Optimization
 - Basics -

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

(several slides in this part traced back Tutorial ICASSP 2014 written in collaboration with Jean-Christophe Pesquet from Centre de Vision Numérique, CentraleSupelec, University Paris-Saclay, Inria, France.)

Hilbert spaces

A (real) Hilbert space \mathcal{H} is a complete real vector space endowed with an inner product $\langle\cdot \mid \cdot\rangle$. The associated norm is

$$
(\forall x \in \mathcal{H}) \quad\|x\|=\sqrt{\langle x \mid x\rangle} .
$$

- Particular case: $\mathcal{H}=\mathbb{R}^{N}$ (Euclidean space with dimension N).
- Course dedicated to finite dimension.

Norm and adjoint

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded (or continuous) if

$$
\|L\|=\sup _{\|x\|_{\mathcal{H}} \leq 1}\|L x\|_{\mathcal{G}}<+\infty
$$

Norm and adjoint

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded (or continuous) if

$$
\|L\|=\sup _{\|x\| \leq 1}\|L x\|<+\infty
$$

Norm and adjoint

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded (or continuous) if

$$
\|L\|=\sup _{\|x\| \leq 1}\|L x\|<+\infty
$$

- In finite dimension, every linear operator is bounded.

Norm and adjoint

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded (or continuous) if

$$
\|L\|=\sup _{\|x\| \leq 1}\|L x\|<+\infty
$$

- In finite dimension, every linear operator is bounded.
$\mathcal{B}(\mathcal{H}, \mathcal{G})$: Banach space of bounded linear operators from \mathcal{H} to \mathcal{G}.

Norm and adjoint

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle y \mid L x\rangle_{\mathcal{G}}=\left\langle L^{*} y \mid x\right\rangle_{\mathcal{H}} .
$$

Example:
If

$$
L: \mathcal{H} \rightarrow \mathcal{H}^{n}: x \mapsto(x, \ldots, x)
$$

then

$$
L^{*}: \mathcal{H}^{n} \rightarrow \mathcal{H}: y=\left(y_{1}, \ldots, y_{n}\right) \mapsto \sum_{i=1}^{n} y_{i}
$$

$$
\text { Proof: }\langle L x \mid y\rangle=\left\langle(x, \ldots, x) \mid\left(y_{1}, \ldots, y_{n}\right)\right\rangle=\sum_{i=1}^{n}\left\langle x \mid y_{i}\right\rangle=\left\langle x \mid \sum_{i=1}^{n} y_{i}\right\rangle
$$

Norm and adjoint

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle y \mid L x\rangle=\left\langle L^{*} y \mid x\right\rangle .
$$

Example:

$$
L: \mathcal{H} \rightarrow \mathcal{H}^{n}: x \mapsto(x, \ldots, x)
$$

then

$$
L^{*}: \mathcal{H}^{n} \rightarrow \mathcal{H}: y=\left(y_{1}, \ldots, y_{n}\right) \mapsto \sum_{i=1}^{n} y_{i}
$$

$$
\text { Proof: }\langle L x \mid y\rangle=\left\langle(x, \ldots, x) \mid\left(y_{1}, \ldots, y_{n}\right)\right\rangle=\sum_{i=1}^{n}\left\langle x \mid y_{i}\right\rangle=\left\langle x \mid \sum_{i=1}^{n} y_{i}\right\rangle
$$

Norm and adjoint

- About L^{*} :
\odot Compute gradient and proximity operator operations (Parts III and IV)
- Dual formulation (cf. Part VI)
\odot Finite dimensions: If $L \in \mathcal{B}\left(\mathbb{R}^{N}, \mathbb{R}^{K}\right)$ then $L^{*}=L^{\top}$.
\odot Check the correct implementation by using its definition

$$
\left(\forall(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{K}\right) \quad\langle L x \mid y\rangle=\left\langle x \mid L^{*} y\right\rangle
$$

- About $\|L\|$:
\odot Required for gradient-based algorithms;
© We have $\left\|L^{*}\right\|=\|L\|$;
\odot Normalized power method \rightarrow Morgane Bergot course

Functional analysis: definitions

$$
\text { Find } \hat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x)
$$

Class of functions $f \in \Gamma_{0}(\mathcal{H})$:

- Proper function
- Lower semi-continuous function
- Convex function

Reminder about norms in finite dimension

- Vectors
- Let $x=\left(x_{i}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$.
- ℓ_{1}-norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- ℓ_{2}-norm: $\|x\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}$.
- Matrices
- Let A be a real symmetric $N \times N$ matrix.
- Spectral/eigen decomposition: A can be factored as

$$
A=Q \wedge Q^{\top}
$$

where $Q \in \mathbb{R}^{N \times N}$ is orthogonal (i.e. $Q^{\top} Q=\operatorname{Id}$) and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{N}\right)$ (where the real numbers λ_{i} are the eigenvalues of A).
The column of Q form an orthonormal set of eigenvectors of A.

- Spectral norm: $\|A\|_{2}=\max _{i}\left|\lambda_{i}\right|$.
- Frobenius norm: $\|A\|_{F}=\sqrt{\sum_{i} \lambda_{i}^{2}}$.

Functional analysis: definitions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ where \mathcal{H} is a Hilbert space.

- The domain of f is $\operatorname{dom} f=\{x \in \mathcal{H} \mid f(x)<+\infty\}$.
- The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Functional analysis: definitions

Let $C \subset \mathcal{H}$.
The indicator function of C is

$$
(\forall x \in \mathcal{H}) \quad \iota_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise } .\end{cases}
$$

Epigraph

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$. The epigraph of f is

$$
\text { epi } f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed

- Examples:
\odot Do not allow for strict constraints e.g. $A x<b$ or $x>0$;
\odot Allow for inequality or equality constraints e.g. $A x=b, A x \leq b$ or $x>0$;

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed

- Examples:
\odot Do not allow for strict constraints e.g. $A x<b$ or $x>0$;
\odot Allow for inequality or equality constraints e.g. $A x=b, A x \leq b$ or $x>0$;
- Properties:
\odot Every continuous function on \mathcal{H} is I.s.c.
\odot Every finite sum of I.s.c. functions is I.s.c.

Convex set

$C \subset \mathcal{H}$ is a convex set if

$$
\left(\forall(x, y) \in C^{2}\right)(\forall \alpha \in] 0,1[) \quad \alpha x+(1-\alpha) y \in C
$$

Convex function: definitions

$$
\begin{aligned}
& f: \mathcal{H} \rightarrow]-\infty,+\infty] \text { is a convex function if } \\
& \qquad\left(\forall(x, y) \in \mathcal{H}^{2}\right)(\forall \alpha \in] 0,1[) \quad f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Convex functions: definition

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is convex.

Convex functions: definition

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is convex.

- Properties :
\odot Composition of an increasing convex funct. and a convex funct. is convex.
\odot If $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex, then $\operatorname{dom} f$ is convex.
$\odot f: \mathcal{H} \rightarrow[-\infty,+\infty[$ is concave if $-f$ is convex.
\odot Every finite sum of convex functions is convex.
- $\Gamma_{0}(\mathcal{H})$: class of convex, I.s.c., and proper functions from \mathcal{H} to $\left.]-\infty,+\infty\right]$.
- $\iota_{C} \in \Gamma_{0}(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set.

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is strictly convex if

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in] 0,1[) \\
& \quad x \neq y \quad \Rightarrow \quad f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y) .
\end{aligned}
$$

Functional analysis: minimizers

$$
\text { Find } \hat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x)
$$

- Class of functions $f \in \Gamma_{0}(\mathcal{H})$:
- Minimizers
\odot Local versus global minimizers
- Coercivity and existence
\odot Convex function

Minimizers

Let C be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: C \rightarrow]-\infty,+\infty]$ be a proper function and let $\widehat{x} \in C$.

- $\hat{x} \in \operatorname{dom} f$ is a local minimizer of f if there exists an open neigborhood O of \widehat{x} such that

$$
(\forall x \in O \cap C) \quad f(\widehat{x}) \leq f(x)
$$

- \hat{x} is a (global) minimizer of f if

$$
(\forall x \in C) \quad f(\widehat{x}) \leq f(x)
$$

Minimizers

Let C be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: C \rightarrow]-\infty,+\infty]$ be a proper function and let $\widehat{x} \in C$.

- \hat{x} is a strict local minimizer of f if there exists an open neigborhood O of \widehat{x} such that

$$
(\forall x \in(O \cap C) \backslash\{\hat{x}\}) \quad f(\widehat{x})<f(x) .
$$

- \widehat{x} is a strict (global) minimizer of f if

$$
(\forall x \in C \backslash\{\widehat{x}\}) \quad f(\widehat{x})<f(x)
$$

Minimizers of a convex function

Theorem: Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper convex function such that $\mu=\inf f>-\infty$.

- $\{x \in \mathcal{H} \mid f(x)=\mu\}$ is convex.
- Every local minimizer of f is a global minimizer.
- If f is strictly convex, then there exists at most one minimizer.

Minimizers of a convex function

Theorem: Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper convex function such that $\mu=\inf f>-\infty$.

- $\{x \in \mathcal{H} \mid f(x)=\mu\}$ is convex.
- Every local minimizer of f is a global minimizer.
- If f is strictly convex, then there exists at most one minimizer.

Existence of a minimizer

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is coercive if $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$.

Existence and uniqueness of a minimizer

Theorem: Let \mathcal{H} be a Hilbert space and C a closed convex subset of \mathcal{H}. Let $f \in \Gamma_{0}(\mathcal{H})$ such that $\operatorname{dom} f \cap C \neq \varnothing$.
If f is coercive or C is bounded, then there exists $\hat{x} \in C$ such that

$$
f(\widehat{x})=\inf _{x \in C} f(x) .
$$

If, moreover, f is strictly convex, this minimizer \widehat{x} is unique.

Functional analysis: minimizers

$$
\text { Find } \hat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x)
$$

- Class of functions $f \in \Gamma_{0}(\mathcal{H})$:
- Minimizers
- Differentiability and optimality condition

Differentiable functions

If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is differentiable function in $x \in \mathbb{R}^{N}$, the gradient of f at x is $\nabla f(x) \in \mathbb{R}^{N}$ and its components are the partial derivatives of f :

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{j}}\right)_{1 \leq i \leq N}
$$

- Example: Let $x \in \mathbb{R}^{N}, z \in \mathbb{R}^{K}$ and $A \in \mathbb{R}^{K \times N}$ and $f(x)=\frac{1}{2}\|A x-z\|^{2}$, then

$$
\nabla f(x)=A^{*}(A x-z)
$$

Differentiable functions

Let $\left.\left.f: \mathbb{R}^{N} \rightarrow\right]-\infty,+\infty\right]$ be a proper differentiable function in the neighborhood of $x \in \mathbb{R}^{N}$.
The directional derivative of f at x with respect to the direction $y \in \mathbb{R}^{N}$ is defined as:

$$
\langle\nabla f(x) \mid y\rangle=\lim _{\alpha \rightarrow 0} \frac{f(x+\alpha y)-f(x)}{\alpha} .
$$

Optimality condition

1st order necessary and sufficient condition (P. Fermat)
Let $f \in \Gamma_{0}(\mathcal{H})$ be continuously differentiable function on \mathcal{H}.
\hat{x} is a global minimizer of f i.e

$$
\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{N}} f(x) \quad \Leftrightarrow \quad \nabla f(\widehat{x})=0
$$

- More details about optimality conditions here :
[Jean-Charles Gilbert course]
[Nocedal-Wright, 1999]
- Limitations:
\odot Lead to a N equations - N unknown problem.
\odot Closed form expression for only few cases.
\odot If no closed form expression exists, an iterative procedure is required.

Optimality condition

- Example: Solving mean squares

Find $\quad \hat{x}=\operatorname{Argmin}_{x \in \mathbb{R}^{N}}\|A x-y\|_{2}^{2} \quad$ with $\quad\left\{\begin{array}{l}A \in \mathbb{R}^{N \times N} \text { full rank } \\ y \in \mathbb{R}^{M}\end{array}\right.$
\rightarrow Optimality condition:

$$
\begin{gathered}
\nabla f(\widehat{x})=0 \quad \Leftrightarrow \quad A^{\top}(A \widehat{x}-y)=0 \\
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} y\right)
\end{gathered}
$$

\rightarrow Closed form expression but sometimes difficult to invert $A^{\top} A$.

Optimality condition

- Example: Logistic based criterion:

Find $\quad \hat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}} \log (1+\exp (-y x)) \quad$ with $\quad y \in \mathbb{R}$
\rightarrow Optimality condition:

$$
\nabla f(\widehat{x})=0 \quad \Leftrightarrow \quad \frac{-y \exp (-y \widehat{x})}{1+\exp (-y \widehat{x})}=0
$$

\rightarrow No closed form expression. An iterative procedure is required.

Gradient descent

Gradient descent

Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be continuously differentiable on \mathbb{R}^{N}. Let $x_{0} \in \mathbb{R}^{N}$ and

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

Gradient descent

Gradient descent

Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be continuously differentiable on \mathbb{R}^{N}. Let $x_{0} \in \mathbb{R}^{N}$ and

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right) .
$$

- An iterative method consists to build a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that, at each iteration n

$$
f\left(x_{n+1}\right)<f\left(x_{n}\right)
$$

- How to proove convergence of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ to $\widehat{x} \in \operatorname{Argmin} f(x)$.
- Choose γ_{n} for convergence ? For faster convergence?

Hessian matrix

The second derivative of a real-valued function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ or the Hessian matrix of f at x, denoted $\nabla^{2} f(x) \in \mathbb{R}^{N \times N}$, is given by

$$
\nabla^{2} f(x)=\left(\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i \leq N, 1 \leq j \leq N}
$$

- Let A be a real symmetric $N \times N$ matrix.
- Spectral/eigen decomposition: A can be factored as

$$
A=Q \wedge A^{\top}
$$

where $Q \in \mathbb{R}^{N \times N}$ is orthogonal (i.e. $Q^{\top} Q=\operatorname{Id}$) and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{N}\right)$ (where the real numbers λ_{i} are the eigenvalues of A The column of Q form an orthonormal set of eigenvectors of A.

- Spectral norm: $\|A\|_{2}=\max _{i}\left|\lambda_{i}\right|$.
- Frobenius norm: $\|A\|_{F}=\sqrt{\sum_{i} \lambda_{i}^{2}}$.

L-smooth

A function $f \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$ is Lipschitz smooth with constant L or L-smooth if its gradient is Lipschitz continuous with constant L :

$$
\left(\forall(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{N}\right) \quad\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
$$

Remark:

- If f is twice differentiable, a function is L smooth if

$$
\left(\forall x \in \mathbb{R}^{N}\right) \quad \nabla^{2} f(x) \leq L \cdot \operatorname{Id}
$$

- Particular case: $f=\|A \cdot-z\|_{2}^{2}$ is β-smooth with $\beta=\operatorname{vpmax}\left(A^{\top} A\right)=\|A\|^{2}$.

Iterative scheme

Problem: Let $f \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$, find $\quad \hat{x} \in \operatorname{Argmin} f(x)$. $x \in \mathbb{R}^{N}$

- If f is L-smooth with $L>0$, the (explicit) gradient method:

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $0<\inf _{n \in \mathbb{N}} \gamma_{n}$ et $\sup _{n \in \mathbb{N}} \gamma_{n}<2 L^{-1}$.

Iterative scheme

Problem: Let $f \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$, find $\quad \widehat{x} \in \operatorname{Argmin} f(x)$.

$$
x \in \mathbb{R}^{N}
$$

- If f is L-smooth with $L>0$, the (explicit) gradient method:

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $0<\inf _{n \in \mathbb{N}} \gamma_{n}$ et $\sup _{n \in \mathbb{N}} \gamma_{n}<2 L^{-1}$.

- If f nonsmooth, the (explicit) subgradient method (be defined next):

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} u_{n} \quad \text { with } \quad u_{n} \in \partial f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ such that $\sum_{n=0}^{+\infty} \gamma_{n}^{2}<+\infty$ and $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty$. [Shor, 1979].

Iterative scheme

Problem: Let $f \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$, find $\quad \widehat{x} \in \operatorname{Argmin} f(x)$.

$$
x \in \mathbb{R}^{N}
$$

- If f is L-smooth with $L>0$, the (explicit) gradient method:

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $0<\inf _{n \in \mathbb{N}} \gamma_{n}$ et $\sup _{n \in \mathbb{N}} \gamma_{n}<2 L^{-1}$.

- If f nonsmooth, the (explicit) subgradient method (be defined next):

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} u_{n} \quad \text { with } \quad u_{n} \in \partial f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ such that $\sum_{n=0}^{+\infty} \gamma_{n}^{2}<+\infty$ and $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty$. [Shor, 1979].

- If f nonsmooth, the implicit subgradient method is

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} u_{n} \quad \text { with } \quad u_{n} \in \partial f\left(x_{n+1}\right)
$$

\rightarrow Convergence insured when $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty$.

Iterative scheme

Problem: Let $f \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$, find $\quad \widehat{x} \in \operatorname{Argmin} f(x)$.

$$
x \in \mathbb{R}^{N}
$$

- If f is L-smooth with $L>0$, the (explicit) gradient method:

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $0<\inf _{n \in \mathbb{N}} \gamma_{n}$ et $\sup _{n \in \mathbb{N}} \gamma_{n}<2 L^{-1}$.

- If f nonsmooth, the (explicit) subgradient method (be defined next):

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} u_{n} \quad \text { with } \quad u_{n} \in \partial f\left(x_{n}\right)
$$

\rightarrow Convergence insured when $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ such that $\sum_{n=0}^{+\infty} \gamma_{n}^{2}<+\infty$ and $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty$. [Shor, 1979].

- If f nonsmooth, the implicit subgradient method is

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} u_{n} \quad \text { with } \quad u_{n} \in \partial f\left(x_{n+1}\right)
$$

\rightarrow Convergence insured when $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty \Rightarrow$ Proximity operator.

