DM optimization: piecewise linear denoising

Let $\bar{x}=\left(\bar{x}^{(i)}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$ be a sampled piecewise constant noisy signal. We denote $y=\bar{x}+\varepsilon$ a noisy version of \bar{x} with $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$. An illustration of \bar{x} and y is displayed in Figure 1.

Figure 1 - Illustration of a piecewise constant signal with $N=100$ samples degraded with a white Gaussian noise of variance $\sigma^{2}=1$.

The objective of this exercice is to obtain a piecewise constant estimate \widehat{x} which is the closest to the original \bar{x} from data y. A solution consists in minimizing the following objective function :

$$
\widehat{x}_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|L x\|_{1}
$$

where $(L x)^{(i)}=x^{(i+1)}-x^{(i)}$ for every $i \in\{1, \ldots, N-1\}, y \in \mathbb{R}^{N}$ and $\lambda>0 . L \in \mathbb{R}^{(N-1) \times N}$ denotes the finite difference operator.

1. Prove that the dual problem can be written as

$$
\widehat{u}_{\lambda} \in \operatorname{Argmin}_{u \in \mathbb{R}^{N-1}} \frac{1}{2}\left\|y-L^{*} u\right\|_{2}^{2} \quad \text { s.t. } \quad\|u\|_{\infty} \leq \lambda
$$

and that the relation with the dual solution is

$$
\widehat{x}_{\lambda}=y-L^{*} \widehat{u}_{\lambda} .
$$

