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Example: denoising

Observations Denoised image
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Example: motion blur

Observations Restored image
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Example: structured illumination microscopy
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Example: positron emission tomography
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Example: positron emission tomography

?

Measurements Reconstructed
images
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Example: cartoon-texture decomposition

?

Observations Texture Cartoon
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Notations

◮ Image x ∈ R
N1×N2

x =
(
xn1,n2

)
1≤n1≤N1,1≤n2≤N2

◮ Vector consisting of the values of the image of size
N = N1 × N2 arranged column-wise x ∈ R

N

(with N = N1 × N2)

x =
(
xn
)
1≤n≤N
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Direct model

z = Dα(Hx)

◮ x = (xn)1≤n≤N ∈ R
N : vector consisting of the (unknown)

values of the original image of size N = N1 × N2.

◮ z = (zj)1≤j≤M ∈ R
M : vector containing the observed values of

size M = M1 ×M2.

◮ H ∈ R
M×N : matrix associated to a linear degradation

operator.

◮ Dα : R
M → R

M : models other degradations such as nonlinear
ones or the effect of the noise, parameterized by α (e.g. additive

noise with variance α, Poisson noise with scaling parameter α).
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Direct model: convolution

z = Dα(Hx) ⇒ z = Dα(h ∗ x)

where {h∗x}: convolution product with the Point Spread Func-
tion (PSF) h of size Q1 × Q2.

Link between h and H :
Under zero-end conditions,

◮ unknown image x is zero outside its domain
[0,N1 − 1]× [0,N2 − 1],

◮ kernel h is zero outside its domain [0,Q1 − 1]× [0,Q2 − 1].
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Direct model: convolution

Link between h and H :
Zero padding of x and h: extended image xe and kernel he of size
M1 ×M2 as

xe

i1,i2
=

{
x i1,i2 if 0 ≤ i1 ≤ N1 − 1 and 0 ≤ i2 ≤ N2 − 1
0 if N1 ≤ i1 ≤ M1 − 1 and N2 ≤ i2 ≤ M2 − 1,

he

i1,i2
=

{
hi1,i2 if 0 ≤ i1 ≤ Q1 − 1 and 0 ≤ i2 ≤ Q2 − 1
0 if Q1 ≤ i1 ≤ M1 − 1 and Q2 ≤ i2 ≤ M2 − 1,

This yields to

(Hx)j1,j2 =

M1−1∑

i1=0

M2−1∑

i2=0

he

j1−i1,j2−i2
xe

i1,i2

where j1 ∈ {0, . . . ,M1 − 1} and j2 ∈ {0, . . . ,M2 − 1}.
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Direct model: convolution

Link between h and H :

H =




H̃0 H̃M1−1 H̃M1−2 . . . H̃1

H̃1 H̃0 H̃M1−1 . . . H̃2

H̃2 H̃1 H̃0 . . . H̃3
...

...
...

...
...

H̃M1−1 H̃M1−2 H̃M1−3 . . . H̃0



.

where H̃j1 denotes a circulant matrix with M2 columns such that

H̃j1 =




he

j1,0
he

j1,M2−1 he

j1,M2−2 . . . he

j1,1

he

j1,1
he

j1,0
he

j1,M2−1 . . . he

j1,2
...

...
...

...
...

he

j1,M2−1 he

j1,M2−2 he

j1,M2−3 . . . he

j1,0


 ∈ R

M2×M2 .
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Direct model: convolution

If H is a block-circulant matrix with circulant blocks, then

H = U∗DU

where
◮ D: diagonal matrix,
◮ U : unitary matrix (i.e, U∗ = U−1) representing the discrete

Fourier transform,
◮ ·∗ denotes here the transpose conjugate.

Efficient computation of Hx :

Hx = U∗DU(U∗U)x

= U∗DX

where X denotes the Fourier transform of x .
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Direct model: convolution

Gaussian filter h Original image x

F(h) F(x) {h ∗ x}
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Direct model: convolution

Uniform filter h Original image x

F(h) F(x) {h ∗ x}
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Direct model: convolution

Uniform filter h Original image x

F(h) F(x) {h ∗ x}
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Direct model: tomography (without noise)

Pixel n

Tube of response j

z = Hx

◮ x = (xn)1≤n≤N ∈ R
N : vector

consisting of the (unknown)
values of the original image
of size N = N1 × N2.

◮ H = (Hji )1≤j≤M,1≤n≤N :
probability to detect an event
in the tube/line of response.

◮ z = (zj)1≤j≤M ∈ R
M : vector

containing the observed
values (sinogram).
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Direct model: compressed sensing

z = Hx

◮ x = (xn)1≤n≤N ∈ R
N :

vector consisting of the
(unknown) values of the
original image of size
N = N1 × N2.

◮ z = (zj)1≤j≤M ∈ R
M :

vector containing the
observed values (size
M ≪ N).

◮ H = (Hji )1≤j≤M,1≤j≤N :
random measurement
matrix (size M × N).
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Direct model: super-resolution

(∀b ∈ {1, . . . ,B}) zb = DbTW x + εb

◮ z: B multicomponent images at low-resolution (size M),

◮ x: (high-resolution) image to be recovered (size N),

◮ Db: downsampling matrix (size M × N such that M < N),

◮ T : matrix associated to the blur (size N × N),

◮ W : warp matrix (size N × N),

◮ εb ∼ N (0, σ2
IdK ): noise often assumed to be a zero-mean

white Gaussian additive noise.
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Direct model

z = Dα(Hx)

◮ x = (xn)1≤n≤N ∈ R
N : vector consisting of the (unknown)

values of the original image of size N = N1 × N2.

◮ z = (zj)1≤j≤M ∈ R
M : vector containing the observed values of

size M = M1 ×M2.

◮ H ∈ R
M×N : matrix associated to a linear degradation operator

◮ Dα : R
M → R

M : models other degradations such as nonlinear
ones or the effect of the noise, parameterized by α (e.g. additive

noise with variance α, Poisson noise with scaling parameter α)
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Direct model: Gaussian noise

z = Dα(Hx) ⇒ z = Hx + b

where b: white additive Gaussian noise with variance α = σ2.

Original image Degraded image with σ = 10
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Direct model: Gaussian noise

z = Dα(Hx) ⇒ z = Hx + b

where b: white additive Gaussian noise with variance α = σ2.

Original image Degraded image σ = 30
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Direct model: Gaussian noise

z = Dα(Hx) ⇒ z = Hx + b

where b: white additive Gaussian noise with variance α = σ2.

Original image Degraded image σ = 50
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Direct model: Poisson noise

z = Dα(Hx)

where Dα: Poisson noise with scaling parameter α
⇒ noise variance varies with image intensity.

Original image Poisson noise α = 1
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Direct model: Poisson noise

z = Dα(Hx)

where Dα: Poisson noise with scaling parameter α
⇒ noise variance varies with image intensity.

Original image Poisson noise α = 0.1
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Direct model: Poisson noise

z = Dα(Hx)

where Dα: Poisson noise with scaling parameter α
⇒ noise variance varies with image intensity.

Original image Poisson noise α = 0.01
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Inverse problem

Inverse problem :
Find x̂ the closest from x from observations

z = Dα(Hx)

.

?

Observations z ∈ R
M Restored image x̂ ∈ R

N
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Hadamard conditions

The problem z = Hx is said to be well-posed if it fulfills the
Hadamard conditions (1902)

1. existence of a solution,

i.e. the range ranH of H is equal to R
M ,

2. uniqueness of the solution,

i.e. the nullspace kerH of H is equal to {0},
3. stability of the solution x̂ relatively to the observation,

i.e.
(
∀(z , z ′) ∈

(
R
M
)2)

‖z − z ′‖ → 0 ⇒ ‖x̂(z)− x̂(z ′)‖ → 0.
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Hadamard conditions

The problem z = Hx is said to be well-posed if it fulfills the
Hadamard conditions

1. existence of a solution,

i.e. every vector z in R
M is the image of a vector x in R

N ,

2. uniqueness of the solution,

i.e. if x̂(z) and x̂ ′(z) are two solutions, then they are

necessarily equal since x̂(z)− x̂ ′(z) belongs to kerA,

3. stability of the solution x̂ relatively to the observation,

i.e. ensure that a small perturbation of the observed

image leads to a slight variation of the recovered image.
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Inversion

Inverse filtering (if M = N et H est inversible)

x̂ = H−1z

= H−1(Hx + b) if additive noise b ∈ R
M

= x + H−1b

Remark :

→ Closed form expression but noise amplification if H
ill-conditioned
(ill-posed problem).
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Inversion

Inverse filtering (if M ≥ N and rank of H is N)

x̂ = (H∗H)−1H⊤z

= (H∗H)−1H∗(Hx + b) if additive noise b ∈ R
M

= x + (H∗H)−1H∗b

Remark :

→ Closed form expression but noise amplification if H
ill-conditioned
(ill-posed problem).
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Regularization

Variational approach

x̂ ∈ Argmin
x∈RN

‖z − Hx‖2
2 + λΩ(x)

where

◮ ‖z − Hx‖2
2: data-term,

◮ Ω(x): regularization term (e.g. Ω(x) = ‖x‖2
2),

◮ λ ≥ 0: regularization parameter.

Remarks

→ If λ = 0: inverse filtering,
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Maximum A Posteriori (MAP)

Let x and z be random vector realizations X and Z .
Maximum A Posteriori (MAP)

x̂ ∈ Argmax
x∈RN

µX |Z=z(x)

→ find x that maximizes the posterior µX |Z=z(x)
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Maximum A Posteriori (MAP)

Let x and z be random vector realizations X and Z .
Maximum A Posteriori (MAP)

x̂ ∈ Argmax
x∈RN

µX |Z=z(x)

→ find x that maximizes the posterior µX |Z=z(x)

Bayes rule

max
x∈RN

µX |Z=z(x) ⇔ max
x∈RN

µZ |X=x(z) · µX (x)

⇔ min
x∈RN

{
− log(µZ |X=x(z))− log(µX (x))

}
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Maximum A Posteriori (MAP)

Let x and z be random vector realizations X and Z .
Maximum A Posteriori (MAP)

x̂ ∈ Argmax
x∈RN

µX |Z=z(x)

→ find x that maximizes the posterior µX |Z=z(x)

Bayes rule

max
x∈RN

µX |Z=z(x) ⇔ max
x∈RN

µZ |X=x(z) · µX (x)

⇔ min
x∈RN

{
− log(µZ |X=x(z))︸ ︷︷ ︸

Data-term

− log(µX (x))︸ ︷︷ ︸
A priori

}

⇔ min
x∈RN

f1(x) + f2(x)
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Data-term: Gaussian noise

(∀x ∈ R
N) f1(x) = − log(µZ |X=x(z))

◮ Let z = Hx + b with b ∼ N (0, α)

◮ Gaussian likelihood:

µZ |X=x(z) =
M∏

i=1

1√
2πα

exp

(
((Hx)(i) − z (i))2

2α

)

◮ Data-term:

f1(x) =

M∑

i=1

1

2α
((Hx)i − zi)

2
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Data-term: Poisson noise

(∀x ∈ R
N) f1(x) = − log(µZ |X=x(z))

◮ Let z = Dα(Hx) where Dα Poisson noise with parameter α.

◮ Poisson likelihood:

µZ |X=x(z) =
M∏

i=1

exp
(
− α(Hx)(i)

)

z (i)!

(
α(Hx)(i)

)z (i)

◮ Data-term: f1(x) =
∑M

i=1 Ψi

(
(Hx)(i)

)

(∀υ ∈ R) Ψi(υ) =





αυ − z (i) ln(αυ) if z (i) > 0 and υ > 0,

αυ si z (i) = 0 and υ ≥ 0,

+∞ otherwise.
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Prior: Tikhonov /TV

(∀x ∈ R
N) f2(x) = − log(µX (x))

◮ Tikhonov [Tikhonov, 1963]

f2(x) = ‖Lx‖2

=

N1∑

i=1

N2∑

j=1

{l ∗ x}2
i ,j avec l =




0 1 0
1 −4 1
0 1 0



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Minimisation problem

Variational approach

x̂ ∈ Argmin
x∈RN

L(x) + λΩ(x)

where

◮ L(x) = f (z ,Hx): data-term,

◮ Ω(x): regularization term,

◮ λ ≥ 0: regularization parameter.
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Convex optimization ?

Let f : RN →]−∞,+∞].
An optimization problem consists in solving:

x̂ ∈ Argmin
x∈RN

f (x)

◮ x̂ is a global solution if for every x ∈ R
N , f (x̂) ≤ f (x),

Course objectif: Build a sequence (xn)n∈Z that converges to x̂ .

f

x

xn xn+1

x0

x̂
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Gradient descent

◮ Illustration:

◮ Remarks:
◮ f is displayed with its level lines,
◮ Fermat rule:

x̂ ∈ Argmin
x∈RN

f (x) ⇔ ∇f (x̂) = 0

◮ Solve a problem with N equations and N unknowns.
◮ Closed form expression for very few f .
◮ If no closed form expression possible ⇒ iterative method.
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Solving mean square problem

◮ Find

x̂ ∈ Argmin
x∈RN

‖Hx − z‖2
2 with

{
H ∈ R

M×N

z ∈ R
M

◮ Optimality conditions

∇f (x̂) = 0 ⇔ H∗(Hx̂ − z) = 0

⇔ x̂ = (H∗H)−1H∗z

◮ Difficulty: invert H∗H.
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Solving logistic regression

◮ Find

x̂ ∈ Argmin
x∈R

log(1 + exp(−yx) with y ∈ R

◮ Optimality conditions

∇f (x̂) = 0 ⇔ −y exp(−y x̂

1 + exp(−y x̂)
= 0

◮ Difficulty: no closed form expression.
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Gradient descent

◮ Illustration:

◮ Iterations:

(∀k ∈ N) x [k+1] = x [k] + γ[k]d [k]

where {
d [k] ∈ R

N : descent direction,

γ[k] > 0: step-size.
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