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Many optimization schemes: usages depend on application requirements
(target precision, time budget, memory budget,...).

Can we predict their behaviors?

“Time”

“E
rr
or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?
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How to show that an algorithm works?

Here: principled approach to worst-case analysis.
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Important inspiration & reference:

� Drori, and Teboulle (’14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”

First part of the presentation:

� T., Hendrickx, Glineur (’17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

� T., Hendrickx, Glineur (’17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

� T., Hendrickx, Glineur (’17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

� Goujaud, Moucer, et al. (’22). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”

Second part

� Drori, T (’20). “Efficient first-order methods for convex minimization: a
constructive approach.”

� Drori, T (’22). “On the oracle complexity of smooth strongly convex
minimization.”

� T, Drori (’23). “An optimal gradient method for smooth strongly convex
minimization.”

Informal introduction: https://francisbach.com/computer-aided-analyses/.
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Example: minimize differentiable f : Rd → R:

x? = arg min
x∈Rd

f (x),

where f is L-smooth and µ-strongly convex (0 6 µ 6 L <∞).

Use gradient descent:
xk+1 = xk − h∇f (xk ).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖ be?
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About the assumptions
A differentiable function f : Rd → R is µ-strongly convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2,

(1&2) 〈∇f (x)−∇f (y); x − y〉 > 1
L+µ
‖∇f (x)−∇f (y)‖2 + µL

L+µ
‖x − y‖2.
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Toy example, take I: find τ such that:

‖xk+1 − x?‖2 6 τ‖xk − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� xk+1 generated by gradient step xk+1 = xk − h∇f (xk ),
� x? = argmin

x
f (x).

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2h〈∇f (xk ); xk − x?〉+ h2‖∇f (xk )‖2y inequality (1&2)

6
(
1− 2γLµ

L+µ

)
‖xk − x?‖2 + h

(
h − 2

L+µ

)
‖∇f (xk )‖2y if 0 6 h 6 2

L+µ

6 (1− hµ)2‖xk − x?‖2.
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Legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?
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Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Acceleration/optimal methods by optimizing worst-cases.
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Convergence rate of a gradient step
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Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?;

parameters: µ, L, h.

12



Convergence rate of a gradient step'

&

$

%

Toy example, take II: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h∇f (x0),
� x? = argmin

x
f (x)?

First: let’s compute τ !

τ(µ, L, h) = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h.

12



Sampled version

� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h∇f (x0)
∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ?
gi = ∇f (xi ) i = 0, ?

x1 = x0 − hg0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.
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Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj )

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.
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Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ?
gi = ∇f (xi ) i = 0, ?

x1 = x0 − hg0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)
∥∥x? − x0 − 1

L
(g? − g0)

∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)
∥∥x0 − x? − 1

L
(g0 − g?)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.
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Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h2G2,2 − 2hG1,2

G1,1

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.
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Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of h.

−1 0 1 2 3
0

1

2

3

4

step-size h

‖x1−x?‖2
‖x0−x?‖2

� Observation: numerics match max{(1− hL)2, (1− hµ)2}.
� We recover the celebrated 2

L+µ
as the optimal step-size.
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Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1+ λ1Lµ

L−µ h − λ1(µ+L)
2(L−µ)

h − λ1(µ+L)
2(L−µ)

λ1
L−µ − h2

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

 

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h∇f (x0).~ww

∃λ > 0 :

[
τ − 1+ λLµ

L−µ h − λ(µ+L)
2(L−µ)

h − λ(µ+L)
2(L−µ)

λ
L−µ − h2

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.
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Dual solutions

Fix L = 1, µ = .1 and solve the dual SDP for a few values of h.
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Numerics match λ1 = λ2 = 2|h|ρ(h) with ρ(h) = max{hL− 1, 1− hµ}.
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Recovering a “standard” proof

Gradient with h = 1
L
. Perform weighted sum of two inequalities

f0 > f? + 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ1

= 2h(1− µh)

f? > f0 +〈∇f (x0), x? − x0〉+ 1
2L‖∇f (x0)‖

2

+ µ
2(1−µ/L)

∥∥x0 − x? − 1
L
∇f (x0)

∥∥2 : λ2

= 2h(1− µh)

with λ1, λ2 > 0. Weighted sum can be reformulated as

‖x1 − x?‖2 6 (1− µh)2 ‖x0 − x?‖2 − h
2− h(L+ µ)

L− µ
‖µ(x0 − x?)−∇f (x0)‖2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− µh)2 ‖x0 − x?‖2,

leading to ‖x1 − x?‖2 6 (1− µ
L
)2‖x0 − x?‖2 (tight).
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What did we do, so far?

Summary:

� we computed the smallest τ(µ, L, h) such that

‖x1 − x?‖2 6 τ(µ, L, h) ‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h∇f (x0).

� Feasible points to primal SDP correspond to lower bounds on τ(µ, L, h).

� Feasible points to dual SDP correspond to upper bounds on τ(µ, L, h).

− proof via linear combinations of interpolation inequalities (evaluated at
the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

... what happens beyond gradient descent for smooth strongly convex minimization?
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When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G and F ,

� interpolation inequalities are linear in G and F ,

� algorithm can be described linearly in G and F .
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What’s next?

� More iterations?

� Other types of problems?
Non-smooth convex functions, non-convex smooth functions, indicator
functions, monotone operators, etc.

� Other types of methods?
Projections, proximal operators, linear optimization oracles (Frank-Wolfe),
mirror descent, approximate versions, momentum, etc.

� Human-readable/simpler proofs?
Specialized PEPs looking for Lyapunov functions.

� Step-size optimization?
Optimize worst-case performance.
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Example

Software

Step-size optimization

Concluding remarks
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Avoiding semidefinite programming modeling steps?

Baptiste
Goujaud

Céline
Moucer

Aymeric
Dieuleveut

Julien
Hendrickx

François
Glineur

� Matlab version: Performance Estimation Toolbox (PESTO) available at

github.com/PerformanceEstimation/Performance-Estimation-
Toolbox

� Python version: PEPit available at

github.com/PerformanceEstimation/PEPit/

Packages contain more than 75 examples!
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A few examples

Algorithms for solving:
min
x

f (x)

with f convex and L-smooth.

We compare: gradient descent vs. heavy-ball vs. Nesterov’s acceleration

� in terms of worst-cases f (xk )−f (x?)
‖x0−x?‖2

,

� in terms of worst-cases ‖∇f (xk )‖2
‖x0−x?‖2

,

� in terms of worst-cases min06i6k
‖∇f (xi )‖2
‖x0−x?‖2

.
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A few examples

Proximal point algorithm for (maximal) monotone inclusion:

find x : 0 ∈ A(x)

with A : Rd → 2R
d
maximal monotone.

What is the worst-case ‖xk+1−xk‖2

‖x0−x?‖2
when xi+1 = JA(xi )?
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Current library of examples within PESTO/PEPit

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/“NoLips”,

� stochastic methods: Point-SAGA, SAGA, SGD and variants.

... contain most of the recent PEP-related advances (including by other groups).

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.
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Back to legitimate questions:

� anything improvable? Realistic analyses?

� How to choose the right inequalities to combine?

� Why studying this specific quantity (‖xk − x?‖)?

� How to study other quantities, e.g., f (xk)− f (x?)?

� Unique way to arrive to the desired result?

� How likely are we to find such proofs in more complicated cases?
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Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.
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A few instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (’20). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (’19). “Optimal nonergodic sublinear convergence rate of the proximal
point algorithm for maximal monotone inclusion problems”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (’21). “The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions”.

� Rotaru, Glineur, Patrinos (’22). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Applications to distributed optimization:

� Sundararajan, Van Scoy, Lessard (’19). “Analysis and design of first-order
distributed optimization algorithms over time-varying graphs.”

� Colla, Hendrickx (’23). “Automatic performance estimation for decentralized
optimization.”
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A few instructive examples—shameless advertisement

Applications to mirror descent + lower complexity bound

� Dragomir, T., d’Aspremont, Bolte (’21). “Optimal complexity and certification
of Bregman first-order methods.”

Applications to adaptive methods

� Barré, T., d’Aspremont (’20). “Complexity Guarantees for Polyak Steps with
Momentum.”

� Das Gupta, Freund, Sun, T (’23). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses.”

Lyapunov functions (compact proofs) & counter-examples

� Lessard, Recht, Packard (’16). “Analysis and design of optimization algorithms
via integral quadratic constraints.”

� T, Bach (’19). “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions.”

� Upadhyaya, Banert, T, Giselsson (’23). “Automated tight Lyapunov analysis for
first-order methods.”

� Goujaud, Dieuleveut, T (’23). “Counter-examples in first-order optimization: a
constructive approach.”
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Poster

Nizar
Bousselmi Julien

Hendrickx
François
Glineur

→ Bousselmi, Hendrickx, Glineur (’23). “Interpolation Conditions for Linear
Operators and applications to Performance Estimation Problems.”
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Example

Software

Step-size optimization

Concluding remarks
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Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)
...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

Solution to inner maximization via N × N SDP.
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Creating new algorithms
Smooth (strongly) convex minimization with more than gradient descent?
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Design problem

How to solve the design problem (or proxy of it)?

min
{hi,j}

max
f∈F

‖xN − x?‖2

‖x0 − x?‖2

� brutal approaches
− Das Gupta, Van Parys, Ryu (’23) “Branch-and-bound performance

estimation programming: A unified methodology for constructing optimal
optimization methods.”

� convex relaxations,

� analogies (e.g., with conjugate gradient methods).
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Primal problem (N = 1)

Recall primal problem, with step-size optimization

min
h1,0

max
G , F

G1,1 + h2
1,0G2,2 − 2h1,0G1,2

subject to F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0.

“Simple” minimization problem by dualizing inner maximization.

Dualize inner maximization → minmin.
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Optimizing the step-sizes (N = 1)

For N = 1, optimizing over step-size h1,0 remains convex!

Indeed:

min
τ,λ>0

,h1,0

τ

subject to

[
τ − 1+ λLµ

L−µ h1,0 − λ(µ+L)
2(L−µ)

h1,0 − λ(µ+L)
2(L−µ)

λ
L−µ − h2

1,0

]
< 0.

Optimize h1,0 “for free” (linear SDP via Schur complement):

min
τ,λ>0

,h1,0

τ

subject to

τ − 1+ λLµ
L−µ −λ(µ+L)

2(L−µ) 1

−λ(µ+L)
2(L−µ)

λ
L−µ −h1,0

1 −h1,0 1

 < 0.
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Optimizing the step-sizes (N = 2)

When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2, . . . ,S3,3 (functions of τ, λ1, . . . , λ6 and {hi,j}).

In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2
1,0+λ1+λ3+λ4+λ6

L−µ

LMI convex in some step-sizes (h2,0 and h2,1) but not in the others.
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Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we reach ‖x1−x?‖2
‖x0−x?‖2

6 0.6694 with step-sizes

[h?i,j ] =
[
1.8182

]
.

� For N = 2, we reach ‖x2−x?‖2
‖x0−x?‖2

6 0.3769 with

[h?i,j ] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we reach ‖x3−x?‖2
‖x0−x?‖2

6 0.1932 with

[h?i,j ] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .
� For N = 4, we reach ‖x4−x?‖2

‖x0−x?‖2
6 0.0944 with

[h?i,j ] =


1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .
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Numerical examples II
What about different performance measure? Example f (xN )−f?

f (x0)−f?
and L = 1, µ = .1.

� For N = 1, we obtain f (x1)−f?
f (x0)−f?

6 0.6694 with step-size

[hi,j ] =
[
1.8182

]
.

� For N = 2, we obtain f (x2)−f?
f (x0)−f?

6 0.3554 with

[hi,j ] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (x3)−f?
f (x0)−f?

6 0.1698 with

[hi,j ] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .
� For N = 4, we obtain f (x4)−f?

f (x0)−f?
6 0.0789 with

[hi,j ] =


1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .
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[hi,j ] =


1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .
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Numerical examples III

Worst-case performance f (xN )−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Triple Momentum Method
(TMM) and Accelerated/Fast Gradient Method (FGM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� Lower complexity bound (numerically generated).
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Analytical solutions

� It turns out that for ‖xN−x?‖2
‖x0−x?‖2

, we can also solve the minimax in closed-form.

� The method referred to as “Information-Theoretic Exact Method” (ITEM)

yk = (1− βk )zk + βk

(
yk−1 −

1
L
∇f (yk−1)

)
zk+1 = (1− µ

L
δk )zk + µ

L
δk

(
yk −

1
µ
∇f (yk )

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� The proof is “simple”!
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A few observations/limitations

Were we lucky? Some pieces are missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN )−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler ’16),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori ’21),

� ‖∇f (xN )‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler ’21).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN )−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)
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A few instructive examples

Design first-order methods via PEPs:

� Kim, Fessler (’16). “Optimized methods for smooth convex optimization”.

� Van Scoy, Freeman, Lynch (’17). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

� Kim (’21). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

... including “brutal” examples:

� Gupta, Van Parijs, Ryu (’23). “Branch-and-Bound Performance Estimation
Programming: A Unified Methodology for Constructing Optimal Methods”.

� Grimmer (’23). “Provably faster gradient descent via long steps.”

� Altschuler, Parrilo (’23). “Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule.”
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Example

Software

Step-size optimization

Concluding remarks
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Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),
− fast prototyping
− worth checking before trying to prove a method works.

� algebraic insights into proofs: principled approach,
− proofs are dual feasible points,
− proofs are linear combinations of certain specific inequalities.

Byproducts:

� computer-assisted design of proofs,

� computer-assisted design of numerical methods,

� step towards reproducible theory
− validation & benchmark tool for proofs (also for reviews ,).
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Concluding remarks

Difficulties:

� suffers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

A few open directions:

� non-Euclidean algorithms (mirror descent-type), what

� adaptative algorithms, high-order, beyond worst-cases,

� many open setups: bi-level optimization, multi-objective optimization, etc.
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Take-home messages

Optimization can be seen as the science of proving inequalities

...including complexity bounds for numerical methods.

Powerful framework for designing methods and guarantees.
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Thanks! Questions?
PerformanceEstimation/Performance-Estimation-Toolbox on Github

PerformanceEstimation/PEPit on Github
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