DM optimization: piecewise linear denoising

Let $\overline{x} = (\overline{x}^{(i)})_{1 \leq i \leq N} \in \mathbb{R}^N$ be a sampled piecewise constant noisy signal. We denote $y = \overline{x} + \varepsilon$ a noisy version of \overline{x} with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. An illustration of \overline{x} and y is displayed in Figure 1.

FIGURE 1 – Illustration of a piecewise constant signal with N=100 samples degraded with a white Gaussian noise of variance $\sigma^2=1$.

The objective of this exercice is to obtain a piecewise constant estimate \hat{x} which is the closest to the original \bar{x} from data y. A solution consists in minimizing the following objective function :

$$\widehat{x}_{\lambda} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \|x - y\|_2^2 + \lambda \|Lx\|_1$$

where $(Lx)^{(i)} = x^{(i+1)} - x^{(i)}$ for every $i \in \{1, ..., N-1\}$, $y \in \mathbb{R}^N$ and $\lambda > 0$. $L \in \mathbb{R}^{(N-1)\times N}$ denotes the finite difference operator.

1. Prove that the dual problem can be written as

$$\widehat{u}_{\lambda} \in \operatorname{Argmin}_{u \in \mathbb{R}^{N-1}} \frac{1}{2} \|y - L^* u\|_2^2 \quad \text{s.t.} \quad \|u\|_{\infty} \le \lambda,$$

and that the relation with the dual solution is

$$\widehat{x}_{\lambda} = y - L^* \widehat{u}_{\lambda}.$$