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A (real) Hilbert space H is a complete real vector space endowed with an inner
product (- | -). The associated norm is

(WxeH) Ixl=Vix]x)

e Particular case: H = RV (Euclidean space with dimension N).

e Course dedicated to finite dimension.



Let H and G be two Hilbert spaces.
A linear operator L: H — G is bounded (or continuous) if

ILlf = sup [|Lx]lg < 400
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e In finite dimension, every linear operator is bounded.

B(H,G): Banach space of bounded linear operators from H to G.
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e About L*:
© Compute gradient and proximity operator operations (Parts Ill and V)
© Dual formulation (cf. Part VI)
® Finite dimensions: If L € B(RY,RK) then L* = L.

© Check the correct implementation by using its definition

(V(xy) eRY xR)  (Lx]y) = (x| L")

e About ||L]|:
® Required for gradient-based algorithms;
© We have ||L*|| = ||L];

® Normalized power method — Morgane Bergot course



Find X € Argmin f(x)
x€H

Class of functions f € [o(H):

e Proper function
e Lower semi-continuous function

e Convex function



e Vectors
o Let x = (Xi)lgigN S ]RN.

o (i-norm: ||x|l1 = >, |xi|.

o lr-norm: ||x|l2 = />, x?.

e Matrices

e Let A be a real symmetric N x N matrix.
e Spectral/eigen decomposition: A can be factored as

A=QAQ"

where Q € RV*N js orthogonal (i.e. Q'Q = Id) and A = diag(Ag, ... An)
(where the real numbers ); are the eigenvalues of A).
The column of @ form an orthonormal set of eigenvectors of A.

e Spectral norm: ||Al]2 = max; |\;|.

e Frobenius norm: ||A||r = />, A2



Let f : H — ]—o0, +0o0] where H is a Hilbert space.
e The domain of f is dom f = {x € H | f(x) < +o0}.

e The function f is proper if dom f # &.




Let C C H.
The indicator function of C is

0 if xe C
(Vx € H) te(x) = _
+oo  otherwise.




Let f : H — ]—o0,+00]. The epigraph of f is

epif = {(x,¢) €domf xR | f(x) < ¢}




Let f: H — ]—o0, +o0].
f is a lower semi-continuous function on # if and only if epi f is closed
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Let f: H — ]—o0, +o0].
f is a lower semi-continuous function on # if and only if epi f is closed

e Examples:
® Do not allow for strict constraints e.g. Ax < b or x > 0;

® Allow for inequality or equality constraints e.g. Ax = b, Ax < b or x > 0;

e Properties:
® Every continuous function on H is |.s.c.

©® Every finite sum of l.s.c. functions is l.s.c.
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C C H is a convex set if

(Y(x,y) € C*)(Va €]0,1]) ax+(l—a)yeC
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f:H — ]—00,+] is a convex function if

(V(x,y) € H?)(Va €]0,1]) flax+ (1 —a)y) < af(x) + (1 — a)f(y)
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f:H — ]—o0,+0o0] is convex < its epigraph is convex.
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f:H — ]—o0,+0o0] is convex < its epigraph is convex.

e Properties :
© Composition of an increasing convex funct. and a convex funct. is convex.
O If f:H — ]—o00,+00] is convex, then dom f is convex.
©® f: H — [—o0,+00[ is concave if —f is convex.

©® Every finite sum of convex functions is convex.

e [o(H): class of convex, |.s.c., and proper functions from H to ]—oo, +c].

e .c €g(H) < Cis a nonempty closed convex set.
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Let H be a Hilbert space. Let f: H — ]—o00, +0<].
f is strictly convex if

(Vx € dom f)(Vy € dom f)(Va €]0, 1[)
xZy = flax+(1—-a)y)<af(x)+(1-a)f(y).
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Find X € Argmin f(x)
&€

e Class of functions f € [o(H):

e Minimizers
©® Local versus global minimizers
© Coercivity and existence

® Convex function
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Let C be a nonempty set of a Hilbert space H.
Let f: C — ]—o0,+00] be a proper function and let X € C.

e X € domf is a local minimizer of f if there exists an open neigborhood O
of X such that
(Vxe 0N C) f(Xx) < f(x).

e X is a (global) minimizer of f if

(Vxe C)  f(R) < f(x).
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Let C be a nonempty set of a Hilbert space H.
Let f: C — ]—o0,+00] be a proper function and let X € C.

e X is a strict local minimizer of f if there exists an open neigborhood O of
X such that

(Vx € (0NO\{R})  f(R) < f(x).

e X is a strict (global) minimizer of f if

(Vxe C\{x}) f(X) < f(x).
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Theorem: Let #H be a Hilbert space. Let f: H — ]|—o00,+0c] be a proper convex
function such that p = inf f > —oo0.

o {xeM | f(x)=p}is convex.

e Every local minimizer of f is a global minimizer.

e If f is strictly convex, then there exists at most one minimizer.
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Let H be a Hilbert space. Let f: H — ]—o00, +0<].
f is coercive if limj_ 100 F(X) = 400.
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Theorem: Let # be a Hilbert space and C a closed convex subset of 7. Let
f € I'o(#H) such that domf N C # @.

If f is coercive or C is bounded, then there exists X € C such that

(%) = inf £(x).

If, moreover, f is strictly convex, this minimizer X is unique.
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Find X € Argmin f(x)
&€

e Class of functions f € [o(H):

e Minimizers

¢ Differentiability and optimality condition
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If f: RV — R is differentiable function in x € RN, the gradient of f at x is
V£(x) € RN and its components are the partial derivatives of f:

Vi(x) = (%)
7/ 1<i<n

e Example: Let x € RV, z € R and A € R¥*N and f(x) = 3||Ax — z||?, then

Vif(x) = A"(Ax — z)
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Let f: RN — ]—o00, +00] be a proper differentiable function in the neighborhood

of x € RV,
The directional derivative of f at x with respect to the direction y € RV is

defined as:

(V) | y) = Clim f(x+ay)— f(x)'

—0 «
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1st order necessary and sufficient condition (P. Fermat)
Let f € [o(#) be continuously differentiable function on .
X is a global minimizer of f i.e

X € Argmin, g f(x) &= Vf(x)=0

e More details about optimality conditions here :

[ ]
[ ]

e Limitations :
® Lead to a N equations - N unknown problem.
©® Closed form expression for only few cases.
® If no closed form expression exists, an iterative procedure is required.
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https://who.rocq.inria.fr/Jean-Charles.Gilbert/ensta/04-co.pdf

e Example: Solving mean squares

A € RVXN £yl rank

. > . _ 2 .
Find X = Argmin, cn||Ax — y||5 with {y .y

— Optimality condition:

VIR)=0 & A(AX—y)=0

x=(ATATH(ATy)

— Closed form expression but sometimes difficult to invert AT A.
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e Example: Logistic based criterion:

Find X € Argmin, g log (1 + exp(—yx)) with yeR

— Optimality condition:

—yexp(—yX) 0

f(x) = —
VIR =0 o TR

— No closed form expression. An iterative procedure is required.
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Let f: RV — R be continuously differen-
tiable on RV, Let xg € RN and

(VYn €N)  Xpi1 = Xq — ¥a VI (Xn)-

best initial guess

worst initial guess
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Let f: RV — R be continuously differen-
tiable on RV, Let xg € RN and

(VYn €N)  Xpi1 = Xq — ¥a VI (Xn)-

worst initial guess

best initial guess

e An iterative method consists to build a sequence (x,)nen such that, at each

iteration n

f(Xnt1) < f(xn)

e How to proove convergence of the sequence (x,)nen to X € Argmin f(x).

e Choose y, for convergence ? For faster convergence 7
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The second derivative of a real-valued function f: RN — R or the Hessian matrix
of f at x , denoted V?f(x) € RVXN s given by

0?f(x)

2 _
Vf(x) = (axfi?)(j) | |
1<i<N1<j<N

e Let A be a real symmetric N x N matrix.
e Spectral/eigen decomposition: A can be factored as

A= QAAT

where @ € RV*N is orthogonal (i.e. QT @ =Id) and A = diag(\y, ... An)
(where the real numbers \; are the eigenvalues of A The column of @ form
an orthonormal set of eigenvectors of A.

e Spectral norm: ||A|2 = max; |A;].

e Frobenius norm: ||Alr = /> ; \2.
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A function f € To(RN) is Lipschitz smooth with constant L or L-smooth if its
gradient is Lipschitz continuous with constant L:

(V(x,y) € RN xRY) |[VF(x) = VF(y)ll < LlIx - yl|

Remark:

e If f is twice differentiable, a function is L smooth if
(Vx € RV) V2f(x) < L-1d

e Particular case: f = ||A- —z||3 is B-smooth with 3 = vpmax(ATA) = | A|]2.
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Problem: Let f € To(RV), find X € Argmin f(x).
xERN

e If f is L-smooth with L > 0, the (explicit) gradient method:
(Vn eN) Xn41 = Xnp — Yn VI (Xn)

— Convergence insured when 0 < inf,cy 7y, et sup,cy 70 < 217t
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e If f nonsmooth, the (explicit) subgradient method (be defined next):

(Vn eN) Xn41l = Xn — YnlUn Wwith u, € Of(x,)
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Problem: Let f € To(RV), find X € Argmin f(x).
xERN

e If f is L-smooth with L > 0, the (explicit) gradient method:
(Vn eN) Xn41 = Xnp — Yn VI (Xn)

— Convergence insured when 0 < inf ey Y, €t sup,ey vn < 2L71.

e If f nonsmooth, the (explicit) subgradient method (be defined next):
(Vn eN) Xn41l = Xn — YnlUn Wwith u, € Of(x,)

— Convergence insured when v, €]0, +oo[ such that 7% 42 < 400 and

:;)S’y,,:—i—oo. [ ].

e If f nonsmooth, the implicit subgradient method is
(Vn € N) Xp4l = Xp — YnUp  With  u, € Of (xp11)

. 30
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Problem: Let f € To(RV), find X € Argmin f(x).
xERN

e If f is L-smooth with L > 0, the (explicit) gradient method:
(Vn eN) Xn41 = Xnp — Yn VI (Xn)

— Convergence insured when 0 < inf ey Y, €t sup,ey vn < 2L71.

e If f nonsmooth, the (explicit) subgradient method (be defined next):
(Vn eN) Xn41l = Xn — YnlUn Wwith u, € Of(x,)

— Convergence insured when v, €]0, +oo[ such that 7% 42 < 400 and

:;)S’y,,:—i—oo. [ ].

e If f nonsmooth, the implicit subgradient method is
(Vn € N) Xp4l = Xp — YnUp  With  u, € Of (xp11)

— Convergence insured when Z:’;’g Yn = +00 = Proximity operator. %0



