Constructive approaches to the analysis and design of first-order methods for optimization

Adrien Taylor

PSL太

DIPopt workshop - November 2023

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget,...).

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget,...).

Can we predict their behaviors?

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget,...).

Can we predict their behaviors?

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget,...).

Can we predict their behaviors?

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget, ...).

Can we predict their behaviors?

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget, ...).

Can we predict their behaviors?

Many optimization schemes: usages depend on application requirements (target precision, time budget, memory budget, ...).

Can we predict their behaviors?

How to show that an algorithm works?

How to show that an algorithm works?

Here: principled approach to worst-case analysis.

Important inspiration \& reference:
\diamond Drori, and Teboulle ('14). "Performance of first-order methods for smooth convex minimization: a novel approach."

Important inspiration \& reference:
\diamond Drori, and Teboulle ('14). "Performance of first-order methods for smooth convex minimization: a novel approach."
First part of the presentation:
\diamond T., Hendrickx, Glineur ('17). "Smooth strongly convex interpolation and exact worst-case performance of first-order methods."
\diamond T., Hendrickx, Glineur ('17). "Exact worst-case performance of first-order methods for composite convex optimization."
\diamond T., Hendrickx, Glineur ('17). "Performance estimation toolbox (PESTO): Automated worst-case analysis of first-order optimization methods."
\diamond Goujaud, Moucer, et al. ('22). "PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python."

Important inspiration \& reference:
\diamond Drori, and Teboulle ('14). "Performance of first-order methods for smooth convex minimization: a novel approach."
First part of the presentation:
\diamond T., Hendrickx, Glineur ('17). "Smooth strongly convex interpolation and exact worst-case performance of first-order methods."
\diamond T., Hendrickx, Glineur ('17). "Exact worst-case performance of first-order methods for composite convex optimization."
\diamond T., Hendrickx, Glineur ('17). "Performance estimation toolbox (PESTO): Automated worst-case analysis of first-order optimization methods."
\diamond Goujaud, Moucer, et al. ('22). "PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python."
Second part
\diamond Drori, T ('20). "Efficient first-order methods for convex minimization: a constructive approach."
\diamond Drori, T ('22). "On the oracle complexity of smooth strongly convex minimization."
\diamond T, Drori ('23). "An optimal gradient method for smooth strongly convex minimization."

Informal introduction: https://francisbach.com/computer-aided-analyses/.

Example: minimize differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
x_{\star}=\arg \min _{x \in \mathbb{R}^{d}} f(x)
$$

where f is L-smooth and μ-strongly convex $(0 \leqslant \mu \leqslant L<\infty)$.

Example: minimize differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
x_{\star}=\arg \min _{x \in \mathbb{R}^{d}} f(x)
$$

where f is L-smooth and μ-strongly convex $(0 \leqslant \mu \leqslant L<\infty)$.

Use gradient descent:

$$
x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)
$$

Example: minimize differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
x_{\star}=\arg \min _{x \in \mathbb{R}^{d}} f(x)
$$

where f is L-smooth and μ-strongly convex $(0 \leqslant \mu \leqslant L<\infty)$.

Use gradient descent:

$$
x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)
$$

Question: what a priori guarantees after N iterations?

Example: minimize differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
x_{\star}=\arg \min _{x \in \mathbb{R}^{d}} f(x)
$$

where f is L-smooth and μ-strongly convex $(0 \leqslant \mu \leqslant L<\infty)$.

Use gradient descent:

$$
x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)
$$

Question: what a priori guarantees after N iterations?
Examples: how small should $f\left(x_{N}\right)-f\left(x_{\star}\right),\left\|\nabla f\left(x_{N}\right)\right\|,\left\|x_{N}-x_{\star}\right\|$ be?

About the assumptions

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$:

About the assumptions

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$:

About the assumptions

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$:

(1) (Convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle$,

About the assumptions

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$:

(1) (Convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle$,
(1b) (μ-strong convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|^{2}$,

About the assumptions

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$:

(1) (Convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle$,
(1b) (μ-strong convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|^{2}$,
(2) (L-smoothness) $f(x) \leqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}$,

About the assumptions

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$:

(1) (Convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle$,
(1b) (μ-strong convexity) $f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|^{2}$,
(2) (L-smoothness) $f(x) \leqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}$,
$(1 \& 2)\langle\nabla f(x)-\nabla f(y) ; x-y\rangle \geqslant \frac{1}{L+\mu}\|\nabla f(x)-\nabla f(y)\|^{2}+\frac{\mu L}{L+\mu}\|x-y\|^{2}$.

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2},
$$

for all

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2},
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$.

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, L}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$.

$$
\left\|x_{k+1}-x_{\star}\right\|^{2}
$$

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, L}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$.

$$
\left\|x_{k+1}-x_{\star}\right\|^{2}=\left\|x_{k}-x_{\star}\right\|^{2}-2 h\left\langle\nabla f\left(x_{k}\right) ; x_{k}-x_{\star}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, L}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$.

$$
\left\|x_{k+1}-x_{\star}\right\|^{2}=\left\|x_{k}-x_{\star}\right\|^{2}-2 h\left\langle\nabla f\left(x_{k}\right) ; x_{k}-x_{\star}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

inequality (1\&2)

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{\star}{\operatorname{argmin}} f(x)$.

$$
\begin{aligned}
\left\|x_{k+1}-x_{\star}\right\|^{2} & =\left\|x_{k}-x_{\star}\right\|^{2}-2 h\left\langle\nabla f\left(x_{k}\right) ; x_{k}-x_{\star}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& \downarrow \text { inequality (1\&2) } \\
& \leqslant\left(1-\frac{2 \gamma L \mu}{L+\mu}\right)\left\|x_{k}-x_{\star}\right\|^{2}+h\left(h-\frac{2}{L+\mu}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$.

$$
\left\|x_{k+1}-x_{\star}\right\|^{2}=\left\|x_{k}-x_{\star}\right\|^{2}-2 h\left\langle\nabla f\left(x_{k}\right) ; x_{k}-x_{\star}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

inequality (1\&2)

$$
\begin{aligned}
& \leqslant\left(1-\frac{2 \gamma L \mu}{L+\mu}\right)\left\|x_{k}-x_{\star}\right\|^{2}+h\left(h-\frac{2}{L+\mu}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& \text { if } 0 \leqslant h \leqslant \frac{2}{L+\mu}
\end{aligned}
$$

Toy example, take I: find τ such that:

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{k}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, L}$),
$\diamond x_{k+1}$ generated by gradient step $x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$.

$$
\begin{aligned}
\left\|x_{k+1}-x_{\star}\right\|^{2} & =\left\|x_{k}-x_{\star}\right\|^{2}-2 h\left\langle\nabla f\left(x_{k}\right) ; x_{k}-x_{\star}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& \downarrow \text { inequality }(1 \& 2) \\
& \leqslant\left(1-\frac{2 \gamma L \mu}{L+\mu}\right)\left\|x_{k}-x_{\star}\right\|^{2}+h\left(h-\frac{2}{L+\mu}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& \mid \text { if } 0 \leqslant h \leqslant \frac{2}{L+\mu} \\
& \leqslant(1-h \mu)^{2}\left\|x_{k}-x_{\star}\right\|^{2} .
\end{aligned}
$$

Legitimate questions:

Legitimate questions:
\diamond anything improvable? Realistic analyses?

Legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?

Legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity?

Legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity?
\diamond How to study other quantities, e.g., $f\left(x_{k}\right)-f\left(x_{\star}\right)$?

Legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity?
\diamond How to study other quantities, e.g., $f\left(x_{k}\right)-f\left(x_{\star}\right)$?
\diamond Unique way to arrive to the desired result?

Legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity?
\diamond How to study other quantities, e.g., $f\left(x_{k}\right)-f\left(x_{\star}\right)$?
\diamond Unique way to arrive to the desired result?
\diamond How likely are we to find such proofs in more complicated cases?

Take-home messages

Worst-cases are solutions to optimization problems.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Acceleration/optimal methods by optimizing worst-cases.

Example

Software

Step-size optimization

Concluding remarks

Example

Software

Step-size optimization

Concluding remarks

Convergence rate of a gradient step

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2},
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2},
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?
First: let's compute τ !

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?
First: let's compute τ !

$$
\begin{aligned}
& \tau(\mu, L, h)=\max _{f, x_{\mathbf{0}}, x_{\mathbf{1}}, x_{\star}} \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
& \text { s.t. } f \in \mathcal{F}_{\mu, L}
\end{aligned}
$$

Functional class

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?
First: let's compute τ !

$$
\begin{array}{rr}
\tau(\mu, L, h)=\max _{f, x_{0}, x_{1}, x_{\star}} \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} & \\
\text { s.t. } f \in \mathcal{F}_{\mu, L} & \text { Functional class } \\
x_{1}=x_{0}-h \nabla f\left(x_{0}\right) & \text { Algorithm }
\end{array}
$$

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?
First: let's compute τ !

$$
\begin{array}{rlr}
\tau(\mu, L, h)=\max _{f, x_{0}, x_{1}, x_{\star}} & \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} & \\
\text { s.t. } f \in \mathcal{F}_{\mu, L} & \text { Functional class } \\
x_{1}=x_{0}-h \nabla f\left(x_{0}\right) & \text { Algorithm } \\
& \nabla f\left(x_{\star}\right)=0 & \text { Optimality of } x_{\star}
\end{array}
$$

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?
First: let's compute τ !

$$
\begin{array}{rlr}
\tau(\mu, L, h)=\max _{f, x_{0}, x_{1}, x_{\star}} & \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} & \\
\text { s.t. } f \in \mathcal{F}_{\mu, L} & \text { Functional class } \\
x_{1}=x_{0}-h \nabla f\left(x_{0}\right) & \text { Algorithm } \\
& \nabla f\left(x_{\star}\right)=0 & \text { Optimality of } x_{\star}
\end{array}
$$

Variables: $f, x_{0}, x_{1}, x_{\star}$;

Convergence rate of a gradient step

Toy example, take II: What is the smallest τ such that:

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2}
$$

for all
$\diamond L$-smooth and μ-strongly convex function f (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{0}$, and x_{1} generated by gradient step $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$,
$\diamond x_{\star}=\underset{x}{\operatorname{argmin}} f(x)$?
First: let's compute τ !

$$
\tau(\mu, L, h)=\max _{f, x_{0}, x_{1}, x_{\star}} \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \quad \text { Functional class } \quad \text { Algorithm } \quad \text { s.t. } f \in \mathcal{F}_{\mu, L} \quad \text { Optimality of } x_{\star}
$$

$\underline{\text { Variables: }} f, x_{0}, x_{1}, x_{\star} ; \underline{\text { parameters: } \mu, L, h .}$

Sampled version

Sampled version

\diamond Performance estimation problem:

$$
\begin{array}{cl}
\max _{f, x_{0}, x_{\mathbf{1}}, x_{\star}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-h \nabla f\left(x_{0}\right) \\
& \nabla f\left(x_{\star}\right)=0
\end{array}
$$

Sampled version

\diamond Performance estimation problem:

$$
\begin{array}{cl}
\max _{f, x_{\mathbf{0}}, x_{\mathbf{1}}, x_{\star}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-h \nabla f\left(x_{0}\right) \\
& \nabla f\left(x_{\star}\right)=0
\end{array}
$$

\diamond Variables: $f, x_{0}, x_{1}, x_{\star}$.

Sampled version

\diamond Performance estimation problem:

$$
\begin{array}{cl}
\max _{f, x_{0}, x_{\mathbf{1}}, x_{\star}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-h \nabla f\left(x_{0}\right) \\
& \nabla f\left(x_{\star}\right)=0 .
\end{array}
$$

\diamond Variables: $f, x_{0}, x_{1}, x_{\star}$.
\diamond Sampled version: f is only used at x_{0} and x_{\star} (no need to sample other points)

Sampled version

\diamond Performance estimation problem:

$$
\begin{array}{cl}
\max _{f, x_{\mathbf{0}}, x_{\mathbf{1}}, x_{\star}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-h \nabla f\left(x_{0}\right) \\
& \nabla f\left(x_{\star}\right)=0
\end{array}
$$

\diamond Variables: f, x_{0}, x_{1}, x_{*}.
\diamond Sampled version: f is only used at x_{0} and x_{\star} (no need to sample other points)

$$
\begin{array}{ll}
\max _{\substack{x_{0}, x_{1}, x_{\star} \\
g_{0}, g_{\star} \\
f_{0}, f_{\star}}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0, \star \\
g_{i}=\nabla f\left(x_{i}\right) & i=0, \star\end{cases} \\
& x_{1}=x_{0}-h g_{0} \\
& g_{\star}=0 .
\end{array}
$$

Sampled version

\diamond Performance estimation problem:

$$
\begin{array}{cl}
\max _{f, x_{\mathbf{0}}, x_{\mathbf{1}}, x_{\star}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-h \nabla f\left(x_{0}\right) \\
& \nabla f\left(x_{\star}\right)=0
\end{array}
$$

\diamond Variables: f, x_{0}, x_{1}, x_{*}.
\diamond Sampled version: f is only used at x_{0} and x_{\star} (no need to sample other points)

$$
\begin{array}{ll}
\max _{\substack{x_{0}, x_{1}, x_{\star} \\
g_{0}, g_{\star} \\
f_{0}, f_{\star}}} & \frac{\left\|x_{1}-x_{0}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0, \star \\
g_{i}=\nabla f\left(x_{i}\right) & i=0, \star\end{cases} \\
& x_{1}=x_{0}-h g_{0} \\
& g_{\star}=0 .
\end{array}
$$

\diamond Variables: $x_{0}, x_{1}, x_{\star}, g_{0}, g_{\star}, f_{0}, f_{\star}$.

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

? Possible to find $f \in \mathcal{F}_{\mu, L}$ such that

$$
f\left(x_{i}\right)=f_{i}, \quad \text { and } \quad g_{i} \in \partial f\left(x_{i}\right), \quad \forall i \in S
$$

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

? Possible to find $f \in \mathcal{F}_{\mu, L}$ such that

$$
f\left(x_{i}\right)=f_{i}, \quad \text { and } \quad g_{i} \in \partial f\left(x_{i}\right), \quad \forall i \in S
$$

- Necessary and sufficient condition: $\forall i, j \in S$

$$
f_{i} \geqslant f_{j}+\left\langle g_{j}, x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|g_{i}-g_{j}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{i}-x_{j}-\frac{1}{L}\left(g_{i}-g_{j}\right)\right\|^{2} .
$$

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

? Possible to find $f \in \mathcal{F}_{\mu, L}$ such that

$$
f\left(x_{i}\right)=f_{i}, \quad \text { and } \quad g_{i} \in \partial f\left(x_{i}\right), \quad \forall i \in S
$$

- Necessary and sufficient condition: $\forall i, j \in S$

$$
f_{i} \geqslant f_{j}+\left\langle g_{j}, x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|g_{i}-g_{j}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{i}-x_{j}-\frac{1}{L}\left(g_{i}-g_{j}\right)\right\|^{2} .
$$

- Simpler example: pick $\mu=0$ and $L=\infty$ (just convexity):

$$
f_{i} \geqslant f_{j}+\left\langle g_{j}, x_{i}-x_{j}\right\rangle .
$$

Replace constraints

Replace constraints

\diamond Interpolation conditions allow removing red constraints

$$
\begin{aligned}
& \max _{\substack{x_{0}, x_{1}, x_{\star} \\
g_{0},,_{\star} \star_{\star} \\
f_{0}, f_{\star}}} \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
& \text { subject to } \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0, \star \\
g_{i}=\nabla f\left(x_{i}\right) & i=0, \star\end{cases} \\
& x_{1}=x_{0}-h g_{0} \\
& g_{\star}=0,
\end{aligned}
$$

Replace constraints

\diamond Interpolation conditions allow removing red constraints

$$
\begin{aligned}
\max _{\substack{x_{0}, x_{1}, x_{\star} \\
g_{0}, g_{\star} \\
f_{0}, f_{\star}}} & \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0, \star \\
g_{i}=\nabla f\left(x_{i}\right) & i=0, \star\end{cases} \\
& x_{1}=x_{0}-h g_{0} \\
& g_{\star}=0,
\end{aligned}
$$

\diamond replacing them by

$$
\begin{aligned}
& f_{\star} \geqslant f_{0}+\left\langle g_{0}, x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{\star}-x_{0}-\frac{1}{L}\left(g_{\star}-g_{0}\right)\right\|^{2} \\
& f_{0} \geqslant f_{\star}+\left\langle g_{\star}, x_{0}-x_{\star}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{\star}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L}\left(g_{0}-g_{\star}\right)\right\|^{2} .
\end{aligned}
$$

Replace constraints

\diamond Interpolation conditions allow removing red constraints

$$
\begin{aligned}
\max _{\substack{x_{0}, x_{1}, x_{\star} \\
g_{0}, g_{\star} \\
f_{0}, f_{\star}}} & \frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0, \star \\
g_{i}=\nabla f\left(x_{i}\right) & i=0, \star\end{cases} \\
& x_{1}=x_{0}-h g_{0} \\
& g_{\star}=0,
\end{aligned}
$$

\diamond replacing them by

$$
\begin{aligned}
& f_{\star} \geqslant f_{0}+\left\langle g_{0}, x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{\star}-x_{0}-\frac{1}{L}\left(g_{\star}-g_{0}\right)\right\|^{2} \\
& f_{0} \geqslant f_{\star}+\left\langle g_{\star}, x_{0}-x_{\star}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{\star}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L}\left(g_{0}-g_{\star}\right)\right\|^{2} .
\end{aligned}
$$

\diamond Same optimal value (no relaxation); but still non-convex quadratic problem.

Semidefinite lifting

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|x_{0}-x_{\star}\right\|^{2} & \left\langle g_{0}, x_{0}-x_{\star}\right\rangle \\
\left\langle g_{0}, x_{0}-x_{\star}\right\rangle & \left\|g_{0}\right\|^{2}
\end{array}\right], \quad F=f_{0}-f_{\star},
$$

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|x_{0}-x_{\star}\right\|^{2} & \left\langle g_{0}, x_{0}-x_{\star}\right\rangle \\
\left\langle g_{0}, x_{0}-x_{\star}\right\rangle & \left\|g_{0}\right\|^{2}
\end{array}\right], \quad F=f_{0}-f_{\star},
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\max _{G, F} & \frac{G_{1,1}+h^{2} G_{2,2}-2 h G_{1,2}}{G_{1,1}} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G \succcurlyeq 0
\end{aligned}
$$

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|x_{0}-x_{\star}\right\|^{2} & \left\langle g_{0}, x_{0}-x_{\star}\right\rangle \\
\left\langle g_{0}, x_{0}-x_{\star}\right\rangle & \left\|g_{0}\right\|^{2}
\end{array}\right], \quad F=f_{0}-f_{\star},
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\max _{G, F} & G_{1,1}+h^{2} G_{2,2}-2 h G_{1,2} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0,
\end{aligned}
$$

(using an an homogeneity argument and substituting x_{1} and g_{\star}).

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|x_{0}-x_{\star}\right\|^{2} & \left\langle g_{0}, x_{0}-x_{\star}\right\rangle \\
\left\langle g_{0}, x_{0}-x_{\star}\right\rangle & \left\|g_{0}\right\|^{2}
\end{array}\right], \quad F=f_{0}-f_{\star},
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\max _{G, F} & G_{1,1}+h^{2} G_{2,2}-2 h G_{1,2} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0,
\end{aligned}
$$

(using an an homogeneity argument and substituting x_{1} and g_{\star}).
\diamond Assuming $x_{0}, x_{\star}, g_{0} \in \mathbb{R}^{d}$ with $d \geqslant 2$, same optimal value as original problem!

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|x_{0}-x_{\star}\right\|^{2} & \left\langle g_{0}, x_{0}-x_{\star}\right\rangle \\
\left\langle g_{0}, x_{0}-x_{\star}\right\rangle & \left\|g_{0}\right\|^{2}
\end{array}\right], \quad F=f_{0}-f_{\star},
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\max _{G, F} & G_{1,1}+h^{2} G_{2,2}-2 h G_{1,2} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0,
\end{aligned}
$$

(using an an homogeneity argument and substituting x_{1} and g_{\star}).
\diamond Assuming $x_{0}, x_{\star}, g_{0} \in \mathbb{R}^{d}$ with $d \geqslant 2$, same optimal value as original problem!
\diamond For $d=1$ same as original problem by adding $\operatorname{rank}(G) \leqslant 1$.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of h.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of h.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of h.

\diamond Observation: numerics match $\max \left\{(1-h L)^{2},(1-h \mu)^{2}\right\}$.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of h.

\diamond Observation: numerics match $\max \left\{(1-h L)^{2},(1-h \mu)^{2}\right\}$.
\diamond We recover the celebrated $\frac{2}{L+\mu}$ as the optimal step-size.

Dual problem

\diamond Dual problem is

$$
\begin{aligned}
& \min _{\tau, \lambda_{1}, \lambda_{2}} \geqslant 0 \\
& \text { subject to } S=\left[\begin{array}{cc}
\tau-1+\frac{\lambda_{1} L \mu}{L-\mu} & h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} & \frac{\lambda_{1}}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{2} .
\end{aligned}
$$

Dual problem

\diamond Dual problem is

$$
\begin{aligned}
& \min _{\tau, \lambda_{1}, \lambda_{2}} \geqslant 0 \\
& \text { subject to } S=\left[\begin{array}{cc}
\tau-1+\frac{\lambda_{1} L \mu}{L-\mu} & h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} & \frac{\lambda_{1}}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{2} .
\end{aligned}
$$

\diamond Weak duality: any dual feasible point \equiv valid worst-case convergence rate

Dual problem

\diamond Dual problem is

$$
\begin{aligned}
& \min _{\tau, \lambda_{1}, \lambda_{2}} \geqslant 0 \\
& \text { subject to } S=\left[\begin{array}{cc}
\tau-1+\frac{\lambda_{1} L \mu}{L-\mu} & h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} & \frac{\lambda_{1}}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{2} .
\end{aligned}
$$

\diamond Weak duality: any dual feasible point \equiv valid worst-case convergence rate
\diamond Direct consequence: for any $\tau \geqslant 0$ we have

$$
\begin{gathered}
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2} \text { for all } f \in \mathcal{F}_{\mu, L, \text { all } x_{0} \in \mathbb{R}^{d}, \text { all } d \in \mathbb{N},} \begin{array}{c}
\text { with } x_{1}=x_{0}-h \nabla f\left(x_{0}\right) . \\
\Uparrow
\end{array} \\
\exists \lambda \geqslant 0:\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0
\end{gathered}
$$

Dual problem

\diamond Dual problem is

$$
\begin{aligned}
& \min _{\tau, \lambda_{1}, \lambda_{2}} \geqslant 0 \\
& \text { subject to } S=\left[\begin{array}{cc}
\tau-1+\frac{\lambda_{1} L \mu}{L-\mu} & h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} & \frac{\lambda_{1}}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{2} .
\end{aligned}
$$

\diamond Weak duality: any dual feasible point \equiv valid worst-case convergence rate (\Uparrow).
\diamond Direct consequence: for any $\tau \geqslant 0$ we have

$$
\begin{gathered}
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2} \text { for all } f \in \mathcal{F}_{\mu, L, \text { all } x_{0} \in \mathbb{R}^{d}, \text { all } d \in \mathbb{N},} \begin{array}{c}
\text { with } x_{1}=x_{0}-h \nabla f\left(x_{0}\right) . \\
\Uparrow
\end{array} \\
\exists \lambda \geqslant 0:\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0
\end{gathered}
$$

Dual problem

\diamond Dual problem is

$$
\begin{aligned}
& \min _{\tau, \lambda_{1}, \lambda_{2}} \geqslant 0 \\
& \text { subject to } S=\left[\begin{array}{cc}
\tau-1+\frac{\lambda_{1} L \mu}{L-\mu} & h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} & \frac{\lambda_{1}}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{2} .
\end{aligned}
$$

\diamond Weak duality: any dual feasible point \equiv valid worst-case convergence rate (\Uparrow).
\diamond Direct consequence: for any $\tau \geqslant 0$ we have

$$
\begin{gathered}
\left.\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2} \text { for all } f \in \mathcal{F}_{\mu, L, \text { all } x_{0} \in \mathbb{R}^{d}, \text { all } d \in \mathbb{N},} \begin{array}{c}
\text { with } x_{1}=x_{0}-h \nabla f\left(x_{0}\right) . \\
\Uparrow
\end{array}\right] \\
\exists \lambda \geqslant 0:\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0
\end{gathered}
$$

\diamond Strong duality holds (existence of a Slater point): any valid worst-case convergence rate \equiv valid dual feasible point (\Downarrow)

Dual problem

\diamond Dual problem is

$$
\begin{aligned}
& \min _{\tau, \lambda_{1}, \lambda_{2}} \geqslant 0 \\
& \text { subject to } S=\left[\begin{array}{cc}
\tau-1+\frac{\lambda_{1} L \mu}{L-\mu} & h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda_{1}(\mu+L)}{2(L-\mu)} & \frac{\lambda_{1}}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{2} .
\end{aligned}
$$

\diamond Weak duality: any dual feasible point \equiv valid worst-case convergence rate (\Uparrow).
\diamond Direct consequence: for any $\tau \geqslant 0$ we have

$$
\begin{gathered}
\left.\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau\left\|x_{0}-x_{\star}\right\|^{2} \text { for all } f \in \mathcal{F}_{\mu, L, \text { all } x_{0} \in \mathbb{R}^{d}, \text { all } d \in \mathbb{N},}^{\text {with } x_{1}=x_{0}-h \nabla f\left(x_{0}\right) .} \begin{array}{c}
\Uparrow \\
\exists \lambda \geqslant 0:\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h^{2}
\end{array}\right] \succcurlyeq 0
\end{array}\right) .
\end{gathered}
$$

\diamond Strong duality holds (existence of a Slater point): any valid worst-case convergence rate \equiv valid dual feasible point (\Downarrow) : hence " $\hat{\downarrow}$ ".

Dual solutions

Fix $L=1, \mu=.1$ and solve the dual SDP for a few values of h.

Dual solutions

Fix $L=1, \mu=.1$ and solve the dual SDP for a few values of h.

Dual solutions

Fix $L=1, \mu=.1$ and solve the dual SDP for a few values of h.

Numerics match $\lambda_{1}=\lambda_{2}=2|h| \rho(h)$ with $\rho(h)=\max \{h L-1,1-h \mu\}$.

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1} \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2} \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1} \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2} \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}-\underbrace{\frac{2-h(L+\mu)}{L-\mu}\left\|\mu\left(x_{0}-x_{\star}\right)-\nabla f\left(x_{0}\right)\right\|^{2}},
$$

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}-\underbrace{h \frac{2-h(L+\mu)}{L-\mu}\left\|\mu\left(x_{0}-x_{\star}\right)-\nabla f\left(x_{0}\right)\right\|^{2}}_{\geqslant 0},
$$

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|x_{1}-x_{\star}\right\|^{2} & \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}-\underbrace{h \frac{2-h(L+\mu)}{L-\mu}\left\|\mu\left(x_{0}-x_{\star}\right)-\nabla f\left(x_{0}\right)\right\|^{2}}_{\geqslant 0}, \\
& \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2},
\end{aligned}
$$

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|x_{1}-x_{\star}\right\|^{2} & \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}-\underbrace{h \frac{2-h(L+\mu)}{L-\mu}\left\|\mu\left(x_{0}-x_{\star}\right)-\nabla f\left(x_{0}\right)\right\|^{2}}_{\geqslant 0}, \\
& \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2},
\end{aligned}
$$

leading to $\left\|x_{1}-x_{\star}\right\|^{2} \leqslant\left(1-\frac{\mu}{L}\right)^{2}\left\|x_{0}-x_{\star}\right\|^{2}$

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|x_{1}-x_{\star}\right\|^{2} & \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}-\underbrace{h \frac{2-h(L+\mu)}{L-\mu}\left\|\mu\left(x_{0}-x_{\star}\right)-\nabla f\left(x_{0}\right)\right\|^{2}}_{\geqslant 0, \text { or }=0 \text { when worst-case is achieved }} \\
& \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}
\end{aligned}
$$

leading to $\left\|x_{1}-x_{\star}\right\|^{2} \leqslant\left(1-\frac{\mu}{L}\right)^{2}\left\|x_{0}-x_{\star}\right\|^{2}$

Recovering a "standard" proof

Gradient with $h=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{\star} & +\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{1}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} & \\
f_{\star} \geqslant f_{0} & +\left\langle\nabla f\left(x_{0}\right), x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} & : \lambda_{2}=2 h(1-\mu h) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{\star}-\frac{1}{L} \nabla f\left(x_{0}\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|x_{1}-x_{\star}\right\|^{2} & \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}-\underbrace{h \frac{2-h(L+\mu)}{L-\mu}\left\|\mu\left(x_{0}-x_{\star}\right)-\nabla f\left(x_{0}\right)\right\|^{2}}_{\geqslant 0, \text { or }=0 \text { when worst-case is achieved }} \\
& \leqslant(1-\mu h)^{2}\left\|x_{0}-x_{\star}\right\|^{2}
\end{aligned}
$$

leading to $\left\|x_{1}-x_{\star}\right\|^{2} \leqslant\left(1-\frac{\mu}{L}\right)^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ (tight).

What did we do, so far?

Summary:

What did we do, so far?

Summary:
\diamond we computed the smallest $\tau(\mu, L, h)$ such that

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau(\mu, L, h)\left\|x_{0}-x_{\star}\right\|^{2}
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, d \in \mathbb{N}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$.

What did we do, so far?

Summary:
\diamond we computed the smallest $\tau(\mu, L, h)$ such that

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau(\mu, L, h)\left\|x_{0}-x_{\star}\right\|^{2}
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, d \in \mathbb{N}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$.
\diamond Feasible points to primal SDP correspond to lower bounds on $\tau(\mu, L, h)$.

What did we do, so far?

Summary:
\diamond we computed the smallest $\tau(\mu, L, h)$ such that

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau(\mu, L, h)\left\|x_{0}-x_{\star}\right\|^{2}
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, d \in \mathbb{N}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$.
\diamond Feasible points to primal SDP correspond to lower bounds on $\tau(\mu, L, h)$.
\diamond Feasible points to dual SDP correspond to upper bounds on $\tau(\mu, L, h)$.

What did we do, so far?

Summary:
\diamond we computed the smallest $\tau(\mu, L, h)$ such that

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau(\mu, L, h)\left\|x_{0}-x_{\star}\right\|^{2}
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, d \in \mathbb{N}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$.
\diamond Feasible points to primal SDP correspond to lower bounds on $\tau(\mu, L, h)$.
\diamond Feasible points to dual SDP correspond to upper bounds on $\tau(\mu, L, h)$.

- proof via linear combinations of interpolation inequalities (evaluated at the iterates and x_{\star}),
- proofs can be rewritten as a "sum-of-squares" certificates.

What did we do, so far?

Summary:
\diamond we computed the smallest $\tau(\mu, L, h)$ such that

$$
\left\|x_{1}-x_{\star}\right\|^{2} \leqslant \tau(\mu, L, h)\left\|x_{0}-x_{\star}\right\|^{2}
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, d \in \mathbb{N}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-h \nabla f\left(x_{0}\right)$.
\diamond Feasible points to primal SDP correspond to lower bounds on $\tau(\mu, L, h)$.
\diamond Feasible points to dual SDP correspond to upper bounds on $\tau(\mu, L, h)$.

- proof via linear combinations of interpolation inequalities (evaluated at the iterates and x_{\star}),
- proofs can be rewritten as a "sum-of-squares" certificates.
... what happens beyond gradient descent for smooth strongly convex minimization?

When does it work?

The methodology applies, as is, as soon as:

When does it work?

The methodology applies, as is, as soon as:
\diamond performance measure and initial condition are linear in G and F,

When does it work?

The methodology applies, as is, as soon as:
\diamond performance measure and initial condition are linear in G and F,
\diamond interpolation inequalities are linear in G and F,

When does it work?

The methodology applies, as is, as soon as:
\diamond performance measure and initial condition are linear in G and F,
\diamond interpolation inequalities are linear in G and F,
\diamond algorithm can be described linearly in G and F.

What's next?

What's next?

\diamond More iterations?

What's next?

\diamond More iterations?
\diamond Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator functions, monotone operators, etc.

What's next?

\diamond More iterations?
\diamond Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator functions, monotone operators, etc.
\diamond Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe), mirror descent, approximate versions, momentum, etc.

What's next?

\diamond More iterations?
\diamond Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator functions, monotone operators, etc.
\diamond Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe), mirror descent, approximate versions, momentum, etc.
\diamond Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

What's next?

\diamond More iterations?
\diamond Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator functions, monotone operators, etc.
\diamond Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe), mirror descent, approximate versions, momentum, etc.
\diamond Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.
\diamond Step-size optimization?
Optimize worst-case performance.

Example

Software

Step-size optimization

Concluding remarks

Avoiding semidefinite programming modeling steps?

Avoiding semidefinite programming modeling steps?

Baptiste Goujaud

Céline
Moucer

Aymeric
Dieuleveut

Julien Hendrickx

François Glineur
\diamond Matlab version: Performance Estimation Toolbox (PESTO) available at github.com/PerformanceEstimation/Performance-EstimationToolbox
\diamond Python version: PEPit available at github.com/PerformanceEstimation/PEPit/

Packages contain more than 75 examples!

A few examples

Algorithms for solving:

$$
\min _{x} f(x)
$$

with f convex and L-smooth.

A few examples

Algorithms for solving:

$$
\min _{x} f(x)
$$

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov's acceleration

A few examples

Algorithms for solving:

$$
\min _{x} f(x)
$$

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov's acceleration
\diamond in terms of worst-cases $\frac{f\left(x_{k}\right)-f\left(x_{\star}\right)}{\left\|x_{0}-x_{\star}\right\|^{2}}$,

A few examples

Algorithms for solving:

$$
\min _{x} f(x)
$$

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov's acceleration
\diamond in terms of worst-cases $\frac{f\left(x_{k}\right)-f\left(x_{\star}\right)}{\left\|x_{0}-x_{\star}\right\|^{2}}$,
\diamond in terms of worst-cases $\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$,

A few examples

Algorithms for solving:

$$
\min _{x} f(x)
$$

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov's acceleration
\diamond in terms of worst-cases $\frac{f\left(x_{k}\right)-f\left(x_{\star}\right)}{\left\|x_{0}-x_{\star}\right\|^{2}}$,
\diamond in terms of worst-cases $\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$,
\diamond in terms of worst-cases $\min _{0 \leqslant i \leqslant k} \frac{\left\|\nabla f\left(x_{i}\right)\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$.

A few examples

Proximal point algorithm for (maximal) monotone inclusion:

$$
\text { find } x: 0 \in A(x)
$$

with $A: \mathbb{R}^{d} \rightarrow 2^{\mathbb{R}^{d}}$ maximal monotone.

A few examples

Proximal point algorithm for (maximal) monotone inclusion:

$$
\text { find } x: 0 \in A(x)
$$

with $A: \mathbb{R}^{d} \rightarrow 2^{\mathbb{R}^{d}}$ maximal monotone.

What is the worst-case $\frac{\left\|x_{k+1}-x_{k}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ when $x_{i+1}=J_{A}\left(x_{i}\right)$?

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond proximal point algorithm,
\diamond projected and proximal gradient, accelerated/momentum versions,

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond proximal point algorithm,
\diamond projected and proximal gradient, accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond proximal point algorithm,
\diamond projected and proximal gradient, accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/"NoLips",

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond proximal point algorithm,
\diamond projected and proximal gradient, accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/"NoLips",
\diamond stochastic methods: Point-SAGA, SAGA, SGD and variants.

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond proximal point algorithm,
\diamond projected and proximal gradient, accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/"NoLips",
\diamond stochastic methods: Point-SAGA, SAGA, SGD and variants.
... contain most of the recent PEP-related advances (including by other groups).

Current library of examples within PESTO/PEPit

Includes... but not limited to
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond proximal point algorithm,
\diamond projected and proximal gradient, accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/"NoLips",
\diamond stochastic methods: Point-SAGA, SAGA, SGD and variants.
... contain most of the recent PEP-related advances (including by other groups).
Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard, Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

Back to legitimate questions:
\diamond anything improvable? Realistic analyses?

Back to legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?

Back to legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity $\left(\left\|x_{k}-x_{\star}\right\|\right)$?

Back to legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity $\left(\left\|x_{k}-x_{\star}\right\|\right)$?
\diamond How to study other quantities, e.g., $f\left(x_{k}\right)-f\left(x_{\star}\right)$?

Back to legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity $\left(\left\|x_{k}-x_{\star}\right\|\right)$?
\diamond How to study other quantities, e.g., $f\left(x_{k}\right)-f\left(x_{\star}\right)$?
\diamond Unique way to arrive to the desired result?

Back to legitimate questions:
\diamond anything improvable? Realistic analyses?
\diamond How to choose the right inequalities to combine?
\diamond Why studying this specific quantity $\left(\left\|x_{k}-x_{\star}\right\|\right)$?
\diamond How to study other quantities, e.g., $f\left(x_{k}\right)-f\left(x_{\star}\right)$?
\diamond Unique way to arrive to the desired result?
\diamond How likely are we to find such proofs in more complicated cases?

Recap'

Recap'
(). Worst-case guarantees cannot be improved, systematic approach,

Recap'

(). Worst-case guarantees cannot be improved, systematic approach,
(). allows reaching proofs that could barely be obtained by hand,

Recap'

(). Worst-case guarantees cannot be improved, systematic approach,
(). allows reaching proofs that could barely be obtained by hand,
(). fair amount of scenarios/algorithms (e.g., proximal terms, stochastic, etc.),

Recap'

(). Worst-case guarantees cannot be improved, systematic approach,
(). allows reaching proofs that could barely be obtained by hand,
(). fair amount of scenarios/algorithms (e.g., proximal terms, stochastic, etc.),
(:) SDPs typically become prohibitively large in a variety of scenarios,

Recap'

(). Worst-case guarantees cannot be improved, systematic approach,
(). allows reaching proofs that could barely be obtained by hand,
(-) fair amount of scenarios/algorithms (e.g., proximal terms, stochastic, etc.),
(2) SDPs typically become prohibitively large in a variety of scenarios,
() transient behavior VS. asymptotic behavior: might be hard to distinguish with small N,

Recap'

(). Worst-case guarantees cannot be improved, systematic approach,
(). allows reaching proofs that could barely be obtained by hand,
(-) fair amount of scenarios/algorithms (e.g., proximal terms, stochastic, etc.),
(:) SDPs typically become prohibitively large in a variety of scenarios,
(2) transient behavior VS. asymptotic behavior: might be hard to distinguish with small N,
(:) proofs (may be) quite involved and hard to intuit,

Recap'

(). Worst-case guarantees cannot be improved, systematic approach,
(). allows reaching proofs that could barely be obtained by hand,
(-) fair amount of scenarios/algorithms (e.g., proximal terms, stochastic, etc.),
(:) SDPs typically become prohibitively large in a variety of scenarios,
(:) transient behavior VS. asymptotic behavior: might be hard to distinguish with small N,
(2) proofs (may be) quite involved and hard to intuit,
(). proofs (may be) hard to generalize.

A few instructive examples

Worst-case analysis for fixed-point iterations:
\diamond Lieder ('20). "On the convergence of the Halpern-iteration".

A few instructive examples

Worst-case analysis for fixed-point iterations:
\diamond Lieder ('20). "On the convergence of the Halpern-iteration".
Analysis of the proximal-point algorithm for monotone inclusions:
\diamond Gu, Yang ('19). "Optimal nonergodic sublinear convergence rate of the proximal point algorithm for maximal monotone inclusion problems".

A few instructive examples

Worst-case analysis for fixed-point iterations:
\diamond Lieder ('20). "On the convergence of the Halpern-iteration".
Analysis of the proximal-point algorithm for monotone inclusions:
\diamond Gu, Yang ('19). "Optimal nonergodic sublinear convergence rate of the proximal point algorithm for maximal monotone inclusion problems".
Application to nonconvex optimization:
\diamond Abbaszadehpeivasti, de Klerk, Zamani ('21). "The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions".
\diamond Rotaru, Glineur, Patrinos ('22). "Tight convergence rates of the gradient method on hypoconvex functions".

A few instructive examples

Worst-case analysis for fixed-point iterations:
\diamond Lieder ('20). "On the convergence of the Halpern-iteration".
Analysis of the proximal-point algorithm for monotone inclusions:
$\diamond \mathrm{Gu}$, Yang ('19). "Optimal nonergodic sublinear convergence rate of the proximal point algorithm for maximal monotone inclusion problems".
Application to nonconvex optimization:
\diamond Abbaszadehpeivasti, de Klerk, Zamani ('21). "The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions".
\diamond Rotaru, Glineur, Patrinos ('22). "Tight convergence rates of the gradient method on hypoconvex functions".
Applications to distributed optimization:
\diamond Sundararajan, Van Scoy, Lessard ('19). "Analysis and design of first-order distributed optimization algorithms over time-varying graphs."
\diamond Colla, Hendrickx ('23). "Automatic performance estimation for decentralized optimization."

A few instructive examples-shameless advertisement

Applications to mirror descent + lower complexity bound
\diamond Dragomir, T., d'Aspremont, Bolte ('21). "Optimal complexity and certification of Bregman first-order methods."

A few instructive examples-shameless advertisement

Applications to mirror descent + lower complexity bound
\diamond Dragomir, T., d'Aspremont, Bolte ('21). "Optimal complexity and certification of Bregman first-order methods."
Applications to adaptive methods
\diamond Barré, T., d'Aspremont ('20). "Complexity Guarantees for Polyak Steps with Momentum."
\diamond Das Gupta, Freund, Sun, T ('23). "Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses."

A few instructive examples-shameless advertisement

Applications to mirror descent + lower complexity bound
\diamond Dragomir, T., d'Aspremont, Bolte ('21). "Optimal complexity and certification of Bregman first-order methods."
Applications to adaptive methods
\diamond Barré, T., d'Aspremont ('20). "Complexity Guarantees for Polyak Steps with Momentum."
\diamond Das Gupta, Freund, Sun, T ('23). "Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses."
Lyapunov functions (compact proofs) \& counter-examples
\diamond Lessard, Recht, Packard ('16). "Analysis and design of optimization algorithms via integral quadratic constraints."
\diamond T, Bach ('19). "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions."
\diamond Upadhyaya, Banert, T, Giselsson ('23). "Automated tight Lyapunov analysis for first-order methods."
\diamond Goujaud, Dieuleveut, T ('23). "Counter-examples in first-order optimization: a constructive approach."

Poster

Nizar
Bousselmi

François Glineur
\rightarrow Bousselmi, Hendrickx, Glineur ('23). "Interpolation Conditions for Linear Operators and applications to Performance Estimation Problems."

Example

Software

Step-size optimization

Concluding remarks

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
x_{1}=x_{0}-h_{1,0} \nabla f\left(x_{0}\right)
$$

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
\begin{aligned}
& x_{1}=x_{0}-h_{1,0} \nabla f\left(x_{0}\right) \\
& x_{2}=x_{1}-h_{2,0} \nabla f\left(x_{0}\right)-h_{2,1} \nabla f\left(x_{1}\right)
\end{aligned}
$$

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
\begin{aligned}
& x_{1}=x_{0}-h_{1,0} \nabla f\left(x_{0}\right) \\
& x_{2}=x_{1}-h_{2,0} \nabla f\left(x_{0}\right)-h_{2,1} \nabla f\left(x_{1}\right)
\end{aligned}
$$

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
\begin{aligned}
x_{1} & =x_{0}-h_{1,0} \nabla f\left(x_{0}\right) \\
x_{2} & =x_{1}-h_{2,0} \nabla f\left(x_{0}\right)-h_{2,1} \nabla f\left(x_{1}\right) \\
\quad & \\
x_{N} & =x_{N-1}-h_{N, 0} \nabla f\left(x_{0}\right)-\ldots-h_{N, N-1} \nabla f\left(x_{N-1}\right)
\end{aligned}
$$

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
\begin{aligned}
x_{1} & =x_{0}-h_{1,0} \nabla f\left(x_{0}\right) \\
x_{2} & =x_{1}-h_{2,0} \nabla f\left(x_{0}\right)-h_{2,1} \nabla f\left(x_{1}\right) \\
\quad & \\
x_{N} & =x_{N-1}-h_{N, 0} \nabla f\left(x_{0}\right)-\ldots-h_{N, N-1} \nabla f\left(x_{N-1}\right)
\end{aligned}
$$

How to choose $\left\{h_{i, j}\right\}$?

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
\begin{aligned}
x_{1} & =x_{0}-h_{1,0} \nabla f\left(x_{0}\right) \\
x_{2} & =x_{1}-h_{2,0} \nabla f\left(x_{0}\right)-h_{2,1} \nabla f\left(x_{1}\right) \\
\quad & \\
x_{N} & =x_{N-1}-h_{N, 0} \nabla f\left(x_{0}\right)-\ldots-h_{N, N-1} \nabla f\left(x_{N-1}\right)
\end{aligned}
$$

How to choose $\left\{h_{i, j}\right\}$?
\diamond pick a performance criterion, for instance

$$
\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}
$$

Creating new algorithms

Smooth (strongly) convex minimization with more than gradient descent?

$$
\begin{aligned}
& x_{1}=x_{0}-h_{1,0} \nabla f\left(x_{0}\right) \\
& x_{2}=x_{1}-h_{2,0} \nabla f\left(x_{0}\right)-h_{2,1} \nabla f\left(x_{1}\right) \\
& \quad \vdots \\
& x_{N}=x_{N-1}-h_{N, 0} \nabla f\left(x_{0}\right)-\ldots-h_{N, N-1} \nabla f\left(x_{N-1}\right)
\end{aligned}
$$

How to choose $\left\{h_{i, j}\right\}$?
\diamond pick a performance criterion, for instance

$$
\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}
$$

\diamond solve the minimax:

$$
\min _{\left\{h_{i, j}\right\}_{i, j}} \max _{f \in \mathcal{F},\left\{x_{i}\right\}} \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} .
$$

Solution to inner maximization via $N \times N$ SDP.

Design problem

How to solve the design problem (or proxy of it)?

$$
\min _{\left\{h_{i, j}\right\}} \max _{f \in \mathcal{F}} \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}
$$

Design problem

How to solve the design problem (or proxy of it)?

$$
\min _{\left\{h_{i, j}\right\}} \max _{f \in \mathcal{F}} \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}
$$

\diamond brutal approaches

- Das Gupta, Van Parys, Ryu ('23) "Branch-and-bound performance estimation programming: A unified methodology for constructing optimal optimization methods."

Design problem

How to solve the design problem (or proxy of it)?

$$
\min _{\left\{h_{i, j}\right\}} \max _{f \in \mathcal{F}} \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}
$$

\diamond brutal approaches

- Das Gupta, Van Parys, Ryu ('23) "Branch-and-bound performance estimation programming: A unified methodology for constructing optimal optimization methods."
\diamond convex relaxations,

Design problem

How to solve the design problem (or proxy of it)?

$$
\min _{\left\{h_{i, j}\right\}} \max _{f \in \mathcal{F}} \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}
$$

\diamond brutal approaches

- Das Gupta, Van Parys, Ryu ('23) "Branch-and-bound performance estimation programming: A unified methodology for constructing optimal optimization methods."
\diamond convex relaxations,
\diamond analogies (e.g., with conjugate gradient methods).

Primal problem $(N=1)$

Primal problem $(N=1)$

Recall primal problem, with step-size optimization

$$
\begin{array}{ll}
\min _{h_{1,0}} \max _{G, F} & G_{1,1}+h_{1,0}^{2} G_{2,2}-2 h_{1,0} G_{1,2} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0 .
\end{array}
$$

Primal problem $(N=1)$

Recall primal problem, with step-size optimization

$$
\begin{array}{ll}
\min _{h_{1,0}} \max _{G, F} & G_{1,1}+h_{1,0}^{2} G_{2,2}-2 h_{1,0} G_{1,2} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0
\end{array}
$$

"Simple" minimization problem by dualizing inner maximization.

Primal problem $(N=1)$

Recall primal problem, with step-size optimization

$$
\begin{array}{ll}
\min _{h_{1,0}} \max _{G, F} & G_{1,1}+h_{1,0}^{2} G_{2,2}-2 h_{1,0} G_{1,2} \\
\text { subject to } & F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{L}{L-\mu} G_{1,2} \leqslant 0 \\
& -F+\frac{L \mu}{2(L-\mu)} G_{1,1}+\frac{1}{2(L-\mu)} G_{2,2}-\frac{\mu}{L-\mu} G_{1,2} \leqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0
\end{array}
$$

"Simple" minimization problem by dualizing inner maximization.
Dualize inner maximization $\rightarrow \min \min$.

Optimizing the step-sizes $(N=1)$

Optimizing the step-sizes $(N=1)$

For $N=1$, optimizing over step-size $h_{1,0}$ remains convex!

Optimizing the step-sizes $(N=1)$

For $N=1$, optimizing over step-size $h_{1,0}$ remains convex!
Indeed:

$$
\begin{array}{ll}
\min _{\tau, \lambda \geqslant 0} & \tau \\
\text { subject to } & {\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h_{1,0}-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h_{1,0}-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h_{1,0}^{2}
\end{array}\right] \succcurlyeq 0 .}
\end{array}
$$

Optimizing the step-sizes $(N=1)$

For $N=1$, optimizing over step-size $h_{1,0}$ remains convex!
Indeed:

$$
\begin{aligned}
& \min _{\tau, \lambda \geqslant 0, h_{1,0}} \tau \\
& \text { subject to }\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h_{1,0}-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h_{1,0}-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h_{1,0}^{2}
\end{array}\right] \succcurlyeq 0 .
\end{aligned}
$$

Optimizing the step-sizes $(N=1)$

For $N=1$, optimizing over step-size $h_{1,0}$ remains convex!
Indeed:

$$
\begin{aligned}
& \min _{\tau, \lambda \geqslant 0, h_{1,0}} \tau \\
& \text { subject to }\left[\begin{array}{cc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & h_{1,0}-\frac{\lambda(\mu+L)}{2(L-\mu)} \\
h_{1,0}-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu}-h_{1,0}^{2}
\end{array}\right] \succcurlyeq 0 .
\end{aligned}
$$

Optimize $h_{1,0}$ "for free" (linear SDP via Schur complement):

$$
\left.\begin{array}{l}
\min _{\tau, \lambda \geqslant 0, h_{1,0}} \tau \\
\text { subject to }
\end{array}\right]\left[\begin{array}{ccc}
\tau-1+\frac{\lambda L \mu}{L-\mu} & -\frac{\lambda(\mu+L)}{2(L-\mu)} & 1 \\
-\frac{\lambda(\mu+L)}{2(L-\mu)} & \frac{\lambda}{L-\mu} & -h_{1,0} \\
1 & -h_{1,0} & 1
\end{array}\right] \succcurlyeq 0 .
$$

Optimizing the step-sizes $(N=2)$

When $N=2$, the problem becomes

$$
\min _{\substack{\tau, \lambda_{1}, \ldots, \lambda_{6} \geqslant 0 \\\left\{h_{i, j}\right\}}} \tau
$$

subject to

Optimizing the step-sizes $(N=2)$

When $N=2$, the problem becomes

$$
\min _{\tau, \lambda_{1}, \ldots, \lambda_{6} \geqslant 0}^{\left\{h_{i, j}\right\}}<{ }^{2}
$$

subject to

$$
\left[\begin{array}{c}
\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{5} \\
-\lambda_{1}+\lambda_{3}+\lambda_{4}-\lambda_{6}
\end{array}\right]=0
$$

Optimizing the step-sizes $(N=2)$

When $N=2$, the problem becomes

$$
\begin{aligned}
&\left.\underset{\substack{\left.\tau, \lambda_{1}, \ldots, \lambda_{6}\right\}}}{\min } \mathrm{h}_{i, j}\right\} \\
& \text { subject to } {\left[\begin{array}{lll}
S_{1,1} & S_{1,2} & S_{1,3} \\
S_{1,2} & S_{2,2} & S_{2,3} \\
S_{1,3} & S_{2,3} & S_{3,3}
\end{array}\right] \succcurlyeq 0 } \\
& {\left[\begin{array}{c}
\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{5} \\
-\lambda_{1}+\lambda_{3}+\lambda_{4}-\lambda_{6}
\end{array}\right]=0 }
\end{aligned}
$$

Optimizing the step-sizes $(N=2)$

When $N=2$, the problem becomes

$$
\begin{aligned}
& \underset{\substack{\tau, \lambda_{1}, \ldots, \lambda_{6} \\
\left\{h_{i, j}\right\}}}{\min } \tau_{0} \\
& \text { subject to } {\left[\begin{array}{lll}
S_{1,1} & S_{1,2} & S_{1,3} \\
S_{1,2} & S_{2,2} & S_{2,3} \\
S_{1,3} & S_{2,3} & S_{3,3}
\end{array}\right] \succcurlyeq 0 } \\
& {\left[\begin{array}{c}
\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{5} \\
-\lambda_{1}+\lambda_{3}+\lambda_{4}-\lambda_{6}
\end{array}\right]=0 }
\end{aligned}
$$

for some $S_{1,1}, S_{1,2}, \ldots, S_{3,3}$ (functions of $\tau, \lambda_{1}, \ldots, \lambda_{6}$ and $\left\{h_{i, j}\right\}$).

Optimizing the step-sizes $(N=2)$

When $N=2$, the problem becomes

$$
\begin{aligned}
&\left.\underset{\substack{\left.\tau, \lambda_{1}, \ldots, \lambda_{6}\right\}}}{\min } \mathrm{h}_{i, j}\right\} \\
& \text { subject to } {\left[\begin{array}{lll}
S_{1,1} & S_{1,2} & S_{1,3} \\
S_{1,2} & S_{2,2} & S_{2,3} \\
S_{1,3} & S_{2,3} & S_{3,3}
\end{array}\right] \succcurlyeq 0 } \\
& {\left[\begin{array}{c}
\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{5} \\
-\lambda_{1}+\lambda_{3}+\lambda_{4}-\lambda_{6}
\end{array}\right]=0 }
\end{aligned}
$$

for some $S_{1,1}, S_{1,2}, \ldots, S_{3,3}$ (functions of $\tau, \lambda_{1}, \ldots, \lambda_{6}$ and $\left\{h_{i, j}\right\}$).
In particular

$$
\begin{aligned}
& S_{1,2}=-\frac{L \lambda_{3}-2(L-\mu) h_{2,0}+\mu \lambda_{1}+L \mu\left(\lambda_{2}+\lambda_{5}\right) h_{1,0}}{L-\mu} \\
& S_{2,2}=\frac{-2\left(\mu \lambda_{6}+L \lambda_{4}\right) h_{1,0}-2(L-\mu) h_{2,0}^{2}+L \mu\left(\lambda_{2}+\lambda_{4}+\lambda_{5}+\lambda_{6}\right) h_{1,0}^{2}+\lambda_{1}+\lambda_{3}+\lambda_{4}+\lambda_{6}}{L-\mu}
\end{aligned}
$$

Optimizing the step-sizes $(N=2)$

When $N=2$, the problem becomes

$$
\begin{aligned}
&\left.\underset{\substack{\left.\tau, \lambda_{1}, \ldots, \lambda_{6}\right\}}}{\min } \mathrm{h}_{i, j}\right\} \\
& \text { subject to } {\left[\begin{array}{lll}
S_{1,1} & S_{1,2} & S_{1,3} \\
S_{1,2} & S_{2,2} & S_{2,3} \\
S_{1,3} & S_{2,3} & S_{3,3}
\end{array}\right] \succcurlyeq 0 } \\
& {\left[\begin{array}{c}
\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{5} \\
-\lambda_{1}+\lambda_{3}+\lambda_{4}-\lambda_{6}
\end{array}\right]=0 }
\end{aligned}
$$

for some $S_{1,1}, S_{1,2}, \ldots, S_{3,3}$ (functions of $\tau, \lambda_{1}, \ldots, \lambda_{6}$ and $\left\{h_{i, j}\right\}$).
In particular

$$
\begin{aligned}
& S_{1,2}=-\frac{L \lambda_{3}-2(L-\mu) h_{2,0}+\mu \lambda_{1}+L \mu\left(\lambda_{2}+\lambda_{5}\right) h_{1,0}}{L-\mu} \\
& S_{2,2}=\frac{-2\left(\mu \lambda_{6}+L \lambda_{4}\right) h_{1,0}-2(L-\mu) h_{2,0}^{2}+L \mu\left(\lambda_{2}+\lambda_{4}+\lambda_{5}+\lambda_{6}\right) h_{1,0}^{2}+\lambda_{1}+\lambda_{3}+\lambda_{4}+\lambda_{6}}{L-\mu}
\end{aligned}
$$

LMI convex in some step-sizes ($h_{2,0}$ and $h_{2,1}$) but not in the others.

Numerical examples I

Example for $L=1$ and $\mu=.1$

Numerical examples I

Example for $L=1$ and $\mu=.1$
\diamond For $N=1$, we reach $\frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.6694$ with step-sizes

$$
\left[h_{i, j}^{\star}\right]=[1.8182] .
$$

Numerical examples I

Example for $L=1$ and $\mu=.1$
\diamond For $N=1$, we reach $\frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.6694$ with step-sizes

$$
\left[h_{i, j}^{\star}\right]=[1.8182] .
$$

\diamond For $N=2$, we reach $\frac{\left\|x_{2}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.3769$ with

$$
\left[h_{i, j}^{\star}\right]=\left[\begin{array}{ll}
1.5466 & \\
0.2038 & 2.4961
\end{array}\right]
$$

Numerical examples I

Example for $L=1$ and $\mu=.1$
\diamond For $N=1$, we reach $\frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.6694$ with step-sizes

$$
\left[h_{i, j}^{\star}\right]=[1.8182] .
$$

\diamond For $N=2$, we reach $\frac{\left\|x_{2}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.3769$ with

$$
\left[h_{i, j}^{\star}\right]=\left[\begin{array}{ll}
1.5466 & \\
0.2038 & 2.4961
\end{array}\right]
$$

\diamond For $N=3$, we reach $\frac{\left\|x_{3}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.1932$ with

$$
\left[h_{i, j}^{\star}\right]=\left[\begin{array}{lll}
1.5466 & & \\
0.1142 & 1.8380 & \\
0.0642 & 0.4712 & 2.8404
\end{array}\right]
$$

Numerical examples I

Example for $L=1$ and $\mu=.1$
\diamond For $N=1$, we reach $\frac{\left\|x_{1}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.6694$ with step-sizes

$$
\left[h_{i, j}^{\star}\right]=[1.8182] .
$$

\diamond For $N=2$, we reach $\frac{\left\|x_{2}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}} \leqslant 0.3769$ with

$$
\left[h_{i, j}^{\star}\right]=\left[\begin{array}{ll}
1.5466 & \\
0.2038 & 2.4961
\end{array}\right]
$$

\diamond For $N=3$, we reach $\frac{\left\|x_{3}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{*}\right\|^{2}} \leqslant 0.1932$ with

$$
\left[h_{i, j}^{\star}\right]=\left[\begin{array}{lll}
1.5466 & & \\
0.1142 & 1.8380 & \\
0.0642 & 0.4712 & 2.8404
\end{array}\right]
$$

\diamond For $N=4$, we reach $\frac{\left\|x_{4}-x_{*}\right\|^{2}}{\left\|x_{0}-x_{*}\right\|^{2}} \leqslant 0.0944$ with

$$
\left[h_{i, j}^{\star}\right]=\left[\begin{array}{llll}
1.5466 & & & \\
0.1142 & 1.8380 & & \\
0.0331 & 0.2432 & 1.9501 & \\
0.0217 & 0.1593 & 0.6224 & 3.0093
\end{array}\right]
$$

Numerical examples II

What about different performance measure? Example $\frac{f\left(x_{N}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}}$ and $L=1, \mu=.1$.

Numerical examples II

What about different performance measure? Example $\frac{f\left(x_{N}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}}$ and $L=1, \mu=.1$.
\diamond For $N=1$, we obtain $\frac{f\left(x_{1}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.6694$ with step-size

$$
\left[h_{i, j}\right]=[1.8182] .
$$

Numerical examples II

What about different performance measure? Example $\frac{f\left(x_{N}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}}$ and $L=1, \mu=.1$.
\diamond For $N=1$, we obtain $\frac{f\left(x_{1}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.6694$ with step-size

$$
\left[h_{i, j}\right]=[1.8182]
$$

\diamond For $N=2$, we obtain $\frac{f\left(x_{2}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.3554$ with

$$
\left[h_{i, j}\right]=\left[\begin{array}{ll}
2.0095 & \\
0.4229 & 2.0095
\end{array}\right]
$$

Numerical examples II

What about different performance measure? Example $\frac{f\left(x_{N}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}}$ and $L=1, \mu=.1$.
\diamond For $N=1$, we obtain $\frac{f\left(x_{1}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.6694$ with step-size

$$
\left[h_{i, j}\right]=[1.8182]
$$

\diamond For $N=2$, we obtain $\frac{f\left(x_{2}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.3554$ with

$$
\left[h_{i, j}\right]=\left[\begin{array}{ll}
2.0095 & \\
0.4229 & 2.0095
\end{array}\right]
$$

\diamond For $N=3$, we obtain $\frac{f\left(x_{3}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.1698$ with

$$
\left[h_{i, j}\right]=\left[\begin{array}{lll}
1.9470 & & \\
0.4599 & 2.2406 & \\
0.1705 & 0.4599 & 1.9470
\end{array}\right]
$$

Numerical examples II

What about different performance measure? Example $\frac{f\left(x_{N}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}}$ and $L=1, \mu=.1$.
\diamond For $N=1$, we obtain $\frac{f\left(x_{1}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.6694$ with step-size

$$
\left[h_{i, j}\right]=[1.8182]
$$

\diamond For $N=2$, we obtain $\frac{f\left(x_{2}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.3554$ with

$$
\left[h_{i, j}\right]=\left[\begin{array}{ll}
2.0095 & \\
0.4229 & 2.0095
\end{array}\right]
$$

\diamond For $N=3$, we obtain $\frac{f\left(x_{3}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.1698$ with

$$
\left[h_{i, j}\right]=\left[\begin{array}{lll}
1.9470 & & \\
0.4599 & 2.2406 & \\
0.1705 & 0.4599 & 1.9470
\end{array}\right]
$$

\diamond For $N=4$, we obtain $\frac{f\left(x_{4}\right)-f_{\star}}{f\left(x_{0}\right)-f_{\star}} \leqslant 0.0789$ with

$$
\left[h_{i, j}\right]=\left[\begin{array}{llll}
1.9187 & & & \\
0.4098 & 2.1746 & & \\
0.1796 & 0.5147 & 2.1746 & \\
0.0627 & 0.1796 & 0.4098 & 1.9187
\end{array}\right]
$$

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,
\diamond worst-case performance of optimized method (numerically generated),

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,
\diamond worst-case performance of optimized method (numerically generated),
\diamond Lower complexity bound (numerically generated).

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,
\diamond worst-case performance of optimized method (numerically generated),
\diamond Lower complexity bound (numerically generated).

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,
\diamond worst-case performance of optimized method (numerically generated),
\diamond Lower complexity bound (numerically generated).

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,
\diamond worst-case performance of optimized method (numerically generated),
\diamond Lower complexity bound (numerically generated).

Numerical examples III

Worst-case performance $\frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $L=1$ and $\mu=.01$. We compare
\diamond worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,
\diamond worst-case performance of optimized method (numerically generated),
\diamond Lower complexity bound (numerically generated).

Analytical solutions

\diamond It turns out that for $\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$, we can also solve the minimax in closed-form.

Analytical solutions

\diamond It turns out that for $\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$, we can also solve the minimax in closed-form.
\diamond The method referred to as "Information-Theoretic Exact Method" (ITEM)

$$
\begin{aligned}
y_{k} & =\left(1-\beta_{k}\right) z_{k}+\beta_{k}\left(y_{k-1}-\frac{1}{L} \nabla f\left(y_{k-1}\right)\right) \\
z_{k+1} & =\left(1-\frac{\mu}{L} \delta_{k}\right) z_{k}+\frac{\mu}{L} \delta_{k}\left(y_{k}-\frac{1}{\mu} \nabla f\left(y_{k}\right)\right),
\end{aligned}
$$

for some sequences $\left\{\beta_{k}\right\},\left\{\delta_{k}\right\}$ (depending on μ, L, and k).

Analytical solutions

\diamond It turns out that for $\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$, we can also solve the minimax in closed-form.
\diamond The method referred to as "Information-Theoretic Exact Method" (ITEM)

$$
\begin{aligned}
y_{k} & =\left(1-\beta_{k}\right) z_{k}+\beta_{k}\left(y_{k-1}-\frac{1}{L} \nabla f\left(y_{k-1}\right)\right) \\
z_{k+1} & =\left(1-\frac{\mu}{L} \delta_{k}\right) z_{k}+\frac{\mu}{L} \delta_{k}\left(y_{k}-\frac{1}{\mu} \nabla f\left(y_{k}\right)\right),
\end{aligned}
$$

for some sequences $\left\{\beta_{k}\right\},\left\{\delta_{k}\right\}$ (depending on μ, L, and k).
\diamond The worst-case guarantee matches exactly a lower complexity bound.

Analytical solutions

\diamond It turns out that for $\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$, we can also solve the minimax in closed-form.
\diamond The method referred to as "Information-Theoretic Exact Method" (ITEM)

$$
\begin{aligned}
y_{k} & =\left(1-\beta_{k}\right) z_{k}+\beta_{k}\left(y_{k-1}-\frac{1}{L} \nabla f\left(y_{k-1}\right)\right) \\
z_{k+1} & =\left(1-\frac{\mu}{L} \delta_{k}\right) z_{k}+\frac{\mu}{L} \delta_{k}\left(y_{k}-\frac{1}{\mu} \nabla f\left(y_{k}\right)\right),
\end{aligned}
$$

for some sequences $\left\{\beta_{k}\right\},\left\{\delta_{k}\right\}$ (depending on μ, L, and k).
\diamond The worst-case guarantee matches exactly a lower complexity bound.
\diamond Worst-case guarantee of order

$$
\frac{\left\|z_{N}-z_{\star}\right\|^{2}}{\left\|z_{0}-z_{\star}\right\|^{2}}=O\left(\left(1-\sqrt{\frac{\mu}{L}}\right)^{2 N}\right)
$$

Analytical solutions

\diamond It turns out that for $\frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$, we can also solve the minimax in closed-form.
\diamond The method referred to as "Information-Theoretic Exact Method" (ITEM)

$$
\begin{aligned}
y_{k} & =\left(1-\beta_{k}\right) z_{k}+\beta_{k}\left(y_{k-1}-\frac{1}{L} \nabla f\left(y_{k-1}\right)\right) \\
z_{k+1} & =\left(1-\frac{\mu}{L} \delta_{k}\right) z_{k}+\frac{\mu}{L} \delta_{k}\left(y_{k}-\frac{1}{\mu} \nabla f\left(y_{k}\right)\right),
\end{aligned}
$$

for some sequences $\left\{\beta_{k}\right\},\left\{\delta_{k}\right\}$ (depending on μ, L, and k).
\diamond The worst-case guarantee matches exactly a lower complexity bound.
\diamond Worst-case guarantee of order

$$
\frac{\left\|z_{N}-z_{\star}\right\|^{2}}{\left\|z_{0}-z_{\star}\right\|^{2}}=O\left(\left(1-\sqrt{\frac{\mu}{L}}\right)^{2 N}\right)
$$

\diamond The proof is "simple"!

A few observations/limitations

Were we lucky? Some pieces are missing!

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$: information-theoretic exact method (ITEM, T \& Drori '21),

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$: information-theoretic exact method (ITEM, T \& Drori '21),
$\diamond \frac{\left\|\nabla f\left(x_{N}\right)\right\|^{2}}{f\left(x_{0}\right)-f_{\star}}$ with $\mu=0$: OGM for gradient (OGM-G, Kim \& Fessler '21).

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$: information-theoretic exact method (ITEM, T \& Drori '21),
$\diamond \frac{\left\|\nabla f\left(x_{N}\right)\right\|^{2}}{f\left(x_{0}\right)-f_{\star}}$ with $\mu=0$: OGM for gradient (OGM-G, Kim \& Fessler '21).
Relation to quadratics? When specifying f to be quadratic, similar known methods

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$: information-theoretic exact method (ITEM, T \& Drori '21),
$\diamond \frac{\left\|\nabla f\left(x_{N}\right)\right\|^{2}}{f\left(x_{0}\right)-f_{\star}}$ with $\mu=0$: OGM for gradient (OGM-G, Kim \& Fessler '21).
Relation to quadratics? When specifying f to be quadratic, similar known methods
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$ (via Chebyshev polynomials),

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$: information-theoretic exact method (ITEM, T \& Drori '21),
$\diamond \frac{\left\|\nabla f\left(x_{N}\right)\right\|^{2}}{f\left(x_{0}\right)-f_{\star}}$ with $\mu=0$: OGM for gradient (OGM-G, Kim \& Fessler '21).
Relation to quadratics? When specifying f to be quadratic, similar known methods
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$ (via Chebyshev polynomials),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ (via Chebyshev polynomials), asymptotically Polyak's Heavy-Ball

A few observations/limitations

Were we lucky? Some pieces are missing!
\diamond Why/when are optimal step-sizes $\left\{h_{i, j}^{\star}\right\}$ independent of horizon N ?
\diamond Why/when can the optimal method be expressed efficiently? (eg. using second order recursions)

The situation seems quite involved in general, apart from a few cases
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$: optimized gradient method (OGM, Kim \& Fessler '16),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$: information-theoretic exact method (ITEM, T \& Drori '21),
$\diamond \frac{\left\|\nabla f\left(x_{N}\right)\right\|^{2}}{f\left(x_{0}\right)-f_{\star}}$ with $\mu=0$: OGM for gradient (OGM-G, Kim \& Fessler '21).
Relation to quadratics? When specifying f to be quadratic, similar known methods
$\diamond \frac{f\left(x_{N}\right)-f_{\star}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ with $\mu=0$ (via Chebyshev polynomials),
$\diamond \frac{\left\|x_{N}-x_{\star}\right\|^{2}}{\left\|x_{0}-x_{\star}\right\|^{2}}$ (via Chebyshev polynomials), asymptotically Polyak's Heavy-Ball
\diamond see e.g.: A. Nemirovsky's "Information-based complexity of convex programming." (lecture notes, 1995)

A few instructive examples

Design first-order methods via PEPs:
\diamond Kim, Fessler ('16). "Optimized methods for smooth convex optimization".

A few instructive examples

Design first-order methods via PEPs:
\diamond Kim, Fessler ('16). "Optimized methods for smooth convex optimization".
\diamond Van Scoy, Freeman, Lynch ('17). "The fastest known globally convergent first-order method for minimizing strongly convex functions".

A few instructive examples

Design first-order methods via PEPs:
\diamond Kim, Fessler ('16). "Optimized methods for smooth convex optimization".
\diamond Van Scoy, Freeman, Lynch ('17). "The fastest known globally convergent first-order method for minimizing strongly convex functions".
$\diamond \operatorname{Kim}$ ('21). "Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions".

A few instructive examples

Design first-order methods via PEPs:
\diamond Kim, Fessler ('16). "Optimized methods for smooth convex optimization".
\diamond Van Scoy, Freeman, Lynch ('17). "The fastest known globally convergent first-order method for minimizing strongly convex functions".
$\diamond \operatorname{Kim}$ ('21). "Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions".
... including "brutal" examples:
\diamond Gupta, Van Parijs, Ryu ('23). "Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing Optimal Methods".

A few instructive examples

Design first-order methods via PEPs:
\diamond Kim, Fessler ('16). "Optimized methods for smooth convex optimization".
\diamond Van Scoy, Freeman, Lynch ('17). "The fastest known globally convergent first-order method for minimizing strongly convex functions".
\diamond Kim ('21). "Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions".
... including "brutal" examples:
\diamond Gupta, Van Parijs, Ryu ('23). "Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing Optimal Methods".
\diamond Grimmer ('23). "Provably faster gradient descent via long steps."
\diamond Altschuler, Parrilo ('23). "Acceleration by Stepsize Hedging I: Multi-Step Descent and the Silver Stepsize Schedule."

Example

Software

Step-size optimization

Concluding remarks

Concluding remarks

Performance estimation's philosophy

Concluding remarks

Performance estimation's philosophy
\diamond numerically allows obtaining tight bounds (rigorous baselines),

- fast prototyping
- worth checking before trying to prove a method works.

Concluding remarks

Performance estimation's philosophy
\diamond numerically allows obtaining tight bounds (rigorous baselines),

- fast prototyping
- worth checking before trying to prove a method works.
\diamond algebraic insights into proofs: principled approach,
- proofs are dual feasible points,
- proofs are linear combinations of certain specific inequalities.

Concluding remarks

Performance estimation's philosophy
\diamond numerically allows obtaining tight bounds (rigorous baselines),

- fast prototyping
- worth checking before trying to prove a method works.
\diamond algebraic insights into proofs: principled approach,
- proofs are dual feasible points,
- proofs are linear combinations of certain specific inequalities.

Byproducts:
\diamond computer-assisted design of proofs,
\diamond computer-assisted design of numerical methods,
\diamond step towards reproducible theory

- validation \& benchmark tool for proofs (also for reviews ©).

Concluding remarks

Difficulties:

Concluding remarks

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
\diamond closed-form solutions might be involved.

Concluding remarks

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
\diamond closed-form solutions might be involved.

A few open directions:

Concluding remarks

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
\diamond closed-form solutions might be involved.

A few open directions:
\diamond non-Euclidean algorithms (mirror descent-type), what

Concluding remarks

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
\diamond closed-form solutions might be involved.

A few open directions:
\diamond non-Euclidean algorithms (mirror descent-type), what
\diamond adaptative algorithms, high-order, beyond worst-cases,

Concluding remarks

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
\diamond closed-form solutions might be involved.

A few open directions:
\diamond non-Euclidean algorithms (mirror descent-type), what
\diamond adaptative algorithms, high-order, beyond worst-cases,
\diamond many open setups: bi-level optimization, multi-objective optimization, etc.

Take-home messages

Optimization can be seen as the science of proving inequalities ...including complexity bounds for numerical methods.

Powerful framework for designing methods and guarantees.

Thanks! Questions?

PerformanceEstimation/Performance-Estimation-Toolbox on Github
PerformanceEstimation/PEPit on Github

