Optimization

- Basics -

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

(several slides in this part traced back Tutorial ICASSP 2014 written in collaboration with **Jean-Christophe Pesquet** from Centre de Vision Numérique, CentraleSupelec, University Paris-Saclay, Inria, France.)

Hilbert spaces

A (real) **Hilbert space** $\mathcal H$ is a complete real vector space endowed with an inner product $\langle\cdot\mid\cdot\rangle$. The associated norm is

$$(\forall x \in \mathcal{H})$$
 $||x|| = \sqrt{\langle x \mid x \rangle}.$

- Particular case: $\mathcal{H} = \mathbb{R}^N$ (Euclidean space with dimension N).
- Course dedicated to finite dimension.

Let $\mathcal H$ and $\mathcal G$ be two Hilbert spaces.

A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$||L|| = \sup_{\|x\|_{\mathcal{H}} \le 1} ||Lx||_{\mathcal{G}} < +\infty$$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$||L|| = \sup_{||x|| \le 1} ||Lx|| < +\infty$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$||L|| = \sup_{||x|| < 1} ||Lx|| < +\infty$$

• In finite dimension, every linear operator is bounded.

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$||L|| = \sup_{||x|| < 1} ||Lx|| < +\infty$$

• In finite dimension, every linear operator is bounded.

 $\mathcal{B}(\mathcal{H},\mathcal{G})$: Banach space of bounded linear operators from \mathcal{H} to \mathcal{G} .

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

Let $L \in \mathcal{B}(\mathcal{H},\mathcal{G})$. Its **adjoint** L^* is the operator in $\mathcal{B}(\mathcal{G},\mathcal{H})$ defined as

$$(\forall (x,y) \in \mathcal{H} \times \mathcal{G})$$
 $\langle y \mid Lx \rangle_{\mathcal{G}} = \langle L^*y \mid x \rangle_{\mathcal{H}}.$

Example:

If
$$L: \mathcal{H} \to \mathcal{H}^n \colon x \mapsto (x, \dots, x)$$
 then $L^*: \mathcal{H}^n \to \mathcal{H} \colon y = (y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i$

$$\underline{\mathsf{Proof}}: \langle \mathsf{Lx} \mid \mathsf{y} \rangle = \langle (\mathsf{x}, \ldots, \mathsf{x}) \mid (\mathsf{y}_1, \ldots, \mathsf{y}_n) \rangle = \sum_{i=1}^n \langle \mathsf{x} \mid \mathsf{y}_i \rangle = \left\langle \mathsf{x} \mid \sum_{i=1}^n \mathsf{y}_i \right\rangle$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its **adjoint** L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$(\forall (x,y) \in \mathcal{H} \times \mathcal{G})$$
 $\langle y \mid Lx \rangle = \langle L^*y \mid x \rangle.$

Example:

If
$$L: \mathcal{H} \to \mathcal{H}^n \colon x \mapsto (x, \dots, x)$$

then $L^*: \mathcal{H}^n \to \mathcal{H} \colon y = (y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i$

Proof:
$$\langle Lx \mid y \rangle = \langle (x, \dots, x) \mid (y_1, \dots, y_n) \rangle = \sum_{i=1}^n \langle x \mid y_i \rangle = \left\langle x \mid \sum_{i=1}^n y_i \right\rangle$$

- **About** *L**:
 - Compute gradient and proximity operator operations (Parts III and IV)
 - Dual formulation (cf. Part VI)
 - \odot Finite dimensions: If $L \in \mathcal{B}(\mathbb{R}^N, \mathbb{R}^K)$ then $L^* = L^\top$.
 - Check the correct implementation by using its definition

$$(\forall (x, y) \in \mathbb{R}^N \times \mathbb{R}^K) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle$$

- **About** ||*L*||:
 - Required for gradient-based algorithms;
 - ⊙ We have $||L^*|| = ||L||$;
 - Normalized power method → Morgane Bergot course

Functional analysis: definitions

Find
$$\hat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x)$$

Class of functions $f \in \Gamma_0(\mathcal{H})$:

- Proper function
- Lower semi-continuous function
- Convex function

Reminder about norms in finite dimension

Vectors

- Let $x = (x_i)_{1 \le i \le N} \in \mathbb{R}^N$.
- ℓ_1 -norm: $||x||_1 = \sum_i |x_i|$.
- ℓ_2 -norm: $||x||_2 = \sqrt{\sum_i x_i^2}$.

Matrices

- Let A be a real symmetric $N \times N$ matrix.
- **Spectral/eigen decomposition**: A can be factored as

$$A = Q\Lambda Q^{\top}$$

where $Q \in \mathbb{R}^{N \times N}$ is orthogonal (i.e. $Q^{\top}Q = \mathrm{Id}$) and $\Lambda = \mathrm{diag}(\lambda_1, \dots \lambda_N)$ (where the real numbers λ_i are the eigenvalues of A).

The column of Q form an orthonormal set of eigenvectors of A.

- Spectral norm: $||A||_2 = \max_i |\lambda_i|$.
- Frobenius norm: $||A||_F = \sqrt{\sum_i \lambda_i^2}$.

Functional analysis: definitions

Let $f: \mathcal{H} \to]-\infty, +\infty]$ where \mathcal{H} is a Hilbert space.

- The **domain** of f is $dom f = \{x \in \mathcal{H} \mid f(x) < +\infty\}.$
- The function f is proper if $dom f \neq \emptyset$.

Functional analysis: definitions

Let $C \subset \mathcal{H}$.

The indicator function of C is

$$(\forall x \in \mathcal{H}) \qquad \iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$$

Epigraph

Let
$$f: \mathcal{H} \to]-\infty, +\infty]$$
. The **epigraph** of f is

$$epi f = \{(x, \zeta) \in dom f \times \mathbb{R} \mid f(x) \le \zeta\}$$

Lower semi-continuity

Let $f: \mathcal{H} \to]-\infty, +\infty]$.

f is a lower semi-continuous function on $\mathcal H$ if and only if epi f is closed

Lower semi-continuity

Let
$$f: \mathcal{H} \to]-\infty, +\infty]$$
.
 f is a **lower semi-continuous** function on \mathcal{H} if and only if epi f is closed

- Examples:
 - \odot **Do not allow for strict constraints** e.g. Ax < b or x > 0;
 - ⊙ Allow for inequality or equality constraints e.g. Ax = b, $Ax \le b$ or x > 0;

Lower semi-continuity

Let
$$f: \mathcal{H} \to]-\infty, +\infty]$$
.
 f is a **lower semi-continuous** function on \mathcal{H} if and only if epi f is closed

- Examples:
 - **⊙ Do not allow for strict constraints** e.g. Ax < b or x > 0;
 - \odot Allow for inequality or equality constraints e.g. Ax = b, $Ax \le b$ or x > 0;

- Properties:
 - \odot Every continuous function on ${\cal H}$ is l.s.c.
 - ⊙ Every finite sum of l.s.c. functions is l.s.c.

Convex set

$$\mathcal{C} \subset \mathcal{H}$$
 is a **convex set** if

$$(\forall (x,y) \in C^2)(\forall \alpha \in]0,1[)$$
 $\alpha x + (1-\alpha)y \in C$

Convex function: definitions

$$f:\mathcal{H} \to]-\infty,+\infty]$$
 is a convex function if
$$\big(\forall (x,y) \in \mathcal{H}^2 \big) \big(\forall \alpha \in]0,1[\big) \qquad f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$$

Convex functions: definition

 $f: \mathcal{H} \to]-\infty, +\infty]$ is convex \Leftrightarrow its epigraph is convex.

Convex functions: definition

$$f:\mathcal{H}\to]-\infty,+\infty]$$
 is convex \Leftrightarrow its epigraph is convex.

- Properties :
 - ⊙ Composition of an increasing convex funct. and a convex funct. is convex.
 - \odot If $f: \mathcal{H} \to]-\infty, +\infty]$ is convex, then $\operatorname{dom} f$ is convex.
 - \odot $f: \mathcal{H} \to [-\infty, +\infty[$ is concave if -f is convex.
 - Every finite sum of convex functions is convex.
- $\Gamma_0(\mathcal{H})$: class of convex, l.s.c., and proper functions from \mathcal{H} to $]-\infty, +\infty]$.
- $\iota_C \in \Gamma_0(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set.

Strictly convex functions

```
Let \mathcal{H} be a Hilbert space. Let f: \mathcal{H} \to ]-\infty, +\infty].

f is strictly convex if (\forall x \in \text{dom } f)(\forall y \in \text{dom } f)(\forall \alpha \in ]0,1[)
x \neq y \quad \Rightarrow \quad f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y).
```

Functional analysis: minimizers

Find
$$\hat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x)$$

- Class of functions $f \in \Gamma_0(\mathcal{H})$:
- Minimizers
 - Local versus global minimizers
 - Coercivity and existence
 - Convex function

Minimizers

Let C be a nonempty set of a Hilbert space \mathcal{H} .

Let $f: C \to]-\infty, +\infty]$ be a proper function and let $\widehat{x} \in C$.

• $\hat{x} \in \text{dom } f$ is a **local minimizer** of f if there exists an open neigborhood O of \hat{x} such that

$$(\forall x \in O \cap C)$$
 $f(\widehat{x}) \leq f(x).$

• \hat{x} is a **(global) minimizer** of f if

$$(\forall x \in C)$$
 $f(\widehat{x}) \leq f(x)$.

Minimizers

Let C be a nonempty set of a Hilbert space \mathcal{H} .

Let $f: C \to]-\infty, +\infty]$ be a proper function and let $\widehat{x} \in C$.

• \hat{x} is a **strict local minimizer** of f if there exists an open neigborhood O of \hat{x} such that

$$(\forall x \in (O \cap C) \setminus \{\widehat{x}\})$$
 $f(\widehat{x}) < f(x)$.

• \hat{x} is a **strict (global) minimizer** of f if

$$(\forall x \in C \setminus \{\widehat{x}\})$$
 $f(\widehat{x}) < f(x)$.

Minimizers of a convex function

Theorem: Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a **proper convex** function such that $\mu = \inf f > -\infty$.

- $\{x \in \mathcal{H} \mid f(x) = \mu\}$ is convex.
- Every local minimizer of f is a global minimizer.
- If *f* is strictly convex, then there exists at most one minimizer.

Minimizers of a convex function

Theorem: Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a **proper convex** function such that $\mu = \inf f > -\infty$.

- $\{x \in \mathcal{H} \mid f(x) = \mu\}$ is convex.
- Every local minimizer of f is a global minimizer.
- If *f* is strictly convex, then there exists at most one minimizer.

Existence of a minimizer

Let $\mathcal H$ be a Hilbert space. Let $f\colon \mathcal H\to]-\infty,+\infty].$ f is coercive if $\lim_{\|x\|\to+\infty} f(x)=+\infty.$

Existence and uniqueness of a minimizer

Theorem: Let \mathcal{H} be a Hilbert space and C a closed convex subset of \mathcal{H} . Let $f \in \Gamma_0(\mathcal{H})$ such that $\operatorname{dom} f \cap C \neq \emptyset$.

If f is coercive or C is bounded, then there exists $\hat{x} \in C$ such that

$$f(\widehat{x}) = \inf_{x \in C} f(x).$$

If, moreover, f is strictly convex, this minimizer \hat{x} is unique.

Functional analysis: minimizers

Find
$$\hat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x)$$

- Class of functions $f \in \Gamma_0(\mathcal{H})$:
- Minimizers
- Differentiability and optimality condition

Differentiable functions

If $f: \mathbb{R}^N \to \mathbb{R}$ is differentiable function in $x \in \mathbb{R}^N$, the **gradient of** f **at** x is $\nabla f(x) \in \mathbb{R}^N$ and its components are the partial derivatives of f:

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_j}\right)_{1 \le i \le N}$$

• Example: Let $x \in \mathbb{R}^N$, $z \in \mathbb{R}^K$ and $A \in \mathbb{R}^{K \times N}$ and $f(x) = \frac{1}{2} ||Ax - z||^2$, then

$$\nabla f(x) = A^*(Ax - z)$$

Differentiable functions

Let $f: \mathbb{R}^N \to]-\infty, +\infty]$ be a proper differentiable function in the neighborhood of $x \in \mathbb{R}^N$.

The **directional derivative** of f at x with respect to the direction $y \in \mathbb{R}^N$ is defined as:

$$\langle \nabla f(x) \mid y \rangle = \lim_{\alpha \to 0} \frac{f(x + \alpha y) - f(x)}{\alpha}.$$

Optimality condition

1st order necessary and sufficient condition (P. Fermat)

Let $f \in \Gamma_0(\mathcal{H})$ be continuously differentiable function on \mathcal{H} . \widehat{x} is a global minimizer of f i.e

$$\hat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} f(x) \qquad \Leftrightarrow \qquad \nabla f(\hat{x}) = 0$$

More details about optimality conditions here :

```
[Jean-Charles Gilbert course]
[Nocedal-Wright, 1999]
```

- Limitations :
 - \odot Lead to a N equations N unknown problem.
 - Closed form expression for only few cases.
 - \odot If no closed form expression exists, an iterative procedure is required.

Optimality condition

Example: Solving mean squares

Find
$$\widehat{x} = \operatorname{Argmin}_{x \in \mathbb{R}^N} ||Ax - y||_2^2$$
 with
$$\begin{cases} A \in \mathbb{R}^{N \times N} & \text{full rank} \\ y \in \mathbb{R}^M \end{cases}$$

→ Optimality condition:

$$\nabla f(\hat{x}) = 0 \quad \Leftrightarrow \quad A^{\top} (A\hat{x} - y) = 0$$
$$\widehat{x} = (A^{\top} A)^{-1} (A^{\top} y)$$

 \rightarrow **Closed form expression** but sometimes difficult to invert $A^{\top}A$.

Optimality condition

• Example: Logistic based criterion:

Find
$$\hat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}} \log (1 + \exp(-yx))$$
 with $y \in \mathbb{R}$

→ Optimality condition:

$$\nabla f(\widehat{x}) = 0 \quad \Leftrightarrow \quad \left| \frac{-y \exp(-y\widehat{x})}{1 + \exp(-y\widehat{x})} = 0 \right|$$

ightarrow **No closed form expression**. An iterative procedure is required.

Gradient descent

Gradient descent

Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable on \mathbb{R}^N . Let $x_0 \in \mathbb{R}^N$ and

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n - \gamma_n \nabla f(x_n).$$

Gradient descent

Gradient descent

Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable on \mathbb{R}^N . Let $x_0 \in \mathbb{R}^N$ and

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n - \gamma_n \nabla f(x_n).$$

• An iterative method consists to build a sequence $(x_n)_{n\in\mathbb{N}}$ such that, at each iteration n

$$f(x_{n+1}) < f(x_n)$$

- How to proove convergence of the sequence $(x_n)_{n\in\mathbb{N}}$ to $\widehat{x}\in \operatorname{Argmin} f(x)$.
- Choose γ_n for convergence ? For faster convergence ?

Hessian matrix

The second derivative of a real-valued function $f: \mathbb{R}^N \to \mathbb{R}$ or the Hessian matrix of f at x, denoted $\nabla^2 f(x) \in \mathbb{R}^{N \times N}$, is given by

$$\nabla^2 f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{1 \le i \le N, 1 \le j \le N}$$

- Let A be a real symmetric $N \times N$ matrix.
- **Spectral/eigen decomposition**: A can be factored as

$$A = Q\Lambda A^{\top}$$

where $Q \in \mathbb{R}^{N \times N}$ is orthogonal (i.e. $Q^{\top}Q = \mathrm{Id}$) and $\Lambda = \mathrm{diag}(\lambda_1, \dots \lambda_N)$ (where the real numbers λ_i are the eigenvalues of A The column of Q form an orthonormal set of eigenvectors of A.

- Spectral norm: $||A||_2 = \max_i |\lambda_i|$.
- Frobenius norm: $||A||_F = \sqrt{\sum_i \lambda_i^2}$.

L-smooth

A function $f \in \Gamma_0(\mathbb{R}^N)$ is Lipschitz smooth with constant L or L-smooth if its gradient is Lipschitz continuous with constant L:

$$(\forall (x,y) \in \mathbb{R}^N \times \mathbb{R}^N) \quad \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

Remark:

• If f is twice differentiable, a function is L smooth if

$$(\forall x \in \mathbb{R}^N) \quad \nabla^2 f(x) \le L \cdot \mathrm{Id}$$

• Particular case: $f = \|A \cdot -z\|_2^2$ is β -smooth with $\beta = \mathrm{vp}_{\mathsf{max}}(A^\top A) = \|A\|^2$.

Problem: Let
$$f \in \Gamma_0(\mathbb{R}^N)$$
, find $\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x)$.

• If f is L-smooth with L > 0, the (explicit) **gradient method**:

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n \nabla f(x_n)$

 \rightarrow Convergence insured when $0 < \inf_{n \in \mathbb{N}} \gamma_n$ et $\sup_{n \in \mathbb{N}} \gamma_n < 2L^{-1}$.

Problem: Let
$$f \in \Gamma_0(\mathbb{R}^N)$$
, find $\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x)$.

• If f is L-smooth with L > 0, the (explicit) **gradient method**:

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n \nabla f(x_n)$

- \rightarrow Convergence insured when $0 < \inf_{n \in \mathbb{N}} \gamma_n$ et $\sup_{n \in \mathbb{N}} \gamma_n < 2L^{-1}$.
- If f nonsmooth, the (explicit) subgradient method (be defined next):

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n u_n$ with $u_n \in \partial f(x_n)$

 \rightarrow Convergence insured when $\gamma_n \in]0, +\infty[$ such that $\sum_{n=0}^{+\infty} \gamma_n^2 < +\infty$ and $\sum_{n=0}^{+\infty} \gamma_n = +\infty$. [Shor, 1979].

Problem: Let
$$f \in \Gamma_0(\mathbb{R}^N)$$
, find $\hat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x)$.

• If f is L-smooth with L > 0, the (explicit) **gradient method**:

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n \nabla f(x_n)$

- \rightarrow Convergence insured when $0 < \inf_{n \in \mathbb{N}} \gamma_n$ et $\sup_{n \in \mathbb{N}} \gamma_n < 2L^{-1}$.
- If f nonsmooth, the (explicit) subgradient method (be defined next):

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n u_n$ with $u_n \in \partial f(x_n)$

- \rightarrow Convergence insured when $\gamma_n \in]0, +\infty[$ such that $\sum_{n=0}^{+\infty} \gamma_n^2 < +\infty$ and $\sum_{n=0}^{+\infty} \gamma_n = +\infty$. [Shor, 1979].
- If f nonsmooth, the **implicit subgradient method** is

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n u_n$ with $u_n \in \partial f(x_{n+1})$

$$ightarrow$$
 Convergence insured when $\sum_{n=0}^{+\infty} \gamma_n = +\infty$.

Problem: Let
$$f \in \Gamma_0(\mathbb{R}^N)$$
, find $\hat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x)$.

• If f is L-smooth with L > 0, the (explicit) gradient method:

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n \nabla f(x_n)$

- \rightarrow Convergence insured when $0 < \inf_{n \in \mathbb{N}} \gamma_n$ et $\sup_{n \in \mathbb{N}} \gamma_n < 2L^{-1}$.
- If f nonsmooth, the (explicit) subgradient method (be defined next):

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n u_n$ with $u_n \in \partial f(x_n)$

- \rightarrow Convergence insured when $\gamma_n \in]0, +\infty[$ such that $\sum_{n=0}^{+\infty} \gamma_n^2 < +\infty$ and $\sum_{n=0}^{+\infty} \gamma_n = +\infty$. [Shor, 1979].
- If f nonsmooth, the **implicit subgradient method** is

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n u_n$ with $u_n \in \partial f(x_{n+1})$

 \rightarrow Convergence insured when $\sum_{n=0}^{+\infty} \gamma_n = +\infty \Rightarrow$ **Proximity operator**.