
Constructive approaches to the analysis and design

of first-order methods for optimization

Adrien Taylor

DIPopt workshop – November 2023

François
Glineur

Julien
Hendrickx

Etienne
de Klerk

Ernest
Ryu

Carolina
Bergeling

Pontus
Giselsson

Francis
Bach

Jérôme
Bolte

Yoel
Drori

Alexandre
d’Aspremont Mathieu

Barré
Radu

Dragomir

Bryan
Van Scoy

Laurent
Lessard

Aymeric
Dieuleveut

Céline
Moucer

Baptiste
Goujaud

Sebastian
Banert

Manu
Uphadyaya Eduard

Gorbunov

Gauthier
Gidel

1

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?

2

How to show that an algorithm works?

Here: principled approach to worst-case analysis.

3

How to show that an algorithm works?

Here: principled approach to worst-case analysis.

3

Important inspiration & reference:

� Drori, and Teboulle (’14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”

First part of the presentation:

� T., Hendrickx, Glineur (’17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

� T., Hendrickx, Glineur (’17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

� T., Hendrickx, Glineur (’17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

� Goujaud, Moucer, et al. (’22). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”

Second part

� Drori, T (’20). “Efficient first-order methods for convex minimization: a
constructive approach.”

� Drori, T (’22). “On the oracle complexity of smooth strongly convex
minimization.”

� T, Drori (’23). “An optimal gradient method for smooth strongly convex
minimization.”

Informal introduction: https://francisbach.com/computer-aided-analyses/.

4

https://francisbach.com/computer-aided-analyses/

Important inspiration & reference:

� Drori, and Teboulle (’14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”

First part of the presentation:

� T., Hendrickx, Glineur (’17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

� T., Hendrickx, Glineur (’17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

� T., Hendrickx, Glineur (’17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

� Goujaud, Moucer, et al. (’22). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”

Second part

� Drori, T (’20). “Efficient first-order methods for convex minimization: a
constructive approach.”

� Drori, T (’22). “On the oracle complexity of smooth strongly convex
minimization.”

� T, Drori (’23). “An optimal gradient method for smooth strongly convex
minimization.”

Informal introduction: https://francisbach.com/computer-aided-analyses/.

4

https://francisbach.com/computer-aided-analyses/

Important inspiration & reference:

� Drori, and Teboulle (’14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”

First part of the presentation:

� T., Hendrickx, Glineur (’17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

� T., Hendrickx, Glineur (’17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

� T., Hendrickx, Glineur (’17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

� Goujaud, Moucer, et al. (’22). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”

Second part

� Drori, T (’20). “Efficient first-order methods for convex minimization: a
constructive approach.”

� Drori, T (’22). “On the oracle complexity of smooth strongly convex
minimization.”

� T, Drori (’23). “An optimal gradient method for smooth strongly convex
minimization.”

Informal introduction: https://francisbach.com/computer-aided-analyses/.

4

https://francisbach.com/computer-aided-analyses/

Example: minimize differentiable f : Rd → R:

x? = arg min
x∈Rd

f (x),

where f is L-smooth and µ-strongly convex (0 6 µ 6 L <∞).

Use gradient descent:
xk+1 = xk − h∇f (xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖ be?

5

Example: minimize differentiable f : Rd → R:

x? = arg min
x∈Rd

f (x),

where f is L-smooth and µ-strongly convex (0 6 µ 6 L <∞).

Use gradient descent:
xk+1 = xk − h∇f (xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖ be?

5

Example: minimize differentiable f : Rd → R:

x? = arg min
x∈Rd

f (x),

where f is L-smooth and µ-strongly convex (0 6 µ 6 L <∞).

Use gradient descent:
xk+1 = xk − h∇f (xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖ be?

5

Example: minimize differentiable f : Rd → R:

x? = arg min
x∈Rd

f (x),

where f is L-smooth and µ-strongly convex (0 6 µ 6 L <∞).

Use gradient descent:
xk+1 = xk − h∇f (xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖ be?

5

About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.

6

About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.

6

About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.

6

About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.

6

About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.

6

About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.

6

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2

= ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2

y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2

y if 0 6 h 6 2
L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

'

&

$

%

Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk); xk − x?〉+ h2‖∇f (xk)‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk)‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.

7

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

8

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Acceleration/optimal methods by optimizing worst-cases.

9

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Acceleration/optimal methods by optimizing worst-cases.

9

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Acceleration/optimal methods by optimizing worst-cases.

9

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Acceleration/optimal methods by optimizing worst-cases.

9

Example

Software

Step-size optimization

Concluding remarks

10

Example

Software

Step-size optimization

Concluding remarks

11

Convergence rate of a gradient step

'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?;

parameters: µ, L, h.

12

Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12

Sampled version

� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

13

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

13

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

13

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.
� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

13

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.
� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

13

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.
� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

13

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

14

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

14

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

14

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

14

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)
∥∥x? − x0 − 1

L
(g? − g0)

∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)
∥∥x0 − x? − 1

L
(g0 − g?)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

15

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)
∥∥x? − x0 − 1

L
(g? − g0)

∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)
∥∥x0 − x? − 1

L
(g0 − g?)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

15

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)
∥∥x? − x0 − 1

L
(g? − g0)

∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)
∥∥x0 − x? − 1

L
(g0 − g?)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

15

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − hg0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)
∥∥x? − x0 − 1

L
(g? − g0)

∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)
∥∥x0 − x? − 1

L
(g0 − g?)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

15

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

G1,1

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

G1,1

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

G1,1

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

16

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of h.

−1 0 1 2 3
0

1

2

3

4

step-size h

‖x1−x?‖2
‖x0−x?‖2

� Observation: numerics match max{(1− hL)2, (1− hµ)2}.
� We recover the celebrated 2

L+µ
as the optimal step-size.

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of h.

−1 0 1 2 3
0

1

2

3

4

step-size h

‖x1−x?‖2
‖x0−x?‖2

� Observation: numerics match max{(1− hL)2, (1− hµ)2}.
� We recover the celebrated 2

L+µ
as the optimal step-size.

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of h.

−1 0 1 2 3
0

1

2

3

4

step-size h

‖x1−x?‖2
‖x0−x?‖2

� Observation: numerics match max{(1− hL)2, (1− hµ)2}.

� We recover the celebrated 2
L+µ

as the optimal step-size.

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of h.

−1 0 1 2 3
0

1

2

3

4

step-size h

‖x1−x?‖2
‖x0−x?‖2

� Observation: numerics match max{(1− hL)2, (1− hµ)2}.
� We recover the celebrated 2

L+µ
as the optimal step-size.

17

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~ww

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

18

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~ww

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

18

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~ww

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

18

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~ww

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

18

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~ww

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

18

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~w�

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓) : hence “m”.

18

Dual solutions

Fix L = 1, µ = .1 and solve the dual SDP for a few values of h.

−1 0 1 2 3
0

5

10

Step size h

D
ua
lv

al
ue
s
(λ

1
an
d
λ

2
)

λ1

λ2

Numerics match λ1 = λ2 = 2|h|ρ(h) with ρ(h) = max{hL− 1, 1− hµ}.

19

Dual solutions

Fix L = 1, µ = .1 and solve the dual SDP for a few values of h.

−1 0 1 2 3
0

5

10

Step size h

D
ua
lv

al
ue
s
(λ

1
an
d
λ

2
)

λ1

λ2

Numerics match λ1 = λ2 = 2|h|ρ(h) with ρ(h) = max{hL− 1, 1− hµ}.

19

Dual solutions

Fix L = 1, µ = .1 and solve the dual SDP for a few values of h.

−1 0 1 2 3
0

5

10

Step size h

D
ua
lv

al
ue
s
(λ

1
an
d
λ

2
)

λ1

λ2

Numerics match λ1 = λ2 = 2|h|ρ(h) with ρ(h) = max{hL− 1, 1− hµ}.

19

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1

= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2

= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1

= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2

= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1

= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2

= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2

(tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2

(tight).

20

Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).

20

What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).

− proof via linear combinations of interpolation inequalities (evaluated at
the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?

21

What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).

− proof via linear combinations of interpolation inequalities (evaluated at
the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?

21

What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).

− proof via linear combinations of interpolation inequalities (evaluated at
the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?

21

What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).

− proof via linear combinations of interpolation inequalities (evaluated at
the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?

21

What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).
− proof via linear combinations of interpolation inequalities (evaluated at

the iterates and x?),
− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?

21

What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).
− proof via linear combinations of interpolation inequalities (evaluated at

the iterates and x?),
− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?

21

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G and F ,

� interpolation inequalities are linear in G and F ,

� algorithm can be described linearly in G and F .

22

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G and F ,

� interpolation inequalities are linear in G and F ,

� algorithm can be described linearly in G and F .

22

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G and F ,

� interpolation inequalities are linear in G and F ,

� algorithm can be described linearly in G and F .

22

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G and F ,

� interpolation inequalities are linear in G and F ,

� algorithm can be described linearly in G and F .

22

What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.

23

What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.

23

What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.

23

What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.

23

What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.

23

What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.

23

Example

Software

Step-size optimization

Concluding remarks

24

Avoiding semidefinite programming modeling steps?

Baptiste
Goujaud

Céline
Moucer

Aymeric
Dieuleveut

Julien
Hendrickx

François
Glineur

� Matlab version: Performance Estimation Toolbox (PESTO) available at

github.com/PerformanceEstimation/Performance-Estimation-
Toolbox

� Python version: PEPit available at

github.com/PerformanceEstimation/PEPit/

Packages contain more than 75 examples!

25

Avoiding semidefinite programming modeling steps?

Baptiste
Goujaud

Céline
Moucer

Aymeric
Dieuleveut

Julien
Hendrickx

François
Glineur

� Matlab version: Performance Estimation Toolbox (PESTO) available at

github.com/PerformanceEstimation/Performance-Estimation-
Toolbox

� Python version: PEPit available at

github.com/PerformanceEstimation/PEPit/

Packages contain more than 75 examples!

25

A few examples

Algorithms for solving:
min
x

f (x)

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov’s acceleration

� in terms of worst-cases f (xk)−f (x?)
‖x0−x?‖2

,

� in terms of worst-cases ‖∇f (xk)‖2
‖x0−x?‖2

,

� in terms of worst-cases min06i6k
‖∇f (xi)‖2
‖x0−x?‖2

.

26

A few examples

Algorithms for solving:
min
x

f (x)

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov’s acceleration

� in terms of worst-cases f (xk)−f (x?)
‖x0−x?‖2

,

� in terms of worst-cases ‖∇f (xk)‖2
‖x0−x?‖2

,

� in terms of worst-cases min06i6k
‖∇f (xi)‖2
‖x0−x?‖2

.

26

A few examples

Algorithms for solving:
min
x

f (x)

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov’s acceleration

� in terms of worst-cases f (xk)−f (x?)
‖x0−x?‖2

,

� in terms of worst-cases ‖∇f (xk)‖2
‖x0−x?‖2

,

� in terms of worst-cases min06i6k
‖∇f (xi)‖2
‖x0−x?‖2

.

26

A few examples

Algorithms for solving:
min
x

f (x)

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov’s acceleration

� in terms of worst-cases f (xk)−f (x?)
‖x0−x?‖2

,

� in terms of worst-cases ‖∇f (xk)‖2
‖x0−x?‖2

,

� in terms of worst-cases min06i6k
‖∇f (xi)‖2
‖x0−x?‖2

.

26

A few examples

Algorithms for solving:
min
x

f (x)

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov’s acceleration

� in terms of worst-cases f (xk)−f (x?)
‖x0−x?‖2

,

� in terms of worst-cases ‖∇f (xk)‖2
‖x0−x?‖2

,

� in terms of worst-cases min06i6k
‖∇f (xi)‖2
‖x0−x?‖2

.

26

A few examples

Proximal point algorithm for (maximal) monotone inclusion:

find x : 0 ∈ A(x)

with A : Rd → 2R
d
maximal monotone.

What is the worst-case ‖xk+1−xk‖2

‖x0−x?‖2
when xi+1 = JA(xi)?

27

A few examples

Proximal point algorithm for (maximal) monotone inclusion:

find x : 0 ∈ A(x)

with A : Rd → 2R
d
maximal monotone.

What is the worst-case ‖xk+1−xk‖2

‖x0−x?‖2
when xi+1 = JA(xi)?

27

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

28

Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

29

Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

29

Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

29

Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

29

Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

29

Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?

29

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

30

A few instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (’20). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (’19). “Optimal nonergodic sublinear convergence rate of the proximal
point algorithm for maximal monotone inclusion problems”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (’21). “The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions”.

� Rotaru, Glineur, Patrinos (’22). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Applications to distributed optimization:

� Sundararajan, Van Scoy, Lessard (’19). “Analysis and design of first-order
distributed optimization algorithms over time-varying graphs.”

� Colla, Hendrickx (’23). “Automatic performance estimation for decentralized
optimization.”

31

A few instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (’20). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (’19). “Optimal nonergodic sublinear convergence rate of the proximal
point algorithm for maximal monotone inclusion problems”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (’21). “The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions”.

� Rotaru, Glineur, Patrinos (’22). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Applications to distributed optimization:

� Sundararajan, Van Scoy, Lessard (’19). “Analysis and design of first-order
distributed optimization algorithms over time-varying graphs.”

� Colla, Hendrickx (’23). “Automatic performance estimation for decentralized
optimization.”

31

A few instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (’20). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (’19). “Optimal nonergodic sublinear convergence rate of the proximal
point algorithm for maximal monotone inclusion problems”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (’21). “The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions”.

� Rotaru, Glineur, Patrinos (’22). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Applications to distributed optimization:

� Sundararajan, Van Scoy, Lessard (’19). “Analysis and design of first-order
distributed optimization algorithms over time-varying graphs.”

� Colla, Hendrickx (’23). “Automatic performance estimation for decentralized
optimization.”

31

A few instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (’20). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (’19). “Optimal nonergodic sublinear convergence rate of the proximal
point algorithm for maximal monotone inclusion problems”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (’21). “The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions”.

� Rotaru, Glineur, Patrinos (’22). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Applications to distributed optimization:

� Sundararajan, Van Scoy, Lessard (’19). “Analysis and design of first-order
distributed optimization algorithms over time-varying graphs.”

� Colla, Hendrickx (’23). “Automatic performance estimation for decentralized
optimization.”

31

A few instructive examples—shameless advertisement

Applications to mirror descent + lower complexity bound

� Dragomir, T., d’Aspremont, Bolte (’21). “Optimal complexity and certification
of Bregman first-order methods.”

Applications to adaptive methods

� Barré, T., d’Aspremont (’20). “Complexity Guarantees for Polyak Steps with
Momentum.”

� Das Gupta, Freund, Sun, T (’23). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses.”

Lyapunov functions (compact proofs) & counter-examples

� Lessard, Recht, Packard (’16). “Analysis and design of optimization algorithms
via integral quadratic constraints.”

� T, Bach (’19). “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions.”

� Upadhyaya, Banert, T, Giselsson (’23). “Automated tight Lyapunov analysis for
first-order methods.”

� Goujaud, Dieuleveut, T (’23). “Counter-examples in first-order optimization: a
constructive approach.”

32

A few instructive examples—shameless advertisement

Applications to mirror descent + lower complexity bound

� Dragomir, T., d’Aspremont, Bolte (’21). “Optimal complexity and certification
of Bregman first-order methods.”

Applications to adaptive methods

� Barré, T., d’Aspremont (’20). “Complexity Guarantees for Polyak Steps with
Momentum.”

� Das Gupta, Freund, Sun, T (’23). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses.”

Lyapunov functions (compact proofs) & counter-examples

� Lessard, Recht, Packard (’16). “Analysis and design of optimization algorithms
via integral quadratic constraints.”

� T, Bach (’19). “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions.”

� Upadhyaya, Banert, T, Giselsson (’23). “Automated tight Lyapunov analysis for
first-order methods.”

� Goujaud, Dieuleveut, T (’23). “Counter-examples in first-order optimization: a
constructive approach.”

32

A few instructive examples—shameless advertisement

Applications to mirror descent + lower complexity bound

� Dragomir, T., d’Aspremont, Bolte (’21). “Optimal complexity and certification
of Bregman first-order methods.”

Applications to adaptive methods

� Barré, T., d’Aspremont (’20). “Complexity Guarantees for Polyak Steps with
Momentum.”

� Das Gupta, Freund, Sun, T (’23). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses.”

Lyapunov functions (compact proofs) & counter-examples

� Lessard, Recht, Packard (’16). “Analysis and design of optimization algorithms
via integral quadratic constraints.”

� T, Bach (’19). “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions.”

� Upadhyaya, Banert, T, Giselsson (’23). “Automated tight Lyapunov analysis for
first-order methods.”

� Goujaud, Dieuleveut, T (’23). “Counter-examples in first-order optimization: a
constructive approach.”

32

Poster

Nizar
Bousselmi Julien

Hendrickx
François
Glineur

→ Bousselmi, Hendrickx, Glineur (’23). “Interpolation Conditions for Linear
Operators and applications to Performance Estimation Problems.”

33

Example

Software

Step-size optimization

Concluding remarks

34

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)
x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)
x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)
x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)
x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)
x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?
� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)
x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?
� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.

35

Design problem

How to solve the design problem (or proxy of it)?

min
{hi,j}

max
f∈F

‖xN − x?‖2

‖x0 − x?‖2

� brutal approaches
− Das Gupta, Van Parys, Ryu (’23) “Branch-and-bound performance

estimation programming: A unified methodology for constructing optimal
optimization methods.”

� convex relaxations,

� analogies (e.g., with conjugate gradient methods).

36

Design problem

How to solve the design problem (or proxy of it)?

min
{hi,j}

max
f∈F

‖xN − x?‖2

‖x0 − x?‖2

� brutal approaches
− Das Gupta, Van Parys, Ryu (’23) “Branch-and-bound performance

estimation programming: A unified methodology for constructing optimal
optimization methods.”

� convex relaxations,

� analogies (e.g., with conjugate gradient methods).

36

Design problem

How to solve the design problem (or proxy of it)?

min
{hi,j}

max
f∈F

‖xN − x?‖2

‖x0 − x?‖2

� brutal approaches
− Das Gupta, Van Parys, Ryu (’23) “Branch-and-bound performance

estimation programming: A unified methodology for constructing optimal
optimization methods.”

� convex relaxations,

� analogies (e.g., with conjugate gradient methods).

36

Design problem

How to solve the design problem (or proxy of it)?

min
{hi,j}

max
f∈F

‖xN − x?‖2

‖x0 − x?‖2

� brutal approaches
− Das Gupta, Van Parys, Ryu (’23) “Branch-and-bound performance

estimation programming: A unified methodology for constructing optimal
optimization methods.”

� convex relaxations,

� analogies (e.g., with conjugate gradient methods).

36

Primal problem (N = 1)

Recall primal problem, with step-size optimization

min
h1,0

max
G , F

G1,1 + h2
1,0G2,2 − 2h1,0G1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0.

“Simple” minimization problem by dualizing inner maximization.

Dualize inner maximization → minmin.

37

Primal problem (N = 1)

Recall primal problem, with step-size optimization

min
h1,0

max
G , F

G1,1 + h2
1,0G2,2 − 2h1,0G1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0.

“Simple” minimization problem by dualizing inner maximization.

Dualize inner maximization → minmin.

37

Primal problem (N = 1)

Recall primal problem, with step-size optimization

min
h1,0

max
G , F

G1,1 + h2
1,0G2,2 − 2h1,0G1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0.

“Simple” minimization problem by dualizing inner maximization.

Dualize inner maximization → minmin.

37

Primal problem (N = 1)

Recall primal problem, with step-size optimization

min
h1,0

max
G , F

G1,1 + h2
1,0G2,2 − 2h1,0G1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0.

“Simple” minimization problem by dualizing inner maximization.

Dualize inner maximization → minmin.

37

Optimizing the step-sizes (N = 1)

For N = 1, optimizing over step-size h1,0 remains convex!

Indeed:

min
τ,λ>0

,h1,0

τ

subject to

[
τ − 1+ λLµ

L−µ h1,0 − λ(µ+L)
2(L−µ)

h1,0 − λ(µ+L)
2(L−µ)

λ
L−µ − h2

1,0

]
< 0.

Optimize h1,0 “for free” (linear SDP via Schur complement):

min
τ,λ>0

,h1,0

τ

subject to

τ − 1+ λLµ
L−µ −λ(µ+L)

2(L−µ) 1

−λ(µ+L)
2(L−µ)

λ
L−µ −h1,0

1 −h1,0 1

 < 0.

38

Optimizing the step-sizes (N = 1)
For N = 1, optimizing over step-size h1,0 remains convex!

Indeed:

min
τ,λ>0

,h1,0

τ

subject to

[
τ − 1+ λLµ

L−µ h1,0 − λ(µ+L)
2(L−µ)

h1,0 − λ(µ+L)
2(L−µ)

λ
L−µ − h2

1,0

]
< 0.

Optimize h1,0 “for free” (linear SDP via Schur complement):

min
τ,λ>0

,h1,0

τ

subject to

τ − 1+ λLµ
L−µ −λ(µ+L)

2(L−µ) 1

−λ(µ+L)
2(L−µ)

λ
L−µ −h1,0

1 −h1,0 1

 < 0.

38

Optimizing the step-sizes (N = 1)
For N = 1, optimizing over step-size h1,0 remains convex!

Indeed:

min
τ,λ>0

,h1,0

τ

subject to

[
τ − 1+ λLµ

L−µ h1,0 − λ(µ+L)
2(L−µ)

h1,0 − λ(µ+L)
2(L−µ)

λ
L−µ − h2

1,0

]
< 0.

Optimize h1,0 “for free” (linear SDP via Schur complement):

min
τ,λ>0

,h1,0

τ

subject to

τ − 1+ λLµ
L−µ −λ(µ+L)

2(L−µ) 1

−λ(µ+L)
2(L−µ)

λ
L−µ −h1,0

1 −h1,0 1

 < 0.

38

Optimizing the step-sizes (N = 1)
For N = 1, optimizing over step-size h1,0 remains convex!

Indeed:

min
τ,λ>0,h1,0

τ

subject to

[
τ − 1+ λLµ

L−µ h1,0 − λ(µ+L)
2(L−µ)

h1,0 − λ(µ+L)
2(L−µ)

λ
L−µ − h2

1,0

]
< 0.

Optimize h1,0 “for free” (linear SDP via Schur complement):

min
τ,λ>0,h1,0

τ

subject to

τ − 1+ λLµ
L−µ −λ(µ+L)

2(L−µ) 1

−λ(µ+L)
2(L−µ)

λ
L−µ −h1,0

1 −h1,0 1

 < 0.

38

Optimizing the step-sizes (N = 1)
For N = 1, optimizing over step-size h1,0 remains convex!

Indeed:

min
τ,λ>0,h1,0

τ

subject to

[
τ − 1+ λLµ

L−µ h1,0 − λ(µ+L)
2(L−µ)

h1,0 − λ(µ+L)
2(L−µ)

λ
L−µ − h2

1,0

]
< 0.

Optimize h1,0 “for free” (linear SDP via Schur complement):

min
τ,λ>0,h1,0

τ

subject to

τ − 1+ λLµ
L−µ −λ(µ+L)

2(L−µ) 1

−λ(µ+L)
2(L−µ)

λ
L−µ −h1,0

1 −h1,0 1

 < 0.

38

Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ, λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.

39

Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ, λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.

39

Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ, λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.

39

Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ , λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.

39

Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ , λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.

39

Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ , λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.

39

Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we reach ‖x1−x?‖2
‖x0−x?‖2

6 0.6694 with step-sizes

[h?i,j] =
[
1.8182

]
.

� For N = 2, we reach ‖x2−x?‖2
‖x0−x?‖2

6 0.3769 with

[h?i,j] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we reach ‖x3−x?‖2
‖x0−x?‖2

6 0.1932 with

[h?i,j] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .
� For N = 4, we reach ‖x4−x?‖2

‖x0−x?‖2
6 0.0944 with

[h?i,j] =

1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .

40

Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we reach ‖x1−x?‖2
‖x0−x?‖2

6 0.6694 with step-sizes

[h?i,j] =
[
1.8182

]
.

� For N = 2, we reach ‖x2−x?‖2
‖x0−x?‖2

6 0.3769 with

[h?i,j] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we reach ‖x3−x?‖2
‖x0−x?‖2

6 0.1932 with

[h?i,j] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .
� For N = 4, we reach ‖x4−x?‖2

‖x0−x?‖2
6 0.0944 with

[h?i,j] =

1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .

40

Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we reach ‖x1−x?‖2
‖x0−x?‖2

6 0.6694 with step-sizes

[h?i,j] =
[
1.8182

]
.

� For N = 2, we reach ‖x2−x?‖2
‖x0−x?‖2

6 0.3769 with

[h?i,j] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we reach ‖x3−x?‖2
‖x0−x?‖2

6 0.1932 with

[h?i,j] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .
� For N = 4, we reach ‖x4−x?‖2

‖x0−x?‖2
6 0.0944 with

[h?i,j] =

1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .

40

Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we reach ‖x1−x?‖2
‖x0−x?‖2

6 0.6694 with step-sizes

[h?i,j] =
[
1.8182

]
.

� For N = 2, we reach ‖x2−x?‖2
‖x0−x?‖2

6 0.3769 with

[h?i,j] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we reach ‖x3−x?‖2
‖x0−x?‖2

6 0.1932 with

[h?i,j] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .

� For N = 4, we reach ‖x4−x?‖2
‖x0−x?‖2

6 0.0944 with

[h?i,j] =

1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .

40

Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we reach ‖x1−x?‖2
‖x0−x?‖2

6 0.6694 with step-sizes

[h?i,j] =
[
1.8182

]
.

� For N = 2, we reach ‖x2−x?‖2
‖x0−x?‖2

6 0.3769 with

[h?i,j] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we reach ‖x3−x?‖2
‖x0−x?‖2

6 0.1932 with

[h?i,j] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .
� For N = 4, we reach ‖x4−x?‖2

‖x0−x?‖2
6 0.0944 with

[h?i,j] =

1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .

40

Numerical examples II
What about different performance measure? Example f (xN)−f?

f (x0)−f?
and L = 1, µ = .1.

� For N = 1, we obtain f (x1)−f?
f (x0)−f?

6 0.6694 with step-size

[hi,j] =
[
1.8182

]
.

� For N = 2, we obtain f (x2)−f?
f (x0)−f?

6 0.3554 with

[hi,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (x3)−f?
f (x0)−f?

6 0.1698 with

[hi,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .
� For N = 4, we obtain f (x4)−f?

f (x0)−f?
6 0.0789 with

[hi,j] =

1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .

41

Numerical examples II
What about different performance measure? Example f (xN)−f?

f (x0)−f?
and L = 1, µ = .1.

� For N = 1, we obtain f (x1)−f?
f (x0)−f?

6 0.6694 with step-size

[hi,j] =
[
1.8182

]
.

� For N = 2, we obtain f (x2)−f?
f (x0)−f?

6 0.3554 with

[hi,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (x3)−f?
f (x0)−f?

6 0.1698 with

[hi,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .
� For N = 4, we obtain f (x4)−f?

f (x0)−f?
6 0.0789 with

[hi,j] =

1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .

41

Numerical examples II
What about different performance measure? Example f (xN)−f?

f (x0)−f?
and L = 1, µ = .1.

� For N = 1, we obtain f (x1)−f?
f (x0)−f?

6 0.6694 with step-size

[hi,j] =
[
1.8182

]
.

� For N = 2, we obtain f (x2)−f?
f (x0)−f?

6 0.3554 with

[hi,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (x3)−f?
f (x0)−f?

6 0.1698 with

[hi,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .
� For N = 4, we obtain f (x4)−f?

f (x0)−f?
6 0.0789 with

[hi,j] =

1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .

41

Numerical examples II
What about different performance measure? Example f (xN)−f?

f (x0)−f?
and L = 1, µ = .1.

� For N = 1, we obtain f (x1)−f?
f (x0)−f?

6 0.6694 with step-size

[hi,j] =
[
1.8182

]
.

� For N = 2, we obtain f (x2)−f?
f (x0)−f?

6 0.3554 with

[hi,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (x3)−f?
f (x0)−f?

6 0.1698 with

[hi,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .

� For N = 4, we obtain f (x4)−f?
f (x0)−f?

6 0.0789 with

[hi,j] =

1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .

41

Numerical examples II
What about different performance measure? Example f (xN)−f?

f (x0)−f?
and L = 1, µ = .1.

� For N = 1, we obtain f (x1)−f?
f (x0)−f?

6 0.6694 with step-size

[hi,j] =
[
1.8182

]
.

� For N = 2, we obtain f (x2)−f?
f (x0)−f?

6 0.3554 with

[hi,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (x3)−f?
f (x0)−f?

6 0.1698 with

[hi,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .
� For N = 4, we obtain f (x4)−f?

f (x0)−f?
6 0.0789 with

[hi,j] =

1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .

41

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM
FGM

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM
FGM
Optimized method

42

Numerical examples III

Worst-case performance f (xN)−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration N

f
(x

N
)−

f ?
‖x

0
−
x ?
‖2

TMM
FGM
Optimized method
Lower bound

42

Analytical solutions

� It turns out that for ‖xN−x?‖2
‖x0−x?‖2

, we can also solve the minimax in closed-form.

� The method referred to as “Information-Theoretic Exact Method” (ITEM)

yk = (1− βk)zk + βk

(
yk−1 −

1
L
∇f (yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
∇f (yk)

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� The proof is “simple”!

43

Analytical solutions

� It turns out that for ‖xN−x?‖2
‖x0−x?‖2

, we can also solve the minimax in closed-form.

� The method referred to as “Information-Theoretic Exact Method” (ITEM)

yk = (1− βk)zk + βk

(
yk−1 −

1
L
∇f (yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
∇f (yk)

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� The proof is “simple”!

43

Analytical solutions

� It turns out that for ‖xN−x?‖2
‖x0−x?‖2

, we can also solve the minimax in closed-form.

� The method referred to as “Information-Theoretic Exact Method” (ITEM)

yk = (1− βk)zk + βk

(
yk−1 −

1
L
∇f (yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
∇f (yk)

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� The proof is “simple”!

43

Analytical solutions

� It turns out that for ‖xN−x?‖2
‖x0−x?‖2

, we can also solve the minimax in closed-form.

� The method referred to as “Information-Theoretic Exact Method” (ITEM)

yk = (1− βk)zk + βk

(
yk−1 −

1
L
∇f (yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
∇f (yk)

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� The proof is “simple”!

43

Analytical solutions

� It turns out that for ‖xN−x?‖2
‖x0−x?‖2

, we can also solve the minimax in closed-form.

� The method referred to as “Information-Theoretic Exact Method” (ITEM)

yk = (1− βk)zk + βk

(
yk−1 −

1
L
∇f (yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
∇f (yk)

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� The proof is “simple”!

43

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

44

A few instructive examples

Design first-order methods via PEPs:

� Kim, Fessler (’16). “Optimized methods for smooth convex optimization”.

� Van Scoy, Freeman, Lynch (’17). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

� Kim (’21). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

... including “brutal” examples:

� Gupta, Van Parijs, Ryu (’23). “Branch-and-Bound Performance Estimation
Programming: A Unified Methodology for Constructing Optimal Methods”.

� Grimmer (’23). “Provably faster gradient descent via long steps.”

� Altschuler, Parrilo (’23). “Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule.”

45

A few instructive examples

Design first-order methods via PEPs:

� Kim, Fessler (’16). “Optimized methods for smooth convex optimization”.

� Van Scoy, Freeman, Lynch (’17). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

� Kim (’21). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

... including “brutal” examples:

� Gupta, Van Parijs, Ryu (’23). “Branch-and-Bound Performance Estimation
Programming: A Unified Methodology for Constructing Optimal Methods”.

� Grimmer (’23). “Provably faster gradient descent via long steps.”

� Altschuler, Parrilo (’23). “Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule.”

45

A few instructive examples

Design first-order methods via PEPs:

� Kim, Fessler (’16). “Optimized methods for smooth convex optimization”.

� Van Scoy, Freeman, Lynch (’17). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

� Kim (’21). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

... including “brutal” examples:

� Gupta, Van Parijs, Ryu (’23). “Branch-and-Bound Performance Estimation
Programming: A Unified Methodology for Constructing Optimal Methods”.

� Grimmer (’23). “Provably faster gradient descent via long steps.”

� Altschuler, Parrilo (’23). “Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule.”

45

A few instructive examples

Design first-order methods via PEPs:

� Kim, Fessler (’16). “Optimized methods for smooth convex optimization”.

� Van Scoy, Freeman, Lynch (’17). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

� Kim (’21). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

... including “brutal” examples:

� Gupta, Van Parijs, Ryu (’23). “Branch-and-Bound Performance Estimation
Programming: A Unified Methodology for Constructing Optimal Methods”.

� Grimmer (’23). “Provably faster gradient descent via long steps.”

� Altschuler, Parrilo (’23). “Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule.”

45

A few instructive examples

Design first-order methods via PEPs:

� Kim, Fessler (’16). “Optimized methods for smooth convex optimization”.

� Van Scoy, Freeman, Lynch (’17). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

� Kim (’21). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

... including “brutal” examples:

� Gupta, Van Parijs, Ryu (’23). “Branch-and-Bound Performance Estimation
Programming: A Unified Methodology for Constructing Optimal Methods”.

� Grimmer (’23). “Provably faster gradient descent via long steps.”

� Altschuler, Parrilo (’23). “Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule.”

45

Example

Software

Step-size optimization

Concluding remarks

46

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),
− fast prototyping
− worth checking before trying to prove a method works.

� algebraic insights into proofs: principled approach,
− proofs are dual feasible points,
− proofs are linear combinations of certain specific inequalities.

Byproducts:

� computer-assisted design of proofs,

� computer-assisted design of numerical methods,

� step towards reproducible theory
− validation & benchmark tool for proofs (also for reviews ,).

47

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),
− fast prototyping
− worth checking before trying to prove a method works.

� algebraic insights into proofs: principled approach,
− proofs are dual feasible points,
− proofs are linear combinations of certain specific inequalities.

Byproducts:

� computer-assisted design of proofs,

� computer-assisted design of numerical methods,

� step towards reproducible theory
− validation & benchmark tool for proofs (also for reviews ,).

47

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),
− fast prototyping
− worth checking before trying to prove a method works.

� algebraic insights into proofs: principled approach,
− proofs are dual feasible points,
− proofs are linear combinations of certain specific inequalities.

Byproducts:

� computer-assisted design of proofs,

� computer-assisted design of numerical methods,

� step towards reproducible theory
− validation & benchmark tool for proofs (also for reviews ,).

47

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),
− fast prototyping
− worth checking before trying to prove a method works.

� algebraic insights into proofs: principled approach,
− proofs are dual feasible points,
− proofs are linear combinations of certain specific inequalities.

Byproducts:

� computer-assisted design of proofs,

� computer-assisted design of numerical methods,

� step towards reproducible theory
− validation & benchmark tool for proofs (also for reviews ,).

47

Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.

48

Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.

48

Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.

48

Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.

48

Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.

48

Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.

48

Take-home messages

Optimization can be seen as the science of proving inequalities

...including complexity bounds for numerical methods.

Powerful framework for designing methods and guarantees.

49

Thanks! Questions?
PerformanceEstimation/Performance-Estimation-Toolbox on Github

PerformanceEstimation/PEPit on Github

	Example
	Software
	Step-size optimization
	Concluding remarks

