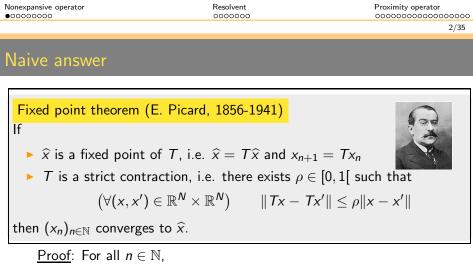
Inverse problem and optimization

Nelly PUSTELNIK CNRS, Laboratoire de Physique de l'ENS Lyon Laurent CONDAT CNRS, Gipsa-lab

Course 5 : Nonexpansive operators January, 19th 2017



$$\|x_{n+1} - \widehat{x}\| = \|Tx_n - T\widehat{x}\|$$
$$\leq \rho \|x_n - \widehat{x}\|.$$

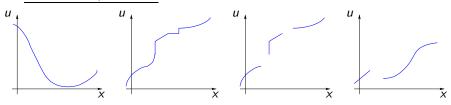
Consequently, $||x_n - \hat{x}|| \le \rho^n ||x_0 - \hat{x}||$. Hence, we have proved that $(x_n)_{n \in \mathbb{N}}$ converges linearly to \hat{x} .

Nonexpansive operator ○●○○○○○○○	Resolvent 0000000	Proximity operator
		3/35

Monotone operator: definition

Let \mathcal{H} be a real Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is monotone if $(\forall (x_1, u_1) \in \operatorname{gra} A) (\forall (x_2, u_2) \in \operatorname{gra} A) \qquad \langle u_1 - u_2 \mid x_1 - x_2 \rangle \ge 0$.

Monotone operators ?



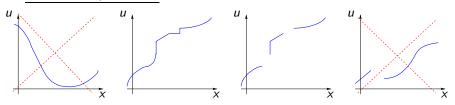
Nonexpansive operator ○●○○○○○○○	Resolvent 0000000	Proximity operator
		3/35

Monotone operator: definition

Let \mathcal{H} be a real Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is monotone if $(\forall (x_1, u_1) \in \operatorname{gra} A) (\forall (x_2, u_2) \in \operatorname{gra} A)$ $\langle u_1 -$

$$\langle u_1-u_2 \mid x_1-x_2 \rangle \geq 0$$
.

Monotone operators ?



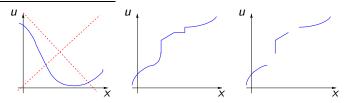
Nonexpansive operator	Resolvent	Proximity operator
0000000	0000000	000000000000000000000000000000000000000
		3/35

Monotone operator: definition

Let \mathcal{H} be a real Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is monotone if

 $(\forall (x_1, u_1) \in \operatorname{gra} A) (\forall (x_2, u_2) \in \operatorname{gra} A) \qquad \langle u_1 - u_2 \mid x_1 - x_2 \rangle \geq 0$

Monotone operators ?

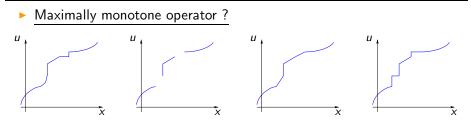


Example: subdifferential of a convex and proper function

Nonexpansive operator	Resolvent	Proximity operator
0000000	000000	000000000000000000000000000000000000000

Maximally monotone operator: definition

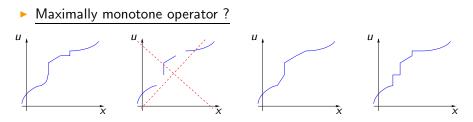
Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is maximally monotone if A is monotone and if there exists no monotone operator $B : \mathcal{H} \to 2^{\mathcal{H}}$ (different from A) such that graB properly contains graA.



Nonexpansive operator	Resolvent	Proximity operator
0000000	000000	000000000000000000000000000000000000000

Maximally monotone operator: definition

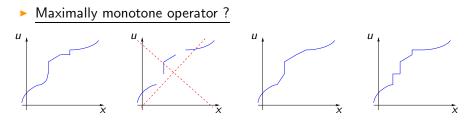
Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$. A is maximally monotone if A is monotone and if there exists no monotone operator $B: \mathcal{H} \to 2^{\mathcal{H}}$ (different from A) such that $\operatorname{gra} B$ properly contains $\operatorname{gra} A$.



Nonexpansive operator	Resolvent	Proximity operator
0000000	000000	000000000000000000000000000000000000000

Maximally monotone operator: definition

Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is maximally monotone if A is monotone and if there exists no monotone operator $B : \mathcal{H} \to 2^{\mathcal{H}}$ (different from A) such that graB properly contains graA.



Example: subdifferential of a convex, proper and l.s.c. function.

Nonexpansive operator	Resolvent 000000	Proximity operator
		5/35
Nonexpansive operat	or: definition	
Let \mathcal{H} be a Hilbert space	and let C be a nonemp	bty subset of $\mathcal H.$

A is nonexpansive if $(\forall (x,y) \in C^2)$ $||Ax - Ay|| \le ||x - y||$.

۰.

Nonexpansive operator 000●00000	Resolvent 0000000	Proximity operator
		5/35

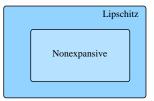
Let \mathcal{H} be a Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A: C \to \mathcal{H}$ and $\nu \in]0, +\infty[$

 $u^{-1}A$ is nonexpansive if $(\forall (x,y) \in C^2)$ $||Ax - Ay|| \le v ||x - y||.$

Nonexpansive operator	Resolvent 0000000	Proximity operator
		5/35

Let \mathcal{H} be a Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A: C \to \mathcal{H}$ and $\nu \in]0, +\infty[$ $\nu^{-1}A$ is nonexpansive if $(\forall (x, y) \in C^2) ||Ax - Ay|| \le \nu ||x - y||.$

$$\nu^{-1}A$$
 is nonexpansive $\Leftrightarrow A$ is ν -Lipschitzian.



Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		6/35

Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$ A is firmly nonexpansive if

 $(\forall (x, u) \in \operatorname{gra} A)(\forall (y, v) \in \operatorname{gra} A) \quad \|u - v\|^2 \leq \langle u - v \mid x - y \rangle \; .$

Nonexpansive operato 0000●0000	or Resolvent 0000000	Proximity operator
		6/35
Nonexpan	sive operator: definition	
Let $A: C$ –	Hilbert space and let C be a nonempty subset $\rightarrow \frac{\mathcal{H}}{\mathcal{H}}$.	et of H.
(\	$\forall x \in C$)($\forall y \in C$) $ Ax - Ay ^2 \le \langle Ax - Ay $	$x-y\rangle$.

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		6/35
Nonexpansive opera	ator: definition	
Let \mathcal{H} be a Hilbert space Let $A: C \to \mathcal{H}$.	ce and let <i>C</i> be a nonemp	ty subset of $\mathcal H.$
A is firmly nonexpansiv	<mark>ve</mark> if	
$(\forall (x,y) \in C^2) Ax $	$-Ay\ ^{2} + \ (\mathrm{Id} - A)x - (\mathrm{Id} - A)x\ ^{2}$	$\ \mathbf{d} - A(y)\ ^2 \le \ x - y\ ^2$.

Nonexpansive operator 0000●0000	Resolvent 0000000	Proximity operator
		6/35
Nonexpansive opera	tor: definition	
Let \mathcal{H} be a Hilbert space Let $A: C \rightarrow \mathcal{H}$. A is firmly nonexpansive	e and let <i>C</i> be a nonemp <mark>e</mark> if	ty subset of $\mathcal H.$
$(\forall (x,y) \in C^2) \mid \mid Ax \mid$	$-Ay\ ^2 + \ (\mathrm{Id} - A)x - ($	$ \mathrm{Id} - A)y ^2 \le x - y ^2$.

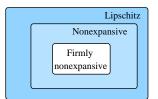
- A is firmly nonexpansive \Leftrightarrow Id A is firmly nonexpansive.
- A is firmly nonexpansive $\Leftrightarrow 2A Id$ is nonexpansive.

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		6/35
Nonexpansive operat	cor: definition	
Let \mathcal{H} be a Hilbert space Let $A: C \rightarrow \mathcal{H}$. A is firmly nonexpansive		pty subset of $\mathcal H.$
$(\forall (x,y) \in C^2) Ax -$	$ Ay ^2 + \ (\operatorname{Id} - A)x - Ay\ ^2$	$(\mathrm{Id} - A)y\ ^2 \le \ x - y\ ^2$.

- A is firmly nonexpansive \Leftrightarrow Id A is firmly nonexpansive.
- $A \text{ is firmly nonexpansive } \Leftrightarrow \underbrace{2A \mathrm{Id}}_{\mathsf{Reflection of A}} \text{ is nonexpansive.}$

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		6/35
Nonexpansive opera	ator: definition	
Let \mathcal{H} be a Hilbert space Let $A: C \to \mathcal{H}$.	ce and let <i>C</i> be a nonemp	ty subset of H.
A is firmly nonexpansiv	<mark>/e</mark> _if	
$(\forall (x,y) \in C^2) Ax $	$-Ay\ ^{2} + \ (\mathrm{Id} - A)x - (A)\ ^{2}$	$\ \mathrm{Id} - A)y\ ^2 \le \ x - y\ ^2$.

A is firmly nonexpansive \Rightarrow A is nonexpansive.



Nonexpansive operator	Resolvent	Proximity operator
000000000	0000000	000000000000000000000000000000000000000
		7/35
Nonovpancivo	operator: definition	
Nonexpansive	operator. demition	
Let \mathcal{H} be a Hilbe	rt space and let C be a nonempty	subset of \mathcal{H}_{\cdot}
Let $A: C \to \mathcal{H}$ a	nd let $\alpha \in]0, 1[.$	
A is α -averaged	if there exists a nonexpansive op	perator $R\colon \mathcal{C} o \mathcal{H}$ such
that		
that		
	$A = (1 - \alpha) \operatorname{Id} + \alpha R$.	

Nonexpansive operator	Resolvent 0000000	Proximity operator
		7/35

Let \mathcal{H} be a Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A : C \to \mathcal{H}$ and let $\alpha \in]0, 1[$. A is α -averaged if $(\forall (x, y) \in C^2) \quad ||Ax - Ay||^2 + \frac{1 - \alpha}{\alpha} ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		7/35

Let \mathcal{H} be a Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A : C \to \mathcal{H}$ and let $\alpha \in]0, 1[$. A is α -averaged if $(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + \frac{1 - \alpha}{\alpha} ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$

• A is α -averaged \Rightarrow A is nonexpansive.

• A is $\frac{1}{2}$ -averaged \Leftrightarrow A is firmly nonexpansive.

• A is α -averaged \Rightarrow A is α' -averaged for every $\alpha' \in [\alpha, 1[$.

▶ Let $\lambda \in]0, 1/\alpha[$. A is α -averaged $\Rightarrow (1 - \lambda)Id + \lambda A$ is $\lambda \alpha$ -averaged.

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		7/35

Let \mathcal{H} be a Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A : C \to \mathcal{H}$ and let $\alpha \in]0, 1[$. A is α -averaged if $(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + \frac{1 - \alpha}{\alpha} ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$

► Let $(\omega_i)_{1 \le i \le n} \in]0, 1]^n$ be such that $\sum_{i=1}^n \omega_i = 1$ and let $(\alpha_i)_{1 \le i \le n} \in]0, 1[^n$. If, for every $i \in \{1, \ldots, n\}$, $A_i : C \to \mathcal{H}$ is α_i -averaged, then $\sum_{i=1}^n \omega_i A_i$ is α -averaged with $\alpha = \max_{1 \le i \le n} \alpha_i$.

Let
$$(\alpha_i)_{1 \le i \le n} \in]0, 1[^n .$$
 If, for every $i \in \{1, ..., n\}$, $A_i : C \to C$ is α_i -averaged, then $A_1 \cdots A_n$ is α -averaged with $\alpha = \frac{n}{n-1+\frac{1}{m^{2n} + m^{2n}}}.$

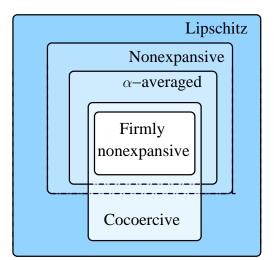
Nonexpansive operator	Resolvent	Proximity operator
000000000	0000000	000000000000000000000000000000000000000
		7/35

Let \mathcal{H} be a Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A : C \to \mathcal{H}$ and let $\alpha \in]0, 1[$. A is α -averaged if $(\forall (x, y) \in C^2) \quad ||Ax - Ay||^2 + \frac{1 - \alpha}{\alpha} ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$

 $A: \mathcal{H} \to \mathcal{H}$ is α -averaged with $\alpha \in]0, 1/2] \Rightarrow A$ is maximally monotone.

Resolvent

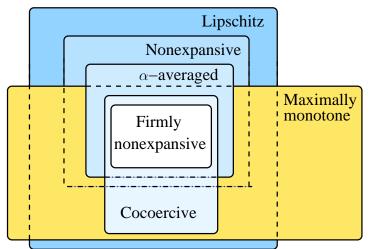
Nonexpansive operator: recap



Nonexpansive operator	Resolvent	Proximity operator
	000000	8/35

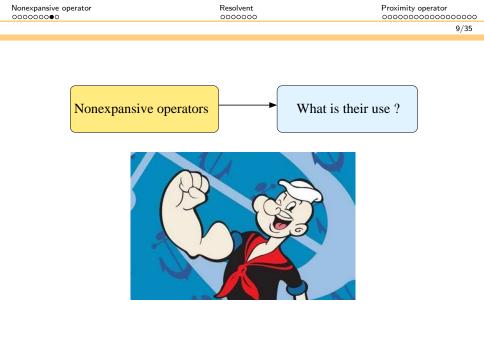
Nonexpansive operator: recap

(if the domain C is equal to \mathcal{H})



Nonexpansive operator	Resolvent 000000	Proximity operator
		9/35

Nonexpansive operators



Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000

Nonexpansive operator: example

Descent lemma

Let \mathcal{H} be a Hilbert space, $f \colon \mathcal{H} \to \mathbb{R}$ and $\nu \in \]0, +\infty[$.

If f is differentiable and its gradient is ν -Lipschitzian, then

$$ig(orall(x,y)\in\mathcal{H}^2ig) \quad f(y)\leq f(x)+\langle y-x\mid
abla f(x)
angle+rac{
u}{2}\|y-x\|^2.$$

Nonexpansive operator	Resolvent	Proximity operator
0000000	000000	000000000000000000000000000000000000000

Nonexpansive operator: example

Descent lemma

Let \mathcal{H} be a Hilbert space, $f \colon \mathcal{H} \to \mathbb{R}$ and $\nu \in \]0, +\infty[$.

If f is differentiable and its gradient is ν -Lipschitzian, then

$$ig(orall(x,y)\in\mathcal{H}^2ig)\quad f(y)\leq f(x)+\langle y-x\mid
abla f(x)
angle+rac{
u}{2}\|y-x\|^2.$$

Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$, $\nu \in]0, +\infty[$ and $\gamma \in]0, 2\nu^{-1}[$. f differentiable and $\nabla f \nu$ -Lipschitzian $\Rightarrow \operatorname{Id} - \gamma \nabla f$ is $\gamma \nu / 2$ -averaged.

Nonexpansive operator	Resolvent	Proximity operator
0000000	000000	000000000000000000000000000000000000000

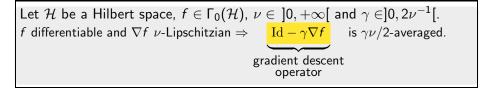
Nonexpansive operator: example

Descent lemma

Let \mathcal{H} be a Hilbert space, $f \colon \mathcal{H} \to \mathbb{R}$ and $\nu \in \]0, +\infty[$.

If f is differentiable and its gradient is ν -Lipschitzian, then

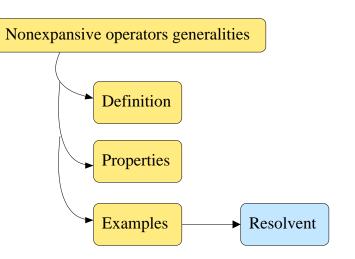
$$ig(orall(x,y)\in\mathcal{H}^2ig) \quad f(y)\leq f(x)+\langle y-x\mid
abla f(x)
angle+rac{
u}{2}\|y-x\|^2.$$



Nonexpansive	operator
000000000	

Resolvent

11/35



Nonexpansive operator 00000000	Resolvent ○●○○○○○	Proximity operator
		12/35

Monotone operator: inversion

Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$. A^{-1} is the operator from \mathcal{H} to $2^{\mathcal{H}}$ the graph of which is $\operatorname{gra}(A^{-1}) = \{(u, x) \mid (x, u) \in \operatorname{gra}A\}.$ with gra $A = \{ (x, u) \in \mathcal{H}^2 \mid u \in Ax \}.$ Graph of A Graph of A и х х x

Nonexpansive operator 00000000	Resolvent ○●○○○○○	Proximity operator
		12/35

Monotone operator: inversion

Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$. A^{-1} is the operator from \mathcal{H} to $2^{\mathcal{H}}$ the graph of which is $\operatorname{gra}(A^{-1}) = \{(u, x) \mid (x, u) \in \operatorname{gra}A\}.$ with gra $A = \{ (x, u) \in \mathcal{H}^2 \mid u \in Ax \}.$ Graph of A Graph of A и x x x

Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000

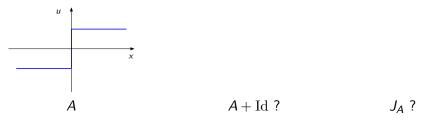
Monotone operator: inversion

Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$. A^{-1} is the operator from \mathcal{H} to $2^{\mathcal{H}}$ the graph of which is $\operatorname{gra}(A^{-1}) = \{(u, x) \mid (x, u) \in \operatorname{gra}A\}.$ with $\operatorname{gra}A = \{(x, u) \in \mathcal{H}^2 \mid u \in Ax\}.$

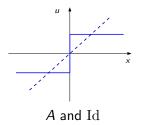
Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$ be a monotone operator. A^{-1} is monotone.

Nonexpansive operator 00000000	Resolvent 00●0000	Proximity operator
		13/35
Resolvent: definition		
Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. The revolvent of A is		
	$J_A = (\mathrm{Id} + A)^{-1}.$	

Nonexpansive operator 00000000	Resolvent 00●0000	Proximity operator
		13/35
Decelvente definition		
Resolvent: definition		
Let \mathcal{H} be a Hilbert space.		
Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.		
The revolvent of A is		
	$J_A = (\mathrm{Id} + A)^{-1}.$	
	$J_{\mathcal{A}} = (\mathrm{Id} + \mathcal{A})$.	
	$J_A = (I\alpha + M)$	

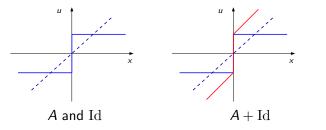


Nonexpansive operator 00000000	Resolvent 00●0000	Proximity operator
		13/35
Resolvent: definition		
Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. The revolvent of A is		
	$J_A = (\mathrm{Id} + A)^{-1}.$	



Nonexpansive operator 000000000	Resolvent 00●0000	Proximity operator
		13/35
Resolvent: definition		
Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. The revolvent of A is	$J_A = (\mathrm{Id} + A)^{-1}.$	

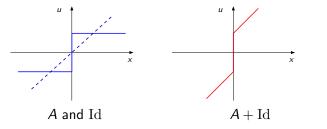
► Example :



Nonexpansive operator 000000000	Resolvent 00●0000	Proximity operator
		13/35
Resolvent: definition		
Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. The revolvent of A is		
	$J_A = (\mathrm{Id} + A)^{-1}.$	

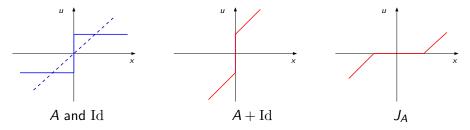
 J_A ?

► Example :



Nonexpansive operator 000000000	Resolvent 00●0000	Proximity operator
		13/35
Resolvent: definition		
Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. The revolvent of A is	$J_A = (\mathrm{Id} + A)^{-1}.$	

► Example :



Nonexpansive operator		Resolvent 000€000	Proximity operator
			14/35
Resolvent: d	definition		
			

The range of an operator $B: \mathcal{H} \to 2^{\mathcal{H}}$ is

$$\operatorname{ran} B = \{ u \in \mathcal{H} \mid \exists x \in \mathcal{H}, u \in Bx \}.$$

Minty theorem Let \mathcal{H} be a Hilbert space. Let $\mathcal{A} \colon \mathcal{H} \to 2^{\mathcal{H}}$ be a monotone operator.

 $\operatorname{ran}(\operatorname{Id} + A) = \mathcal{H} \quad \Leftrightarrow \quad A \text{ is maximally monotone.}$

Nonexpansive operator	Resolvent 0000●00	Proximity operator
		15/35
Resolvent: properti	es	
Let \mathcal{H} be a Hilbert space A is monotone $\Leftrightarrow J_A$ is		
$\underline{Remark}: J_{\mathcal{A}}: \operatorname{ran} (\mathrm{Id} +$	$A) \to \mathcal{H}.$	

Nonexpansive operator	Resolvent 0000000	Proximity operator
		15/35
Resolvent:	properties	
Let $\mathcal H$ be a	Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.	

A is monotone \Leftrightarrow J_A is firmly nonexpansive.

Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is maximally monotone $\Leftrightarrow J_A : \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive.

<u>Proof</u>: A monotone $\Leftrightarrow J_A$: ran (Id + A) $\rightarrow \mathcal{H}$ firmly nonexpansive + Minty theorem.

Nonexpansive operator 000000000	Resolvent 0000€00	Proximity operator
		15/35
Resolvent: properties		

Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is monotone $\Leftrightarrow J_A$ is firmly nonexpansive.

Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$. A is maximally monotone $\Leftrightarrow J_A : \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive.

Let \mathcal{H} be a Hilbert space. Let $A : \mathcal{H} \to 2^{\mathcal{H}}$ maximally monotone and $\gamma \in]0, +\infty[$. For every $x \in \mathcal{H}$, there exists a unique $p \in \mathcal{H}$ such that $x - p \in \gamma Ap$ and thus $p = J_{\gamma A}x$.

<u>Proof</u>: $x \in (\mathrm{Id} + \gamma A)(p) \Leftrightarrow p \in (\mathrm{Id} + \gamma A)^{-1}x \Leftrightarrow p = J_{\gamma A}x$

Nonexpansive operator 000000000	Resolvent 00000●0	Proximity operator
		16/35
Resolvent: properties		
		
Let \mathcal{H} be a Hilbert space.		
Let $A: \mathcal{H} \to 2^{\mathcal{H}}$ be a maximum	imally monotone and	$\gamma \in [0, +\infty)$
	•	$r \in \mathbf{[0, +\infty[.)]}$
► $J_{\gamma A}$ and $\mathrm{Id} - J_{\gamma A}$ are	firmly nonexpansive.	
► The reflected resolver	nt $R_{\gamma A} = 2 J_{\gamma A} - \mathrm{Id}$ i	s nonexpansive.

Woyai? Resolvent

Resolvent

17/35

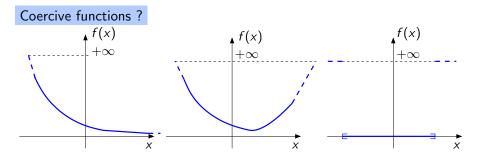
Woyai? Proximity Resolvent operator

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator ●000000000000000000000000000000000000
		18/35
Convex analysis		

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

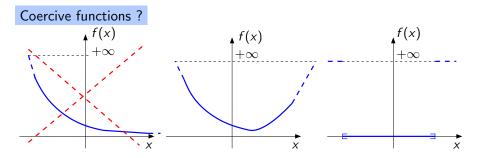
Nonexpansive operator 00000000	Resolvent 0000000	Proximity operator •000000000000000000000000000000000000
		18/35
Convex analysis		

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.



Nonexpansive operator 00000000	Resolvent 000000	Proximity operator ●000000000000000000000000000000000000
		18/35
Convex analysis		

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.



Nonexpansive operator 00000000	Resolvent 000000	Proximity operator ○●○○○○○○○○○○○○○○○
		19/35
Convex analysis		

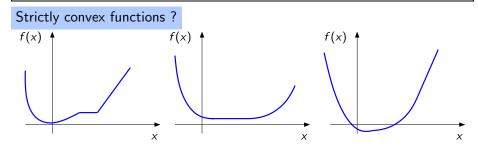
Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f : \mathcal{H} \to]-\infty, +\infty]$.
 f is strictly convex if

 $\begin{aligned} (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in]0,1[) \\ x \neq y \quad \Rightarrow \quad f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y). \end{aligned}$

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		19/35
Convex analysis		

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is strictly convex if

$$\begin{aligned} (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in]0,1[) \\ x \neq y \quad \Rightarrow \quad f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y). \end{aligned}$$



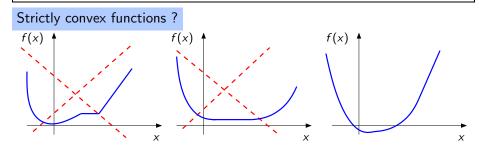
Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		19/35

Convex analysis

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is strictly convex if

$$(\forall x \in \operatorname{dom} f) (\forall y \in \operatorname{dom} f) (\forall \alpha \in]0, 1[)$$

 $x \neq y \quad \Rightarrow \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$



Nonexpansive operator 000000000	Resolvent 000000	Proximity operator
		20/35
Convoy analysis		

Convex analysis

Let \mathcal{H} be a Hilbert space and C be a closed convex of \mathcal{H} . Let $f \in \Gamma_0(\mathcal{H})$ such that $\operatorname{dom} f \cap C \neq \emptyset$. If f is coercive or C is bounded, then there exists $p \in C$ such that

$$f(p) = \inf_{x \in C} f(x).$$

Moreover, if f is strictly convex, this minimizer p is unique.

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		21/35

Proximity operator: definition

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$. For every $x \in \mathcal{H}$, there exists a unique $p \in \mathcal{H}$ such that

$$f(p) + rac{1}{2\gamma} \|p - x\|^2 = \inf_{y \in \mathcal{H}} f(y) + rac{1}{2\gamma} \|y - x\|^2$$

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		21/35

Proximity operator: definition

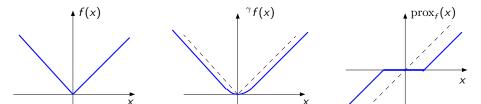
Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$. For every $x \in \mathcal{H}$, there exists a unique $p \in \mathcal{H}$ such that

$$f(p) + \frac{1}{2\gamma} \|p - x\|^2 = \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} \|y - x\|^2$$

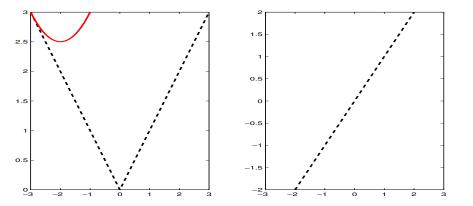
Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$. • The Moreau envelope of f of parameter $\gamma \in]0, +\infty[$ is $\gamma f: \mathcal{H} \to \mathbb{R}: x \mapsto \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} ||y - x||^2$. • The proximity operator of f is $\operatorname{prox}_f: \mathcal{H} \to \mathcal{H}: x \mapsto \operatorname{argmin}_{y \in \mathcal{H}} f(y) + \frac{1}{2} ||y - x||^2$.

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		21/35

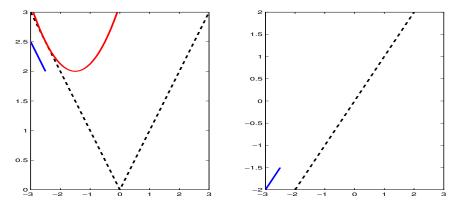
Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$.
• The Moreau envelope of f of parameter $\gamma \in]0, +\infty[$ is
 $\gamma f: \mathcal{H} \to \mathbb{R}: x \mapsto \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} ||y - x||^2$.
• The proximity operator of f is
 $\operatorname{prox}_f: \mathcal{H} \to \mathcal{H}: x \mapsto \operatorname{argmin}_{y \in \mathcal{H}} f(y) + \frac{1}{2} ||y - x||^2$.



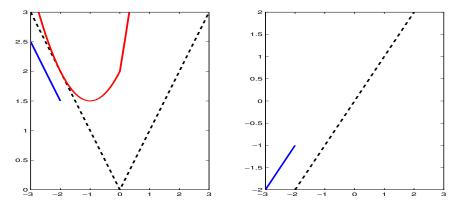
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



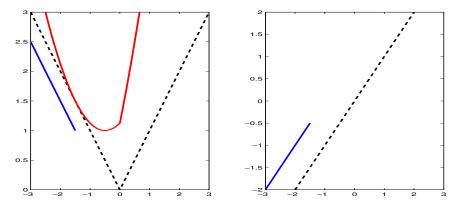
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



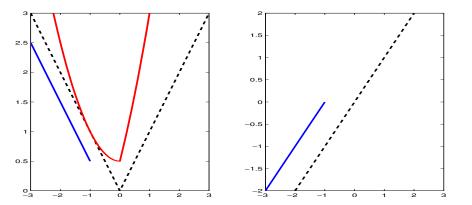
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



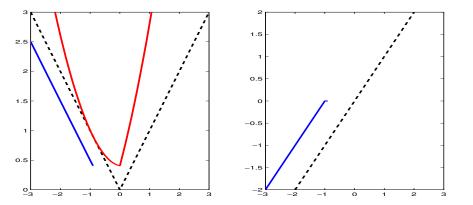
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



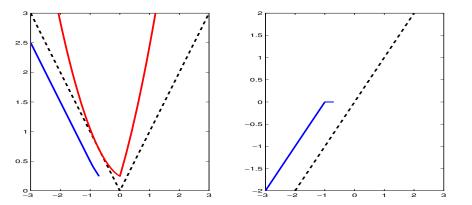
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



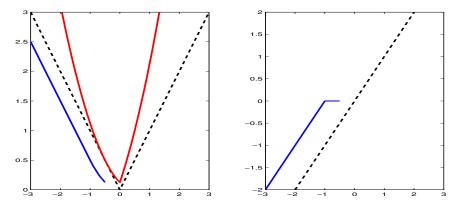
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



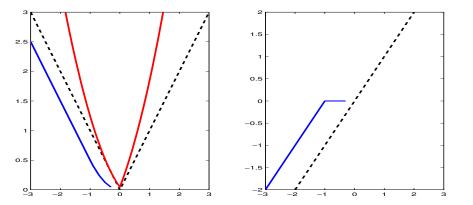
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



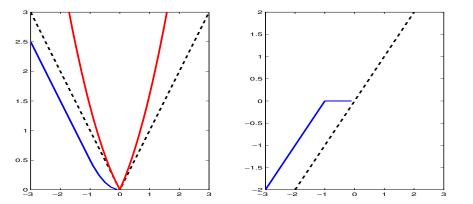
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



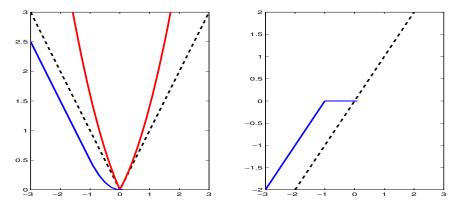
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



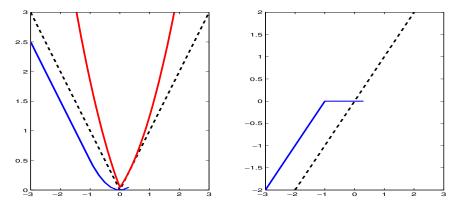
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



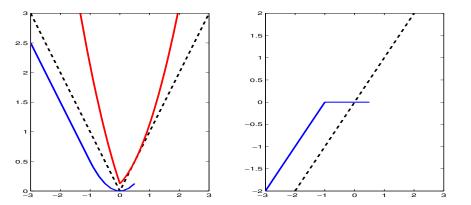
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



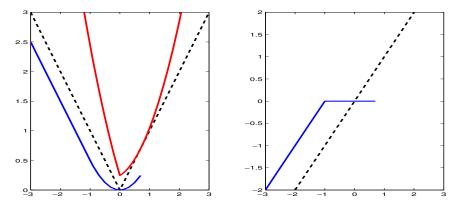
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



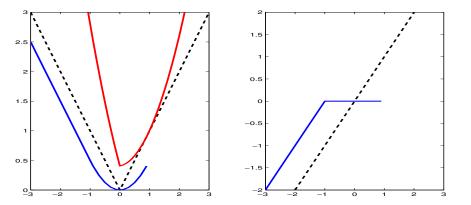
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



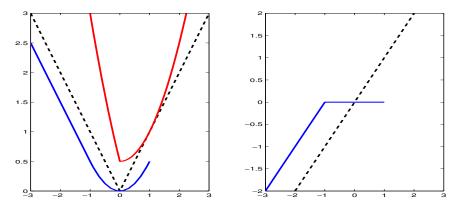
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



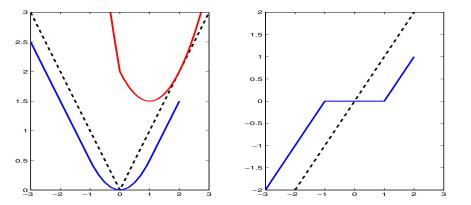
Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000



Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000

22/35

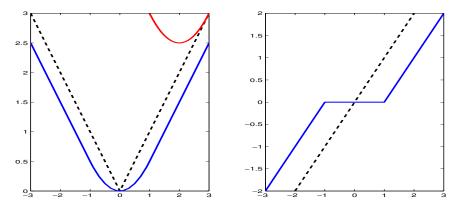
Proximity operator: definition



Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000000000000000000000000000000000000

22/35

Proximity operator: definition



Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		23/35

Proximity operator: definition

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. If dom $f \cap int (dom g) \neq \emptyset$ then $\partial(f + g) = \partial f + \partial g$.

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

 $\operatorname{prox}_f = J_{\partial f} \ .$

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		22/25

Proximity operator: definition

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. If dom $f \cap int (dom g) \neq \emptyset$ then $\partial(f + g) = \partial f + \partial g$.

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

 $\operatorname{prox}_f = J_{\partial f} \ .$

<u>Proof</u>: By using Fermat's rule, for every $x \in \mathcal{H}$, $p = \arg \min |f + (2\gamma)^{-1}|| \cdot -x||^2 \Leftrightarrow 0 \in \partial \left(f + \frac{1}{2}|| \cdot -x||^2\right)(p)$ $\Leftrightarrow 0 \in \partial f(p) + p - x$ $\Leftrightarrow x \in (\mathrm{Id} + \partial f)(p)$ $\Leftrightarrow p = (\mathrm{Id} + \partial f)^{-1}(x).$

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		23/35

Proximity operator: definition

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. If dom $f \cap int (\operatorname{dom} g) \neq \emptyset$ then $\partial(f + g) = \partial f + \partial g$.

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

 $\operatorname{prox}_f = J_{\partial f} \ .$

<u>Remark</u>: As dom $(\text{prox}_f) = \mathcal{H}$, this provides a proof that ∂f is maximally monotone !

Nonexpansive operator	Resolvent	Proximity operator
00000000	000000	000000●000000000000000000000000000000
		24/35

Let
$$\mathcal{H}$$
 be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $(x, p) \in \mathcal{H}^2$.

$$p = \operatorname{prox}_{\gamma f} x \quad \Leftrightarrow \quad (\forall y \in \mathcal{H}) \quad \langle y - p \mid x - p \rangle + f(p) \leq f(y).$$

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		24/35

Let
$$\mathcal{H}$$
 be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $(x, p) \in \mathcal{H}^2$.

$$p = \operatorname{prox}_{\gamma f} x \quad \Leftrightarrow \quad (\forall y \in \mathcal{H}) \quad \langle y - p \mid x - p \rangle + f(p) \leq f(y).$$

Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$. γf is differentiable and $\nabla^{\gamma} f$ is γ^{-1} -Lipschitzian

$$\begin{array}{ll} (\forall x \in \mathcal{H}) & \nabla \underbrace{\gamma f}_{\text{envelope}} = \gamma^{-1} (\text{Id} - \text{prox}_{\gamma f}) = \underbrace{\gamma \partial f}_{\text{Yosida}} \\ & \text{Yosida} \\ & \text{approximation} \end{array} .$$

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		24/35

Let
$$\mathcal{H}$$
 be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $(x, p) \in \mathcal{H}^2$.

$$p = \operatorname{prox}_{\gamma f} x \quad \Leftrightarrow \quad (\forall y \in \mathcal{H}) \quad \langle y - p \mid x - p \rangle + f(p) \leq f(y).$$

Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$. γf is differentiable and $\nabla^{\gamma} f$ is γ^{-1} -Lipschitzian

$$\begin{array}{ll} (\forall x \in \mathcal{H}) & \nabla \underbrace{\gamma f}_{\text{Moreau}} = \gamma^{-1} (\text{Id} - \text{prox}_{\gamma f}) = \underbrace{\gamma \partial f}_{\text{Yosida}} \\ & \text{Moreau}_{\text{envelope}} \end{array}$$

<u>Proof</u>: Previous property + ... calculations.

Nonexpansive operator 000000000	Resolvent 0000000	Proximity operator
		24/35

Let
$$\mathcal{H}$$
 be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $(x, p) \in \mathcal{H}^2$.

$$p = \operatorname{prox}_{\gamma f} x \quad \Leftrightarrow \quad (\forall y \in \mathcal{H}) \quad \langle y - p \mid x - p \rangle + f(p) \leq f(y).$$

Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$. γf is differentiable and $\nabla^{\gamma} f$ is γ^{-1} -Lipschitzian

$$\begin{array}{ll} (\forall x \in \mathcal{H}) & \nabla \underbrace{\gamma f}_{\text{envelope}} = \gamma^{-1} (\text{Id} - \text{prox}_{\gamma f}) = \underbrace{\gamma \partial f}_{\text{Yosida}} \\ & \text{Noreau}_{\text{envelope}} & \text{Yosida}_{\text{approximation}} \end{array}$$

Interpretation: γf is a smooth approximation of f.

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		25/35

Let \mathcal{H} be a Hilbert space, $x \in \mathcal{H}$ and $f \in \Gamma_0(\mathcal{H})$.

Properties	g(x)	prox _g x
Translation	$f(x-z), z \in \mathcal{H}$	$z + \operatorname{prox}_f(x - z)$
Quadratic perturbation	$f(x) + \alpha \parallel x \parallel^2 / 2 + \langle z \mid x \rangle + \gamma$ $z \in \mathcal{H}, \alpha > 0, \gamma \in \mathbb{R}$	$\operatorname{prox}_{\frac{f}{\alpha+1}}(\frac{x-z}{\alpha+1})$
Scale change	$f(ho x), ho \in \mathbb{R}^*$	$\frac{1}{\rho} \operatorname{prox}_{\rho^2 f}(\rho x)$
Reflection	f(-x)	$-\operatorname{prox}_f(-x)$
Moreau envelope	$\gamma f(x) = \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} x - y ^2$ $\gamma > 0$	$\frac{1}{1+\gamma} \left(\gamma x + \operatorname{prox}_{(1+\gamma)f}(x) \right)$

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		26/35

For every $i \in \{1, ..., n\}$, let \mathcal{H}_i be a Hilbert space and $f_i \in \Gamma_0(\mathcal{H}_i)$. For all $(x_1, ..., x_n) \in \mathcal{H}_1 \times \cdots \times \mathcal{H}_n$, if $f(x_1, ..., x_n) = \sum_{i=1}^n f_i(x_i)$. then $\operatorname{prox}_f(x_1, ..., x_n) = (\operatorname{prox}_{f_i}(x_i))_{1 \le i \le n}$.

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		27/25

Let \mathcal{H} be a separable Hilbert space. Let $(b_i)_{i \in I}$ be an orthonormal basis of \mathcal{H} . For every $i \in I$, let $\varphi_i \in \Gamma_0(\mathbb{R})$ such that $\varphi_i \ge 0$. For every $x \in \mathcal{H}$, if $f(x) = \sum_{i \in I} \varphi_i(\langle x \mid b_i \rangle)$ then $\operatorname{prox}_f(x) = \sum_{i \in I} \operatorname{prox}_{\varphi_i}(\langle x \mid b_i \rangle)b_i$.

<u>Remark</u>: The assumption ($\forall i \in I$) $\varphi_i \ge 0$ can be relaxed if \mathcal{H} is finite dimensional.

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		27/25

Let \mathcal{H} be a separable Hilbert space. Let $(b_i)_{i \in I}$ be an orthonormal basis of \mathcal{H} . For every $i \in I$, let $\varphi_i \in \Gamma_0(\mathbb{R})$ such that $\varphi_i \ge 0$. For every $x \in \mathcal{H}$, if $f(x) = \sum_{i \in I} \varphi_i(\langle x \mid b_i \rangle)$ then $\operatorname{prox}_f(x) = \sum_{i \in I} \operatorname{prox}_{\varphi_i}(\langle x \mid b_i \rangle)b_i.$

Example: $\mathcal{H} = \mathbb{R}^N$, $(b_i)_{1 \le i \le N}$ canonical basis of \mathbb{R}^N , $f = \lambda \| \cdot \|_1$ with $\overline{\lambda \in [0, +\infty[.}]$ $(\forall x = (x^{(i)})_{1 \le i \le N}) \in \mathbb{R}^N) \quad \operatorname{prox}_{\lambda \| \cdot \|_1}(x) = (\operatorname{prox}_{\lambda | \cdot |}(x^{(i)}))_{1 \le i \le N}$

Nonexpansive operator	Resolvent 0000000	Proximity operator
		28/35

Moreau decomposition formulaLet \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$. $(\forall x \in \mathcal{H})$ $\operatorname{prox}_{\gamma f^*} x = x - \gamma \operatorname{prox}_{\gamma^{-1} f}(\gamma^{-1} x)$.

Nonexpansive operator 00000000	Resolvent 0000000	Proximity operator
		28/35

 $\begin{array}{l} \text{Moreau decomposition formula}\\ \text{Let }\mathcal{H} \text{ be a Hilbert space, } f \in \Gamma_0(\mathcal{H}) \text{ and } \gamma \in \]0, +\infty[.\\ (\forall x \in \mathcal{H}) \qquad & \operatorname{prox}_{\gamma f^*} x = x - \gamma \operatorname{prox}_{\gamma^{-1} f}(\gamma^{-1} x) \ . \end{array}$

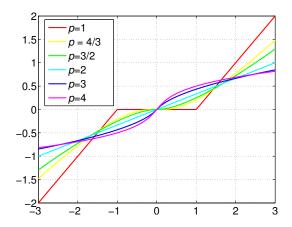
Example: If $\mathcal{H} = \mathbb{R}^N$, $f = \frac{1}{q} \| \cdot \|_q^q$ with $q \in]1, +\infty[$, then $f^* = \frac{1}{q^*} \| \cdot \|_{q^*}^{q^*}$ with $1/q + 1/q^* = 1$, and

$$(\forall x \in \mathbb{R}^N) \qquad \operatorname{prox}_{\frac{\gamma}{q^*} \parallel \cdot \parallel_{q^*}^q} x = x - \gamma \operatorname{prox}_{\frac{1}{\gamma q} \parallel \cdot \parallel_q^q} (\gamma^{-1} x).$$

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000

29/35

Proximity operator: properties



Nonexpansive operator 00000000	Resolvent 000000	Proximity operator
		30/35

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that ran $L = \mathcal{H}$. Then

 $\partial(f\circ L)=L^*\,\partial f\,L.$

Nonexpansive operator 00000000	Resolvent 0000000	Proximity operator
		30/35

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that ran $L = \mathcal{H}$. Then

 $\partial(f\circ L)=L^*\,\partial f\,L.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that $LL^* = \mu \mathrm{Id}$ where $\mu \in]0, +\infty[$. Then

$$\operatorname{prox}_{f \circ L} = \operatorname{Id} - \mu^{-1} L^* \circ (\operatorname{Id} - \operatorname{prox}_{\mu f}) \circ L.$$

Nonexpansive operator 00000000	Resolvent 0000000	Proximity operator
		30/35

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that ran $L = \mathcal{H}$. Then

 $\partial(f\circ L)=L^*\,\partial f\,L.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that $LL^* = \mu \mathrm{Id}$ where $\mu \in]0, +\infty[$. Then

$$\operatorname{prox}_{f \circ I} = \operatorname{Id} - \mu^{-1} L^* \circ (\operatorname{Id} - \operatorname{prox}_{\mu f}) \circ L.$$

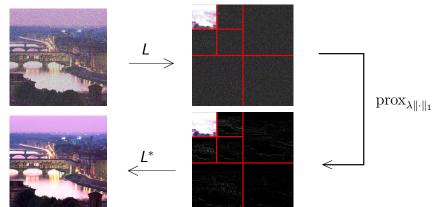
Remark :

Useful property for data fidelity terms involving a neg-log-likelihood f and a synthesis tight frame operator L.

Nonexpansive operator	Resolvent	Proximity operator
00000000	0000000	000000000000000000000000000000000000000
		31/35

<u>Particular case</u> : $L \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ unitary, $\operatorname{prox}_{f \circ L} = L^* \operatorname{prox}_f L$.

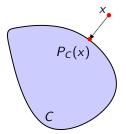
▶ Illustration: denoising using an ℓ_1 penalty on the coefficients resulting from an orthogonal wavelet transform *L*.



Nonexpansive operator 00000000	Resolvent 000000	Proximity operator
		32/35

Proximity operator: examples

Projection:Let \mathcal{H} be a Hilbert space. Let C be a nonempty closed convex subset of \mathcal{H} . $(\forall x \in \mathcal{H})$ $\operatorname{prox}_{\iota_{\mathcal{C}}}(x) = \operatorname{argmin}_{y \in \mathcal{C}} \frac{1}{2} \|y - x\|^2 = P_{\mathcal{C}}(x).$



0000000 000000 0000000	
0000000 0000000 0000000	000000000000

33/35

Proximity operator: examples

Quadratic function:Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.Let $L \in \mathcal{B}(\mathcal{G}, \mathcal{H}), \gamma \in]0, +\infty[$ and $z \in \mathcal{G}$. $f = \gamma ||L \cdot -z||^2 / 2 \Rightarrow \operatorname{prox}_f = (\operatorname{Id} + \gamma L^* L)^{-1} (\cdot + \gamma L^* z).$

Nonexpansive operator	Resolvent 000000	Proximity operator
		34/35

Proximity operator: examples

 $\begin{array}{l} \ell_2 \text{-norm} \\ \text{Let } f \in \Gamma_0(\mathcal{H}) \text{ such that } f = \gamma \| \cdot \|_2, \text{ its proximity operator is} \\ (\forall x \in \mathcal{H}) \quad \operatorname{prox}_{\gamma f} x = \max \big(0, \frac{1 - \gamma}{\|x\|_2}\big) x \end{array}$

Nonexpansive operator 00000000	Resolvent 0000000	Proximity operator
		35/35
Some take-home messages		
• Gradient descent is α -averaged.		
▶ $\operatorname{prox}_f = J_{\partial f}$ with $f \in \Gamma_0(\mathcal{H})$ is firmly non-expansive, thus α -averaged.		

- ► The reflected resolvent is nonexpansive.
- Closed form expressions form several functions.
- ▶ Next course: design algorithms.