient,
give smooth solutions.

min
f∈C 2

 p
N

∑
i=1

(
yi − f(xi)

δi
)

2

+ (1 − p) ∫
xN

x1

(f ′′(t))2 dt

0 < p < 1
y ∈ R

N x ∈ R
N

δ ∈ RN



…but splines smooth out discontinuities

 

Ground truth, noisy samples, and smoothing spline with p=0.999
Shaded area: 95 % quantiles over 1000 realizations



Smoothing splines with discontinuites
Piecewise smoothing spline model

penalty on the number of jumps  weighted by 
Solutions of this optimization problems are cubic smoothing splines with
discontinuities (CSSD).

Questions:

Are the results unique?
How to solve the non-convex optimization problem accurately and efficiently?
How to choose the hyperparameters  and ?

min
f,J

p
N

∑
i=1

(
yi − f(xi)

δi
)

2

+ (1 − p) ∫
[x1,xN ]∖J

(f ′′(t))2, dt + γ|J|.

|J| γ > 0.

p γ



Relations to other models

CSSD model is a special case of the weak rod model (Blake/Zisserman 1987) without
creases and in semidiscrete setup
and a second order variant of the Mumford-Shah model

Prior and related algorithms

linear time algorithm for smoothing splines (Reinsch 1967)
combination of the above method with dynamic program of Liebscher/Winkler gives
an exact solver for the CSSD problem with complexity  (baseline)
non-exact solvers for weak rod model: graduated non-convexity, Hopfield’s neural
model, Viterbi-type algorithm (Blake/Zisserman 1987; Blake, 1989)
algorithm for a fully discrete spline with equidistant samples (S./Kiefer/Weinmann
2019) with complexity 

Next: Fast algorithm for continuous formulation with non-equidistant samples
(S./Weinmann, 2023)

O(N 3)

O(N 2)



Formulation as partitioning problem
Discontinuity locations  induce a partition on the domain :

 and 

Reformulation of the CSSD model as

J [x1,xN ]

[x1,xN ] ∖ J = I1 ∪ … ∪ IK+1 P(J) = I1, … , IK+1.

min
J⊂[x1,xN ]∖x1,…,xN

∑
I∈P(J)

EI + γ|J|

EI = min
f∈C 2(I)

p ∑
i:xi∈I

(
yi − f(xi)

δi
)

2

+ (1 − p) ∫
I

(f ′′(t))2 dt.



Reducing the search space

Shi� of jump locations between to data sites does not affect the target value
Reduce the search space for  to set of midpoints of the data sites 

Obtain the semi-discrete optimization problem

J M

min
J⊂M

∑
I∈P(J)

EI + γ|J|.



Uniqueness result
Apart from the shi� in between two data points we obtain uniqueness.

Theorem (S./Weinmann, JCGS 2023)
Minimizing partitions with all segments containing at least three data points and
corresponding minimizing functions are uniquely determined for (Lebesgue)-a.e. input

Concept of proof:

Show that data that yield non-unique partitions are contained in a union of levelsets
of non-trivial quadratic forms which are a Lebesgue zero set.

Smoothing splines on each interval of a partition are uniquely determined

y ∈ R
N

.



Fast exact algorithm
Basis: dynamic programming approach of Winkler/Liebscher (2002)
Key new element: update strategy for computing

in  for each interval .

Theorem (S./Weinmann, JCGS 2023)
The proposed algorithm computes a solution of the CSSD model. The worst case time
complexity is  and the memory complexity is 

Speed-up possible by pruning strategies (Killick et al. 2012; S./Weinmann 2014)
Implementation at 

EI = min
f∈C 2(I)

p ∑
i:xi∈I

(
yi − f(xi)

δi
)

2

+ (1 − p) ∫
I

(f ′′(t))2 dt.

O(1) I

O(N 2) O(N).

https://github.com/mstorath/CSSD

https://github.com/mstorath/CSSD


Details on the fast algorithm

Define  with  by

with   

A(r) ∈ R2r×s, s = 3r − 2,

A(r) =

⎡⎢⎣α1e
T
1 0 0 ⋯ 0

βV1 βW1 0 ⋯ 0

0 α2e
T
1 0 ⋯ 0

0 βV2 βW2 ⋯ 0

0 0 α3e
T
1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 βVr−1 βWr−1

0 ⋯ 0 0 αre
T
1

⎤⎥⎦αi = √p

δi
, β = √1 − p, di = xi+1 − xi,

[Vi,Ui] =
⎡⎢⎣ 2√3

d
3/2
i

√3
√di

− 2√3

d
3/2
i

√3
√di

0 1
√di

0 − 1
√di

⎤⎥⎦



Theorem (S./Weinmann, JCGS 2023)
The spline approximation error in the interval  has the form

where  is a vector of zeros except  for 

[x1, xr]

E{1:r} = min
u∈R2r

∥A(r)u − ~y(r)∥2
2,

~y(r) ∈ R
s ~y

(r)
3i−2 = αiyi i = 1, … , r.



Key observations for the update step

 is a submatrix of  and  is a subvector of 

QR-decomposition of the system  can be updated to a QR-decomposition of
the system  by a constant number of Givens rotations

The Givens rotations act only on a subsystem  with 

The approximation error has the update recurrence

where  is the system a�er the Givens rotations.

Theorem (S./Weinmann, JCGS 2023)
The procedure described above computes the array  in

 time complexity and  memory complexity.

A(r) A(r+1), ~y(r) ~y(r+1).

[A(r)|~y(r)]

[A(r+1)|~y(r+1)]

[R|z] R ∈ R
5×4

E{1:r+1} = E{1:r} + (z′
5)2

[R′|z′]

[E{1:1}, E{1:2}, … , E{1:N}]
O(N) O(N)



Comparison of computational effort
Baseline: standard computation of the spline approximation error using the PELT
method (Python package ruptures)
proposed method with PELT pruning (Killick et al. 2012)
proposed method with FPVI pruning (S./Weinmann 2014)



Hyperparameter selection
Use standard K-fold cross validation:

partition data into  folds of approximately equal size
select parameters that have a minimum K-fold cross validation score given by

where  is the CSSD results excluding the data in fold 
search for minimizer using simulated annealing
Computationally feasible because of fast algorithm for computing the CSSD result

K

CV(p, γ) =
1

N

K

∑
k=1

∑
i∈Foldk

((f̂−k
p,γ (xi) − yi)/δi)

2.

f̂−k
p,γ k.

f̂−k
p,γ



Results on simulated data



Results on Old Faithful geyser data



Results on closing prices of the Meta stock from May 18, 2012, to May 19, 2022 (log scale)



The 2D Case: Potts model for unsupervised image
segmentation
Potts model or piecewise constant Mumford-Shah model in 2D

 total length of the jump set of  weighted by 
 aquired data,  linear operator

  
Case : Original , solution , jump set

arg min
u

γ∥∇u∥0 + ∥Au − f∥2
2

∥∇u∥0 u, γ > 0
f A

A = id f u∗



Selected prior work

For 

first used for image segmentation by Geman and Geman (1984)
continuous variant studied by Mumford and Shah (1985,1989)
Algorithms: Blake/Zisserman, Boykov et al., Chan/Vese, Chambolle et al., Pock et
al., Nikolova et al., Hirschmüller, Lellmann/Schnörr, Strekalovskiy et al., Xu et al.,…
NP-hard problem (Veksler 1999)  approximative strategies

For 

Existence of minimizers (Rondi/Santosa '01; Ramlau/Ring '07,'10; Fornsier/Ward
'10; Jiang/Maaß/Page '14)
Regularizing properties (Ramlau/Ring '07,'10; Jiang/Maaß/Page '14)
Ambrosio-Tortorelli approximation (Rondi/Santosa '01; Bar/Sochen/Kiryati '04)
Level set active contours (Kim et al. '02; Ramlau/Ring '07; Klann/Ramlau/Ring '11)
Graduated non-convexity (Nikolova et al.~'08,'10)
Iterative thresholding (Fornasier/Ward '10)

A = id

⇝

A ≠ id



Discretization of the jump penalty

Discretization

with a finite difference system  weights 
and 

Common finite difference systems (Blake/Zisserman '87; Chambolle '99)

u∗ = arg min
u∈Rm×n

γ

S

∑
s=1

ωs∥∇ps
u∥0 + ∥u − f∥2

2

N = p1, … , pS ⊂ Z
2 ∖ 0, ω1, … , ωS > 0,

∥∇ps
u∥0 = |{(i, j) : u(i,j)+ps

≠ u(i,j)}|.

N0 = {(1, 0), (0, 1)},

N1 = {(1, 0), (0, 1), (1, 1), (1, −1)},

N2 = {(1, 0), (0, 1), (1, 1), (1, −1), (−2, −1), (−2, 1), (2, 1), (2, −1)}.



Proposed design criterion (S./Weinmann/Frikel/Unser, Inv. Prob. 2015)

 = Ratio of longest and shortest vector on the green line
(measure of isotropy used in Chambolle 1999,  is optimal)

S

∑
s=1

ωs|⟨p, ps⟩|
!

= ∥p∥2 for all p ∈ N .

E

E = 1



 “Knight-move” neighborhood system  exhibits almost no anisotropy effects⇝ N2



ADMM-Algorithm based on directional splitting

Augmented Lagrangian

 and  are Lagrange multipliers,  regulate coupling

minimize
u1,...,uS,v

γ
S

∑
s=1

ωs∥∇ps
us∥0 + ∥Av − f∥2

2

subject to ur − ut = 0,  for all 1 ≤ r < t ≤ S,
v − us = 0,  for all 1 ≤ s ≤ S.

L({us}S
s=1, v, {λs}S

s=1, {ρr,t}1≤r<t≤S) =
S

∑
s=1

ωs∥∇ps
us∥0 +

μ

2
∥v − us +

λs

μ
∥2

2 −
1

2μ
∥λs∥2

2

+ ∑
1≤r<t≤S

ν

2
∥ur − ut +

ρr,t

ν
∥2

2 −
1

2ν
∥ρr,t∥

2
2 + ∥Av − f∥2,

{λs}1≤s≤S ρr,t1≤r<t≤S μ, ν > 0



ADMM-type algorithm

⎧⎪⎨⎪⎩uk+1
1 ∈ arg minu1

2γω1

μk+νk(S−1) ∥∇p1u1∥0 + ∥u1 − wk
1∥2

2,

⋮

uk+1
S ∈ arg minuS

2γωS

μk+νk(S−1) ∥∇pS
uS∥0 + ∥uS − wk

S∥2
2,

vk+1 = arg minv ∥Av − f∥2
2 + μkS

2 ∥v − zk∥2
2,

λk+1
s = λk

s + μk(vk+1 − uk+1
s ), for all 1 ≤ s ≤ S,

ρk+1
r,t = ρk

r,t + νk(uk+1
r − uk+1

t ), for all 1 ≤ r < t ≤ S



Convergence of the ADMM-type algorithm
Theorem (S./Weinmann/Frikel/Unser, Inv Prob 2015)
Let the sequence  be increasing and satisfy  Then, the
proposed iteration converges in the sense that

Best quality for slow progression, e.g., 
Earlier convergence for fast progression, e.g., 
For convergence guarantees to local minimum can use a surrogate-type algorithm
[Kiefer/S./Weinmann, FoCM 2021]

(μk)k∈N ∑k μ
−1/2
k < ∞.

(uk
1, … , uk

S, vk) → (u∗
1, … , u∗

S, v∗) with u∗
1 = … = u∗

S = v∗,

and
λk

s

μk
→ 0  for all  s ∈ {1, … , S}.

μk = k2.01 ⋅ 10−6

μk = 1.05k ⋅ 10−6



Joint image reconstruction and segmentation from sparse Radon
data



Joint image reconstruction and segmentation from sparse PET
data

PET data of a physical thorax phantom, courtesy of Jeffrey Fessler



Higher order methods
Piecewise affine linear Potts model

arg min
u,P

∑
P∈P

{
γ

2
length(∂P) + ∫

P

|u(x) − f(x)|2 dx},

subject to u|P  is affine linear for all P ∈ P.



Computational approaches
Iterated graph cuts (Yang/Li, 2015)
Active contours (Wang et al., 2013)
ADMM splitting for piecewise affine Potts model applied to optical flow/motion field
images (Fortun et al., IEEE TIP 2018)



“Potts-ADMM” gives good resulting images also for the piecewise linear model …

 

… but corresponding edges sometimes broken



Proposed solution: Taylor jet coupling approach

First order jet  of a function  at the point 

Pcw. affine constraint becomes piecewise constant in terms of the jet

Formulate affine linear model as piecewise constant jet problem (Kiefer/S./Weinmann,
IEEE TIP 2020)

Ju u x ∈ Ω

Ju(x)(z) := Txu(z) = u(x) +
∂u(x)
∂x1

(z1 − x1) +
∂u(x)
∂x2

(z2 − x2)

arg min
u,Pc

  ∑
P∈Pc

{
γ

2
length(∂P) + ∫

P

(u(x) − f(x))2 dx},

subject to Ju|P  is constant for all P ∈ P.

J ∗ = arg min
J∈PC(Ω;Π1)

 γ ∥∇J∥0 + ∫
Ω

(J(x)(x) − f(x))2 dx.



Jet based splitting

Applying ADMM gives

 linewise segmented jet problems which can be solved exaclty using dynamic
programming. (Kiefer/S./Weinmann, IEEE TIP 2020)

arg min
J 1,…,J S

 
S

∑
s=1

{γωs∥∇dsJ
s ∥0 +

1

S
∑
x∈Ω′

(J s(x)(x) − f(x))2}

subject to J s = J t for all 1 ≤ s < t ≤ S.

(J s)j+1 =arg min
J

2ωsγ

(S−1)νj
∥∇dsJ∥0 +

2+μjS

νjS
∥u − (ws)j∥2

+ ∥a − (ys)j∥2 + ∥b − (zs)j∥2 ∀s = 1, . . . ,S,

(λs,t)j+1 = (λs,t)j + μj((us)j+1 − (ut)j+1) ∀s < t,

(τ s,t)j+1 = (τ s,t)j + νj((as)j+1 − (at)j+1) ∀s < t,

(ρs,t)j+1 = (ρs,t)j + νj((bs)j+1 − (bt)j+1) ∀s < t

⇝



Results of the jet splitting approach

Edge sets are now closed as desired



Quantitative comparison with iterated graph cuts

Comparison to iterative repartitioning with graph cut algorithm -expansion (Boykov
et al. 2001, 2004) on Berkley dataset
proposed method is more effective and considerably faster

α



Piecewise smooth models in 2D

Mumford-Shah model (weak membrane model)

First order Mumford-Shah model exhibits the so-called “gradient-limit effect”, i.e., it
produces extra edges at steep slopes (Blake/Zisserman 1987)

min
u,Γ

∥u − f∥2 + β2 ∫
Ω∖Γ

∥∇u(x)∥2 dx + γ ⋅ length(Γ)



Second order methods

Second order Mumford-Shah model (weak plate model without creases)

Algorithmic approaches

Graduated non-convexity (Blake/Zisserman 1987)
Ambrosio-Tortorelli type approximation (Zanetti/Bruzzone 2017)
Taylor-Jet approach (Kiefer/S./Weinmann 2020)

min
u,Γ

∥u − f∥2 + β2 ∫
Ω∖Γ

∥∇2u(x)∥2
F dx + γ ⋅ length(Γ)





Effects of the jet splitting on the resulting edge set

  

Edge set with pixel coupling and with Jet coupling



Qualitative comparison



Quantitative comparison



Extensions
Mumford-Shah and Potts regularization for manifold-valued data (Baust et al. 2016,
Weinmann et al. 2016)

Corpus callosum of a human brain from the Camino project and Mumford-Shah regularization
Fast algorithm for Potts model on 3D data with GPU parallelization (S. et al. 2017)

 
Microscopy image of a C. elegans embryo and result of joint 3D deconvolution and segmentation
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So�ware

 (Piecewise affine linear model,
C++/Matlab)

 (Online Demo for PALMS)
 (CSSD in Matlab)

 (Higher order Mumford-Shah in
C++)

 (Potts and Mumford-Shah in Java/Matlab)
 (Icy Plugin)

https://github.com/lu-kie/PALMS_ImagePartitioning

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=295
https://github.com/mstorath/CSSD
https://github.com/lu-kie/HOMS_SignalProcessing

https://github.com/mstorath/Pottslab
https://icy.bioimageanalysis.org/plugin/potts-segmentation/

https://github.com/lu-kie/PALMS_ImagePartitioning
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=295
https://github.com/mstorath/CSSD
https://github.com/lu-kie/HOMS_SignalProcessing
https://github.com/mstorath/Pottslab
https://icy.bioimageanalysis.org/plugin/potts-segmentation/
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