Optimization: why?

We think that convex optimization is an important enough topic
that everyone who uses computational mathematics should know at
least a little bit about it. In our opinion, convex optimization is a
natural next topic after advanced linear algebra and linear
programming.

(Stephen Boyd and Lieven Vandenberghe)




Optimization: when ?

Optimization problems arise naturally in many application fields.
Whatever people do, at some point they get a craving to organize
things in a best possible way. This intention, converted in a
mathematical form, turns out to be an optimization problem of
certain type.

(Yurii Nesterov)




Structured illumination microscopy
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Positron emission tomography
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Positron emission tomography
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Cartoon-texture decomposition
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Robust PCA
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[From Goldfarb, Ma, Sheinberg, 2010]



Mumford-Shah
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[Mumford-Shah, 1989]




Total variation model
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Chan-Vese model
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Classification

Training set

Images to classify
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» Training set of size L for K classes:
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Learning: multiclass SVM

» ¢(u): RN — RM: mapping from the input space onto an
arbitrary feature space with M > N

= linearization
examples: convolution networks [Mirowski et al., 2008]
scattering coefficients [Brunat,Mallat,2013]

» The predictor relies on K different discriminating functions
Di: RN 5 R :

Dy (u) = ¢(u) " x(K) 4 p(k)
» The predictor selects the class that best matches an



Learning: multiclass SVM

Objective of the learning stage: estimate x to correctly predict the
input-output pair (ug, z;) € S for every £ € {1,...,L},

7y = arg max o(ug) " x(¥)
1<k<K

& maxp(u) T (xR —x(@) <0
k#zp

[relax the strict ineqality with p, > 0]<=> Ln#ax gD(Ug)T(X(k) — X(ZZ)) < — g
zp

[deal with unfeasible constraints ¢(©) > 0]<> km#ax QO(Ug)T(X(k) — X(ze)) < C(Z)
z
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Image deconvolution with CNN

» Inverse problems : Tikhonov penalization
X € Argmin||Hx — z||> + \||Tx||3
xERN
& X=(HH+ AT "Hz = Gz.

» Reformulation into a convolutional network using the kernel
separability theorem relying on the existence of the
decomposition G = USV ':

=Y 5Ui(V%2).
J

where s; denotes the j-th singular value, and U; . (resp. Vj,)
denotes the j-th column of U (resp. V).

» 2D deconvolution can be reformulated as a weighted sum of
separable 1D filters.

» X can be well approximated by a small number of separable
filters by dropping out kernel associated with very small s;.



Image deconvolution with CNN

> Image Deconvolution Convolutional Neural Networks (DCNN)
[Xu et al, 2014] :

%= (2)
= W30’(W20’(W12 + bl) + by.

» Wj3 denotes weights playing the same role than S,
» W, and W;: separable kernels acting horizontally or vertically,
» o denotes a nonlinear function.

» Goal: estimate (W;)i=1,23 and (b;)i=1 in order to minimize
1 _
N > 1 (ze) = %ell-
ieN

using training image pairs {Xs, z¢ }ren-



