
Inverse problems and optimization

Nelly PUSTELNIK
CNRS, Laboratoire de Physique de l’ENS Lyon

Laurent CONDAT
CNRS, Gipsa-lab

Course 4: Sparsity
January, 19th 2017



Frame `1-norm CS `1,p -norm

2/36

Motivation: image restoration

x ∈ RN z ∈ RM

Objective: recover x from the observations z = Pα(Hx)

I x : original image

⇒ sparse after some appropriate transform

I H : linear operator from RN to RM

I Pα : effect of noise where α > 0 is the scaling parameter
I z : degraded image of size M
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Sparse transforms: finite difference

︸ ︷︷ ︸
x ∈ RN

F

F ∗ ︸ ︷︷ ︸
θ ∈ RK

Sparsity: coefficients θ = Fx
I θ : coefficients of size K ≥ N
I F ∈ RK×N : matrix associated with the analysis operator
I F ∗ ∈ RN×K : matrix associated with the synthesis operator.
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Sparse transforms: finite difference

︸ ︷︷ ︸
x ∈ RN

F

F ∗ ︸ ︷︷ ︸
θ ∈ RK

I Horizontal and vertical difference filters: f1 = [1− 1] and f2 = f1>,

I K = 2N,

I Link between (f1, f2) and (F1,F2): cf. slides10-12 course 1,

I Resulting F = [F>1 ,F
>
2 ]> and F ∗ = F>,

I F ∗F 6= Id.
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Sparse transforms: wavelet transform

︸ ︷︷ ︸
x ∈ RN

F

F ∗ ︸ ︷︷ ︸
θ ∈ RN

Sparsity: coefficients θ = Fx
I θ : coefficients of size N
I F ∈ RN×N : matrix associated with the analysis operator
I F ∗ ∈ RN×N : matrix associated with the synthesis operator.

⇒ Orthonormal transform: F ∗F = Id for µ > 0.
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Sparse transforms: wavelet transform

︸ ︷︷ ︸
x ∈ RN

F

F ∗ ︸ ︷︷ ︸
θ ∈ RK

I F (resp. F ∗) :
Concatenation of
matrices associated
to filtering and
decimation (resp.
upsampling) operations.
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Sparse transforms: frame transform

︸ ︷︷ ︸
x ∈ RN

F

F ∗ ︸ ︷︷ ︸
θ ∈ RK

Sparsity: coefficients θ = Fx
I θ : coefficients of size K ≥ N
I F ∈ RK×N : matrix associated with the analysis operator
I F ∗ ∈ RN×K : matrix associated with the synthesis operator.

⇒ Tight frame condition: F ∗F = µId for µ > 0.



Frame `1-norm CS `1,p -norm

8/36

Sparse transforms: dictionary

I Dictionary: set of elementary
signals

D = [d1, . . . , dK ] ∈ RN×K

I D is “adapted” to x if it can
represent it with a few elements,
i.e., there exists a sparse vector
θ in RK such that x ∼ Dθ.

I θ: sparse code.
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Sparse transforms

Quadratic regularization - Wiener filtering
[Wiener,1949]

ŷ = argmin
y∈RN

‖Hx − z‖2
2 + λ‖Fx‖2

2 λ > 0

Use of frames - Soft-thresholding
[Haar,1910] [Mallat,2009]

ŷ = argmin
y∈RN

‖Hx − z‖2
2 + λ ‖Fx‖1 λ > 0

I The squared `2-norm induces “smoothness” while `1-norm induces
sparsity. [Chen et al., 1999, Tibshirani, 1996]
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Sparse transforms: analysis/synthesis

Analysis formulation

x̂ ∈ Argmin
x∈RN

‖Hx − z‖2
2 + λ‖Fx‖1 λ > 0

Synthesis formulation

x̂ = F ∗θ̂ with θ̂ ∈ Argmin
θ∈RK

‖HF ∗θ − z‖2
2 + λ‖θ‖1 λ > 0

I Sparse coding with F ∗ = D.

I Equivalence for some specific conditions over F such orthogonality.

[Pustelnik et al. 2016]
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Variational approach: Bayesian formulation

I u = Hx = (u(i))1≤i≤N : realization of a random vector U.
I z : realization of a random vector Z .
I θ = Fx = (θ(k))1≤k≤K : realization of a random vector

Θ = (Θ(k))1≤k≤K having independent components.

MAP estimator (Maximum A Posteriori)

max
x

P(U = Hx | Z = z)

max
θ

P(Z = z | U = HF ∗θ) · P(Θ = θ)

min
θ
− ln P(Z = z | U = HF ∗θ)︸ ︷︷ ︸

Data fidelity

−
K∑

k=1

ln pΘ(k) (θ(k))︸ ︷︷ ︸
A priori
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Variational approach: Bayesian formulation

︸ ︷︷ ︸
x ∈ RN

F

F ∗ ︸ ︷︷ ︸
θ ∈ RK
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Variational approach: Bayesian formulation

MAP estimator (Maximum A Posteriori)

min
x
− ln P(Z = z | U = HF ∗θ)︸ ︷︷ ︸

Data fidelity

−
K∑

k=1

ln pΘ(k) (θ(k))︸ ︷︷ ︸
A priori

where

P(Z = z | U = AF ∗θ) =
1

(2πα)M/2
exp

{
− ‖HF

∗θ − z‖2
2

2α

}
and

pΘ(k) (θ(k)) =
1

Ck
exp{−λk |θ(k)|}

min
θ

1

2α
‖HF ∗θ − z‖2

2 +
K∑

k=1

λk |θ(k)|
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Variational approach: Equivalent formulations

I Geophysics: [Claerbout and Muir, 1973, Taylor et al., 1979],

I Statistics: Lasso [Tibshirani, 1996]

I Signal processing: Basis pursuit [Chen et al., 1999]

Equivalent formulations:

min
θ∈RK

1

2α
‖HF ∗θ − z‖2

2 + λ‖θ‖1

min
θ∈RK

1

2α
‖HF ∗θ − z‖2

2 s.t. ‖θ‖1 ≤ µ

min
θ∈RK

‖θ‖1 s.t. ‖HF ∗θ − z‖2
2 ≤ ε
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Why does the `1-norm induce sparsity ?

(figures extracted from J. Mairal course)
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Why does the `1-norm induce sparsity ?

min
θ∈R

1

2
(θ − z)2 + λ|θ|

I Piecewise quadratic function with a non-differentiability at zero.

I Fermat rule for non-differentiable function:

0 ∈ θ̂ − z + λu with u ∈ ∂|θ̂|

I This lead to soft-thresholding

θ̂ = sign(z) max(0, |z | − λ)
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Why does the `1-norm induce sparsity ?

I Resolution of minx∈RK ‖x‖1 s.t. Ax = y



Frame `1-norm CS `1,p -norm

18/36

Why does the `1-norm induce sparsity ?

I `2
2 versus `1
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Non-convex functions

I `q-norms with q ∈]0, 1[ [Frank and Friedman, 1993]

ψ(θ) =
K∑

k=1

|θk |q

I Log penalty [Candès et al. 2008]

ψ(θ) =
K∑

k=1

log(|θk |+ ε)

I Several others [Nikolova, 2007]

I Non-convex penalties leading to convex criterion [Selesnick et al.
2015]



Frame `1-norm CS `1,p -norm

20/36

Compressed sensing

Sparsity assumption

θ0 ∈ arg min
θ∈RK

1

2α
‖Dθ − z‖2

2 + λ‖θ‖0

where (∀θ = (θk)1≤k≤K ∈ RK ) ‖θ‖0 ≡ #{k : θk 6= 0}

Convex relaxation

θ̂0 ∈ arg min
θ∈RK

1

2α
‖Dθ − z‖2

2 + λ‖θ‖1

where (∀θ = (θk)1≤k≤K ∈ RK ) ‖θ‖1 =
∑N

k=1 |θk |

⇒ Compressed sensing [Donoho,2004][Candès et al. 2006]
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Compressed sensing

I Restricted Isometry Property (RIP) [Candès, 2008]:

(1− δmin
2s )‖θ‖2 ≤ ‖Dθ‖2 ≤ (1 + δmax

2s )‖θ‖2

where{
δmin
s = 1− λmin(D∗I DI )

δmax
s = λmax(D∗I DI )− 1

and DI = (di )i∈I with |I | = s.

Theorem [Candès, 2008]

Assume that δ2s = min(δmin
2s , δmax

2s ) <
√

2− 1. Then the solution x̂ to the
`1-minimization obeys

‖θ̂ − θ0‖1 ≤ C0‖θ0 − θs‖1 and ‖θ̂ − θ0‖2 ≤ C0s
−1/2‖θ0 − θs‖1

for some constant C0 and where θs denotes the s highest non-zero compo-
nent of θ0. In particular, if θ is s-sparse, the recovery is exact.
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Compressed sensing

I Restricted Isometry Property (RIP) [Candès, 2008]:

• Extended proposition to insure robustness to noise.

• Sufficient condition (not necessary).

• NP-hard to compute δ2s .

• δ2s <
√

2− 1: restrictive condition even for random matrices
[Dossal et al., 2010].
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Compressed sensing

I Sub-differential of `1 norm [Fuchs, 2004][Tropp, 2006]

Theorem [Fuchs, 2004]

The solution θ0 of Dθ = z can be recovered from the unique optimum point
θ̂ of `1-minimization if

1) |d>j d0| < 1, ∀dj /∈ D0 with d0 = D
+
0

>
sign(θ0),

2) h ∈]0, hm[ the domain in which

sign{θ0 − h
(
D
>
0 D0

)−1
sign(θ0)} = sign(θ0),

where
• θ0 is built upon the nonzero component of x0,

• D0 a full rank matrix such that Dx0 = D0x0,

• D+
0 =

(
D
>
0 D0

)−1
D
>
0 denotes the pseudo-inverse of D.
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Compressed sensing

I Sub-differential of `1 norm [Fuchs, 2004][Tropp, 2006]

• Extended proposition to ensure robustness to noise.

• Sufficient condition (not necessary).

• NP-hard to check the condition

|d>j d0| < 1, ∀dj /∈ D0 with d0 = D
+
0

>
sign(θ0) for all vector

s-sparse.
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Compressed sensing

I Coherence [Fuchs, 2004]

Theorem [Fuchs, 2004]

The solution θ0 of Dθ = z can be recovered from the unique optimum point
θ̂ of `1-minimization if

‖θ0‖0 <
1

2

(
1 +

1

M

)
where M = max

1≤i 6=j≤m
|d>i dj |.
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Compressed sensing

I Coherence [Fuchs, 2004]

• Extended proposition to ensure robustness to noise.

• Sub-differential of `1 norm condition ⇒ Coherence condition.

• Sufficient condition (not necessary).

• Easy to compute 1
2

(
1 + 1

M

)
and thus to know the allowed sparsity

degree.
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Compressed sensing

I Polytope theory [Donoho,2004] : NSC

I A large panel of the literature provides results based on greedy
algorithms (MP, OMP, OLS) solving rather that l1-minimization.

MP [Mallat 93], projection pursuit [Friedman 81], [Huber 85], pure
greedy [Temlyakov 08], OMP : [Pati 93], [Zhang 93], [Davis 94],
orthogonal greedy algorithm [Temlyakov 08], OLS : [Chen 89], forward
selection [Miller 02], greedy algorithm [Natarajan 95], order recursive
matching pursuit [Cotter 99], optimized orthogonal matching pursuit
[Reibollo-Neira 02], pure orthogonal matching pursuit [Foucart 11].

I Spectral sparsity [Fazel et al., 2001] [Srebro et al., 2005] : `1-`0

formulation for matrices. Minimization of the rank or its relaxation
involving nuclear norm
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Compressed sensing

I Difference between random and deterministic matrices:

• In a random context, the eigenvalue distribution can be
controlled and it results an explicit relation between s, K , and N.

• In a deterministic context and without prior onto the support
or the sign, the validation of the previous properties (RIP,
Coherence,...) requires a high computational cost.
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Structured sparsity

(figures extracted from J. Mairal course)
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1D-total variation

Anisotropic total variation [Rudin et al. 1992]

x̂ = arg min
x∈RN

‖x − z‖2
2 + λ

N−1∑
n=1

|xn+1 − xn|

I Statistics: fused Lasso

[Tibshirani et al 2005]

I `0-formulation: Potts model

[Geman, Geman 1984]

[Yao 1984]

[Mumford, Shah 1989]

[Winkler, Liebscher 2002] (cf. [Sowa et al. 2005])
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2D-total variation

Anisotropic total variation [Rudin et al. 1992]

x̂ = arg min
x∈RN

‖x − z‖2
2 +λ

N−1∑
n1=1

N−1∑
n2=1

(|xn1+1,n2 − xn1,n2 |2 + |xn1,n2+1− xn1,n2 |2)

I Horizontal and vertical difference filters:
f1 = [1− 1] and f2 = f1>

I Link between (f1, f2) and (F1,F2):

cf. slides 10-12 course 1

I Sparse transform:
F = [F>1 ,F

>
2 ]> ∈ R2N×N

I Regularization:
ψ(x) = ‖Fx‖1 = ‖F1x‖1 + ‖F2x‖1
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2D-total variation

Isotropic total variation [Rudin et al. 1992]

x̂ = arg min
x∈RN

‖x−z‖2
2+λ

N−1∑
n1=1

N−1∑
n2=1

√
|xn1+1,n2 − xn1,n2 |2 + |xn1,n2+1 − xn1,n2 |2

I Horizontal and vertical difference filters:
f1 = [1− 1] and f2 = f1>

I Link between (f1, f2) and (F1,F2):

cf. slides 10-12 course 1

I Sparse transform:
F = [F>1 ,F

>
2 ]> ∈ R2N×N

I Regularization: ψ(x) = ‖Fx‖1,2

→ coupling
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2D-total variation

Original x Noisy z 

Anisotropic TV Isotropic TV 
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Mixed-norm

Group-lasso [Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009]
[Grandvalet and Canu, 1999] [Bakin, 1999]

x̂ = arg min
θ∈RK

‖Dθ − z‖2
2 + λ

∑
g∈G
‖θg‖q

I G is a partition of {1, . . . ,K}
I q = {2,+∞}
I Can be interpreted as the `1-norm

of (‖θg‖q)g∈G .

→ Non-overlapping groups
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Structured sparsity

I Tree-structure [Zhao et al. 2009]

I Select a union of groups [Jacob et al. 2009]

I Zero-pattern in a union of groups [Jenatton et al, 2011]

→ Overlapping groups

I ...
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Some take-home messages

I Sparsity is not always good. If possible, try `2
2 before trying `1.

I The dictionaries used in practice rarely satisfy the assumptions
ensuring sparse recovery.

I Dictionary learning consists of estimating D and θ simultaneously.

I There are numerous ways of designing sparse regularization functions
adapted to a particular problem. Choosing the best one is not easy
and requires some domain knowledge.

I Solving criterion involving `1-norm requires specific algorithmic
procedures described in next courses.
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