Inverse problem and optimization

Laurent Condat, Nelly Pustelnik

CNRS, Gipsa-lab

CNRS, Laboratoire de Physique de l'ENS de Lyon

Decembre, 15th 2016

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization		2/36	
Plan			

- 1. Examples of inverse problems
- 2. Direct model: linear operator, noise
- 3. Ill-posed problem
- 4. Inversion
- 5. Regularization
- 6. Gradient descent

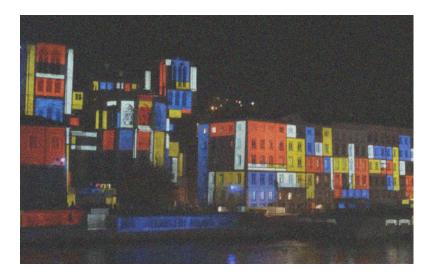
Introduction ●00000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			3/36
Example: de	enoising		

Observations

Denoised image

Introduction	Direct model	Inversion	Smooth minimization
●00000	00000000000	0000	00000000000
Inverse problem and optimization			3/36

Example: denoising



Introduction	Direct model	Inversion	Smooth minimization
●00000	00000000000	0000	00000000000
Inverse problem and optimization			3/36

Example: denoising

Introduction	Direct model	Inversion	Smooth minimization
00000	00000000000	0000	00000000000
Inverse problem and optimization			4/36
Example: m	notion blur		

Observations

Restored image

Introduction	Direct model	Inversion	Smooth minimization
00000	00000000000	0000	00000000000
Inverse problem and optimization			4/36
_			

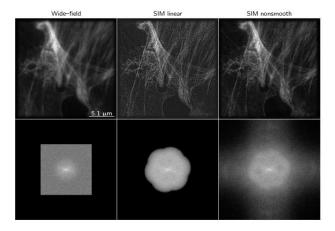
Example: motion blur

Introduction	Direct model	Inversion	Smooth minimization
00000	00000000000	0000	00000000000
Inverse problem and optimization			4/36

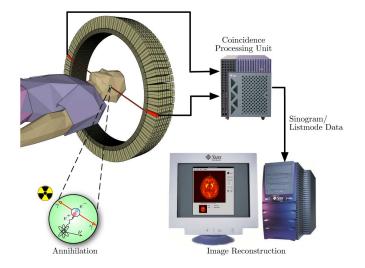
Example: motion blur

Introduction	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization		5/36	

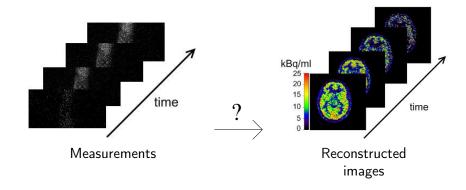
Example: structured illumination microscopy



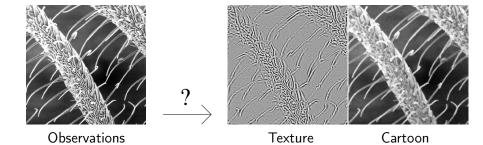
Introduction 000●00	Direct model	Inversion 0000	Smooth minimization
Inverse problem and o	Inverse problem and optimization		
Example: p	ositron emission to	omography	



Introduction	Direct model 00000000000	Inversion 0000	Smooth minimization
Inverse problem and op	Inverse problem and optimization		
Example: p	ositron emission to	mography	



Introduction	Direct model	Inversion 0000	Smooth minimization
		0000	
Inverse problem and op	timization		7/36
Example: ca	artoon-texture dec	omposition	



Introduction 00000●	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization		8/36	
Matationa			

▶ Image
$$x \in \mathbb{R}^{N_1 \times N_2}$$

ions

$$x = (x_{n_1, n_2})_{1 \le n_1 \le N_1, 1 \le n_2 \le N_2}$$

 Vector consisting of the values of the image of size N = N₁ × N₂ arranged column-wise x ∈ ℝ^N (with N = N₁ × N₂)

$$x = (x_n)_{1 \le n \le N}$$

and the second se

Introduction 000000	Direct model • 00000000000	Inversion 0000	Smooth minimization
Inverse problem and optimization			9/36

Direct model

$$z=\mathcal{D}_{\alpha}(H\overline{x})$$

- ▶ $\overline{x} = (\overline{x}_n)_{1 \le n \le N} \in \mathbb{R}^N$: vector consisting of the (unknown) values of the original image of size $N = N_1 \times N_2$.
- z = (z_j)_{1≤j≤M} ∈ ℝ^M: vector containing the observed values of size M = M₁ × M₂.
- $H \in \mathbb{R}^{M \times N}$: matrix associated to a linear degradation operator.
- D_α: ℝ^M → ℝ^M: models other degradations such as nonlinear ones or the effect of the noise, parameterized by α (e.g. additive noise with variance α, Poisson noise with scaling parameter α).

Introduction 000000	Direct model • 00000000000	Inversion 0000	Smooth minimization
Inverse problem and optimization			9/36

Direct model

$$z = \mathcal{D}_{\alpha}(H\overline{x})$$

- ▶ $\overline{x} = (\overline{x}_n)_{1 \le n \le N} \in \mathbb{R}^N$: vector consisting of the (unknown) values of the original image of size $N = N_1 \times N_2$.
- z = (z_j)_{1≤j≤M} ∈ ℝ^M: vector containing the observed values of size M = M₁ × M₂.
- $H \in \mathbb{R}^{M \times N}$: matrix associated to a linear degradation operator.
- D_α: ℝ^M → ℝ^M: models other degradations such as nonlinear ones or the effect of the noise, parameterized by α (e.g. additive noise with variance α, Poisson noise with scaling parameter α).

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000	0000	00000000000
Inverse problem and optimization			10/36

$$z = \mathcal{D}_{\alpha}(H\overline{x}) \quad \Rightarrow \quad z = \mathcal{D}_{\alpha}(h * \overline{x})$$

where $\{h * \overline{x}\}$: convolution product with the Point Spread Function (PSF) *h* of size $Q_1 \times Q_2$.

Link between *h* and *H*:

Under zero-end conditions,

▶ unknown image \overline{x} is zero outside its domain $[0, N_1 - 1] \times [0, N_2 - 1]$,

▶ kernel *h* is zero outside its domain $[0, Q_1 - 1] \times [0, Q_2 - 1]$.

Introduction 000000	Direct model 00●00000000	Inversion 0000	Smooth minimization
Inverse problem and optimization			11/36

Link between h and H: Zero padding of \overline{x} and h: extended image \overline{x}^e and kernel h^e of size $M_1 \times M_2$ as

$$\overline{x}_{i_1,i_2}^{e} = \begin{cases} \overline{x}_{i_1,i_2} & \text{if } 0 \leq i_1 \leq N_1 - 1 \text{ and } 0 \leq i_2 \leq N_2 - 1 \\ 0 & \text{if } N_1 \leq i_1 \leq M_1 - 1 \text{ and } N_2 \leq i_2 \leq M_2 - 1, \end{cases} \\ h_{i_1,i_2}^{e} = \begin{cases} h_{i_1,i_2} & \text{if } 0 \leq i_1 \leq Q_1 - 1 \text{ and } 0 \leq i_2 \leq Q_2 - 1 \\ 0 & \text{if } Q_1 \leq i_1 \leq M_1 - 1 \text{ and } Q_2 \leq i_2 \leq M_2 - 1, \end{cases}$$

This yields to

$$(H\overline{x})_{j_1,j_2} = \sum_{i_1=0}^{M_1-1} \sum_{i_2=0}^{M_2-1} h_{j_1-i_1,j_2-i_2}^{\mathrm{e}} \overline{x}_{i_1,i_2}^{\mathrm{e}}$$

where $j_1 \in \{0, \dots, M_1 - 1\}$ and $j_2 \in \{0, \dots, M_2 - 1\}$.

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			12/36

Link between h and H:

$$H = \begin{bmatrix} \tilde{H}_0 & \tilde{H}_{M_1-1} & \tilde{H}_{M_1-2} & \dots & \tilde{H}_1 \\ \tilde{H}_1 & \tilde{H}_0 & \tilde{H}_{M_1-1} & \dots & \tilde{H}_2 \\ \tilde{H}_2 & \tilde{H}_1 & \tilde{H}_0 & \dots & \tilde{H}_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{H}_{M_1-1} & \tilde{H}_{M_1-2} & \tilde{H}_{M_1-3} & \dots & \tilde{H}_0 \end{bmatrix}.$$

where $ilde{H}_{j_1}$ denotes a circulant matrix with M_2 columns such that

$$\tilde{H}_{j_1} = \begin{bmatrix} h_{j_1,0}^{\mathrm{e}} & h_{j_1,M_2-1}^{\mathrm{e}} & h_{j_1,M_2-2}^{\mathrm{e}} & \dots & h_{j_1,1}^{\mathrm{e}} \\ h_{j_1,1}^{\mathrm{e}} & h_{j_1,0}^{\mathrm{e}} & h_{j_1,M_2-1}^{\mathrm{e}} & \dots & h_{j_1,2}^{\mathrm{e}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ h_{j_1,M_2-1}^{\mathrm{e}} & h_{j_1,M_2-2}^{\mathrm{e}} & h_{j_1,M_2-3}^{\mathrm{e}} & \dots & h_{j_1,0}^{\mathrm{e}} \end{bmatrix} \in \mathbb{R}^{M_2 \times M_2}.$$

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			13/36
Direct model:	convolution		

If H is a block-circulant matrix with circulant blocks, then

$$H = U^* D U$$

where

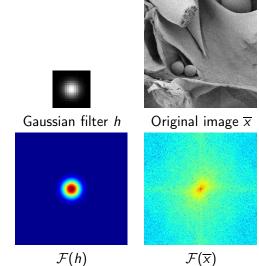
- D: diagonal matrix,
- U: unitary matrix (i.e, $U^* = U^{-1}$) representing the discrete Fourier transform,
- ▶ ·* denotes here the transpose conjugate.

Efficient computation of $H\overline{x}$:

$$H\overline{x} = U^* D U (U^* U) \overline{x}$$
$$= U^* D \overline{X}$$

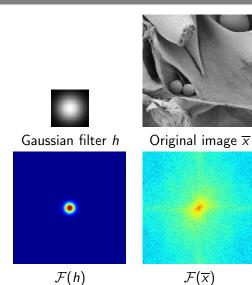
where \overline{X} denotes the Fourier transform of \overline{x} .

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000	0000	00000000000
Inverse problem and optimization			14/36



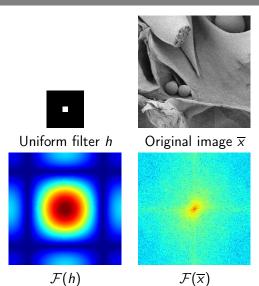
 $\{h * \overline{x}\}$

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	00000000000
Inverse problem and optimization			14/36



 $\{h * \overline{x}\}$

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000	0000	00000000000
Inverse problem and optimization			14/36



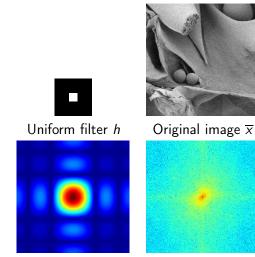
 $\{h * \overline{x}\}$

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000	0000	00000000000
Inverse problem and optimization			14/36

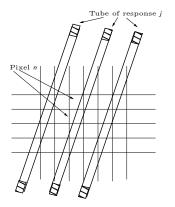
 $\mathcal{F}(\overline{x})$

Direct model: convolution

 $\mathcal{F}(h)$



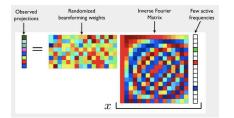
 $\{h * \overline{x}\}$



$$z = H\overline{x}$$

- x̄ = (x̄_n)_{1≤n≤N} ∈ ℝ^N: vector consisting of the (unknown) values of the original image of size N = N₁ × N₂.
- ► H = (H_{ji})_{1≤j≤M,1≤n≤N}: probability to detect an event in the tube/line of response.
- z = (z_j)_{1≤j≤M} ∈ ℝ^M: vector containing the observed values (sinogram).

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optin	nization		16/36
Direct model:	compressed ser	nsing	



$$= (\overline{X}_n)_{1 \le n \le N} \in \mathbb{I}$$

 $z = H\overline{x}$

- x̄ = (x̄_n)_{1≤n≤N} ∈ ℝ^N: vector consisting of the (unknown) values of the original image of size N = N₁ × N₂.
- z = (z_j)_{1≤j≤M} ∈ ℝ^M: vector containing the observed values (size M ≪ N).
- ► H = (H_{ji})_{1≤j≤M,1≤j≤N}: random measurement matrix (size M × N).

Introduction	Direct model	Inversion	Smooth minimization
Inverse problem and optimization			17/36

Direct model: super-resolution

$$(\forall b \in \{1, \ldots, B\})$$
 $z_b = D_b TW \overline{x} + \varepsilon_b$

- z: B multicomponent images at low-resolution (size M),
- > $\overline{\mathbf{x}}$: (high-resolution) image to be recovered (size N),
- D_b : downsampling matrix (size $M \times N$ such that M < N),
- T: matrix associated to the blur (size $N \times N$),
- W: warp matrix (size $N \times N$),
- ε_b ~ N(0, σ²Id_K): noise often assumed to be a zero-mean
 white Gaussian additive noise.

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			18/36
			-,

Direct model

$$z=\mathcal{D}_{\alpha}(H\overline{x})$$

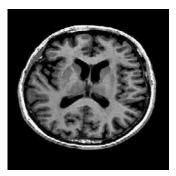
- ▶ $\overline{x} = (\overline{x}_n)_{1 \le n \le N} \in \mathbb{R}^N$: vector consisting of the (unknown) values of the original image of size $N = N_1 \times N_2$.
- z = (z_j)_{1≤j≤M} ∈ ℝ^M: vector containing the observed values of size M = M₁ × M₂.
- $H \in \mathbb{R}^{M \times N}$: matrix associated to a linear degradation operator
- D_α: ℝ^M → ℝ^M: models other degradations such as nonlinear ones or the effect of the noise, parameterized by α (e.g. additive noise with variance α, Poisson noise with scaling parameter α)

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	00000000000
Inverse problem and optimization			19/36

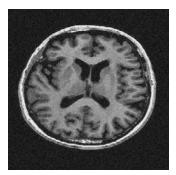
Direct model: Gaussian noise

$$z = \mathcal{D}_{\alpha}(H\overline{x}) \Rightarrow z = H\overline{x} + b$$

where *b*: white additive Gaussian noise with variance $\alpha = \sigma^2$.



Original image



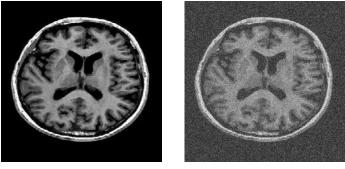
Degraded image with $\sigma=$ 10

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	00000000000
Inverse problem and optimization			19/36

Direct model: Gaussian noise

$$z = \mathcal{D}_{\alpha}(H\overline{x}) \Rightarrow z = H\overline{x} + b$$

where *b*: white additive Gaussian noise with variance $\alpha = \sigma^2$.



Original image

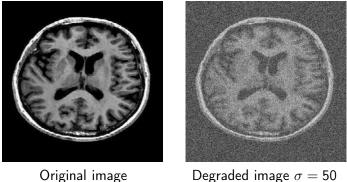
Degraded image $\sigma = 30$

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	00000000000
Inverse problem and optimization			19/36

Direct model: Gaussian noise

$$z = \mathcal{D}_{\alpha}(H\overline{x}) \Rightarrow z = H\overline{x} + b$$

where *b*: white additive Gaussian noise with variance $\alpha = \sigma^2$.



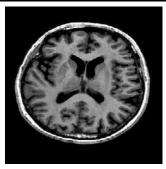
Original image

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000●	0000	00000000000
Inverse problem and optimization			20/36

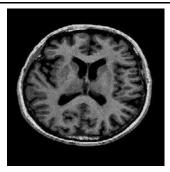
Direct model: Poisson noise

$$z = \mathcal{D}_{\alpha}(H\overline{x})$$

where \mathcal{D}_{α} : Poisson noise with scaling parameter α \Rightarrow noise variance varies with image intensity.



Original image



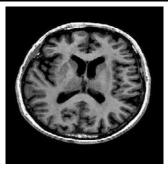
Poisson noise
$$\alpha = 1$$

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000●	0000	00000000000
Inverse problem and optimization			20/36

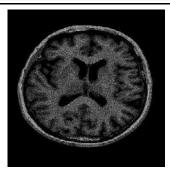
Direct model: Poisson noise

$$z = \mathcal{D}_{\alpha}(H\overline{x})$$

where \mathcal{D}_{α} : Poisson noise with scaling parameter α \Rightarrow noise variance varies with image intensity.



Original image



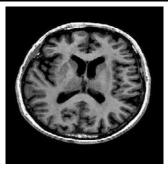
Poisson noise $\alpha = 0.1$

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000●	0000	00000000000
Inverse problem and optimization			20/36

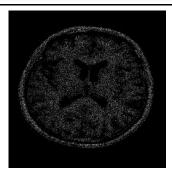
Direct model: Poisson noise

$$z = \mathcal{D}_{\alpha}(H\overline{x})$$

where \mathcal{D}_{α} : Poisson noise with scaling parameter α \Rightarrow noise variance varies with image intensity.



Original image



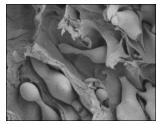
Poisson noise $\alpha = 0.01$

Introduction 000000	Direct model	Inversion ●000	Smooth minimization
Inverse problem and optimization			21/36

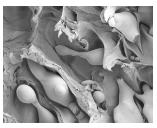
Inverse problem

Inverse problem : Find \hat{x} the closest from \overline{x} from observations

$$z = \mathcal{D}_{\alpha}(H\overline{x})$$



Observations $z \in \mathbb{R}^M$



Restored image $\widehat{x} \in \mathbb{R}^N$

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	00000000000
Inverse problem and optimization			22/36

Hadamard conditions

The problem $z = H\overline{x}$ is said to be well-posed if it fulfills the Hadamard conditions (1902)

1. existence of a solution,

i.e. the range ran H of H is equal to \mathbb{R}^M ,

2. uniqueness of the solution,

i.e. the nullspace ker H of H is equal to $\{0\}$,

3. stability of the solution \hat{x} relatively to the observation, i.e. $(\forall (z, z') \in (\mathbb{R}^M)^2)$

 $\|z-z'\| o 0 \quad \Rightarrow \quad \|\widehat{x}(z)-\widehat{x}(z')\| \to 0.$

Introduction	Direct model	Inversion	Smooth minimization
Inverse problem and optimization			23/36

Hadamard conditions

The problem $z = H\overline{x}$ is said to be well-posed if it fulfills the Hadamard conditions

- 1. existence of a solution,
 - i.e. every vector z in \mathbb{R}^M is the image of a vector x in \mathbb{R}^N ,
- 2. uniqueness of the solution,
 - i.e. if $\hat{x}(z)$ and $\hat{x}'(z)$ are two solutions, then they are necessarily equal since $\hat{x}(z) \hat{x}'(z)$ belongs to ker A,
- 3. stability of the solution \hat{x} relatively to the observation, *i.e.* ensure that a small perturbation of the observed image leads to a slight variation of the recovered image.

Introduction 000000	Direct model	Inversion ○○○●	Smooth minimization
Inverse problem and optimization			24/36

Inversion

Inverse filtering	(if $M = N$ et H est inversible)
$\widehat{x} = H^{-}$	1_z
$= H^{-}$	$^{1}(H\overline{x}+b)$ if additive noise $b\in\mathbb{R}^{M}$
$=\overline{x}+$	$-H^{-1}b$

<u>Remark</u> :

 \rightarrow Closed form expression but noise amplification if H ill-conditioned (ill-posed problem).

Introduction 000000	Direct model	Inversion ○○○●	Smooth minimization
Inverse problem and optimization			24/36

Inversion

Inverse filtering (if $M \ge N$ and rank of H is N) $\widehat{x} = (H^*H)^{-1}H^{\top}z$ $= (H^*H)^{-1}H^*(H\overline{x} + b)$ if additive noise $b \in \mathbb{R}^M$ $= \overline{x} + (H^*H)^{-1}H^*b$

<u>Remark</u> :

 \rightarrow Closed form expression but noise amplification if *H* ill-conditioned (*ill-posed problem*).

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	●0000000000
Inverse problem and optimization			25/36

Regularization

Variational approach

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} \|z - Hx\|_2^2 + \lambda \Omega(x)$$

where

- ► $||z Hx||_2^2$: data-term,
- $\Omega(x)$: regularization term (e.g. $\Omega(x) = ||x||_2^2$),
- $\lambda \ge 0$: regularization parameter.

Remarks

 \rightarrow If $\lambda=$ 0: inverse filtering,

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	0000000000
Inverse problem and optimization			26/36

Maximum A Posteriori (MAP)

Let x and z be random vector realizations X and Z. Maximum A Posteriori (MAP)

$$\hat{x} \in \operatorname{Argmax}_{x \in \mathbb{R}^N} \mu_{X|Z=z}(x)$$

 \rightarrow find x that maximizes the posterior $\mu_{X|Z=z}(x)$

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	0000000000
Inverse problem and optimization			26/36

Maximum A Posteriori (MAP)

Let x and z be random vector realizations X and Z. Maximum A Posteriori (MAP)

$$\hat{x} \in \operatorname{Argmax}_{x \in \mathbb{R}^N} \mu_{X|Z=z}(x)$$

 \rightarrow find x that maximizes the posterior $\mu_{X|Z=z}(x)$

Bayes rule

$$\max_{x \in \mathbb{R}^N} \mu_{X|Z=z}(x) \Leftrightarrow \max_{x \in \mathbb{R}^N} \mu_{Z|X=x}(z) \cdot \mu_X(x)$$
$$\Leftrightarrow \min_{x \in \mathbb{R}^N} \left\{ -\log(\mu_{Z|X=x}(z)) - \log(\mu_X(x)) \right\}$$

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	0000000000
Inverse problem and optimization			26/36

Maximum A Posteriori (MAP)

Let x and z be random vector realizations X and Z. Maximum A Posteriori (MAP)

$$\hat{x} \in \operatorname{Argmax}_{x \in \mathbb{R}^N} \mu_{X|Z=z}(x)$$

 \rightarrow find x that maximizes the posterior $\mu_{X|Z=z}(x)$

Bayes rule

$$\max_{x \in \mathbb{R}^{N}} \mu_{X|Z=z}(x) \Leftrightarrow \max_{x \in \mathbb{R}^{N}} \mu_{Z|X=x}(z) \cdot \mu_{X}(x)$$
$$\Leftrightarrow \min_{x \in \mathbb{R}^{N}} \left\{ \underbrace{-\log(\mu_{Z|X=x}(z))}_{\text{Data-term}} \underbrace{-\log(\mu_{X}(x))}_{\text{A priori}} \right\}$$
$$\Leftrightarrow \min_{x \in \mathbb{R}^{N}} \frac{f_{1}(x) + f_{2}(x)}{f_{2}(x)}$$

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			27/36

Data-term: Gaussian noise

$$(orall x \in \mathbb{R}^N) \quad f_1(x) = -\log(\mu_{Z|X=x}(z))$$

• Let
$$z = H\overline{x} + b$$
 with $b \sim \mathcal{N}(0, \alpha)$

Gaussian likelihood:

$$\mu_{Z|X=x}(z) = \prod_{i=1}^{M} \frac{1}{\sqrt{2\pi\alpha}} \exp\left(\frac{((Hx)^{(i)} - z^{(i)})^2}{2\alpha}\right)$$

Data-term:

$$f_1(x) = \sum_{i=1}^M \frac{1}{2\alpha} ((Hx)_i - z_i)^2$$

Introduction	Direct model	Inversion	Smooth minimization
Inverse problem and optin		0000	28/36
inverse problem and optimization			20,00

Data-term: Poisson noise

$$(\forall x \in \mathbb{R}^N) \quad f_1(x) = -\log(\mu_{Z|X=x}(z))$$

Let $z = D_{\alpha}(H\overline{x})$ where D_{α} Poisson noise with parameter α .

Poisson likelihood:

$$\mu_{Z|X=x}(z) = \prod_{i=1}^{M} \frac{\exp\left(-\alpha(Hx)^{(i)}\right)}{z^{(i)!}} \left(\alpha(Hx)^{(i)}\right)^{z^{(i)}}$$

► Data-term: $f_1(x) = \sum_{i=1}^{M} \Psi_i((Hx)^{(i)})$ $(\forall v \in \mathbb{R}) \quad \Psi_i(v) = \begin{cases} \alpha v - z^{(i)} \ln(\alpha v) & \text{if } z^{(i)} > 0 \text{ and } v > 0, \\ \alpha v & \text{si } z^{(i)} = 0 \text{ and } v \ge 0, \\ +\infty & \text{otherwise.} \end{cases}$

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			29/36
Prior: Tikho	nov /TV		

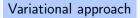
$$(orall x \in \mathbb{R}^N) \quad f_2(x) = -\log(\mu_X(x))$$

► Tikhonov [Tikhonov, 1963]

$$\begin{aligned} f_2(x) &= \|Lx\|^2 \\ &= \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \{l * x\}_{i,j}^2 \quad \text{avec} \quad l = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \end{aligned}$$

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	00000000000
Inverse problem and optimization			30/36

Minimisation problem



$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} \mathcal{L}(x) + \lambda \Omega(x)$$

where

- $\mathcal{L}(x) = f(z, Hx)$: data-term,
- $\Omega(x)$: regularization term,
- $\lambda \ge 0$: regularization parameter.

Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and opt	timization		31/36
<i>c</i>	· .· .		

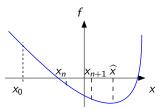
Convex optimization ?

Let $f : \mathbb{R}^N \to] - \infty, +\infty]$. An optimization problem consists in solving:

 $\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x)$

▶ \hat{x} is a global solution if for every $x \in \mathbb{R}^N$, $f(\hat{x}) \leq f(x)$,

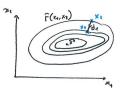
Course objectif: Build a sequence $(x_n)_{n \in \mathbb{Z}}$ that converges to \hat{x} .



Introduction 000000	Direct model	Inversion 0000	Smooth minimization
Inverse problem and optimization			32/36
Cradiant da	ccont		

stadient deseem

Illustration:



Remarks:

- f is displayed with its level lines,
- Fermat rule:

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^{N}} f(x) \Leftrightarrow
abla f(\widehat{x}) = 0$$

- ▶ Solve a problem with *N* equations and *N* unknowns.
- Closed form expression for very few f.
- If no closed form expression possible \Rightarrow iterative method.

Introduction	Direct model	Inversion	Smooth minimization
000000	00000000000	0000	000000000000
Inverse problem and optimization			33/36

Solving mean square problem

Find

$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|Hx - z\|_2^2 \quad \text{with} \quad \begin{cases} H \in \mathbb{R}^{M \times N} \\ z \in \mathbb{R}^M \end{cases}$$

Optimality conditions

$$\nabla f(\hat{x}) = 0 \quad \Leftrightarrow \quad H^*(H\hat{x} - z) = 0$$
$$\Leftrightarrow \quad \hat{x} = (H^*H)^{-1}H^*z$$

• Difficulty: invert H^*H .

Introduction	Direct model	Inversion	Smooth minimization
000000	0000000000	0000	00000000000
Inverse problem and optimization			34/36

Solving logistic regressior

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}} \log(1 + \exp(-yx) \quad ext{with} \quad y \in \mathbb{R}$$

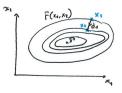
Optimality conditions

$$abla f(\hat{x}) = 0 \quad \Leftrightarrow \quad \frac{-y \exp(-y\hat{x})}{1 + \exp(-y\hat{x})} = 0$$

Difficulty: no closed form expression.

Introduction 000000	Direct model	Inversion 0000	Smooth minimization 000000000●0
Inverse problem and optimization			35/36
Gradient des	scent		

Illustration:



Iterations:

$$(\forall k \in \mathbb{N}) \quad x^{[k+1]} = x^{[k]} + \gamma^{[k]} d^{[k]}$$

where

 $\left\{ egin{aligned} d^{[k]} \in \mathbb{R}^{N} \colon ext{descent direction,} \ \gamma^{[k]} > 0 \colon ext{step-size.} \end{aligned}
ight.$