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Hilbert spaces

A (real) Hilbert space H is a complete real vector space endowed with an inner

product ⟨· | ·⟩. The associated norm is

(∀x ∈ H) ∥x∥ =
√
⟨x | x⟩.

� Particular case: H = RN (Euclidean space with dimension N).

� Course dedicated to finite dimension.
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Norm and adjoint

Let H and G be two Hilbert spaces.

A linear operator L : H → G is bounded (or continuous) if

∥L∥ = sup
∥x∥H≤1

∥Lx∥G < +∞

B(H,G): Banach space of bounded linear operators from H to G.
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Norm and adjoint

Let H and G be two Hilbert spaces.

A linear operator L : H → G is bounded (or continuous) if

∥L∥ = sup
∥x∥≤1

∥Lx∥ < +∞

� In finite dimension, every linear operator is bounded.

B(H,G): Banach space of bounded linear operators from H to G.
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Norm and adjoint

Let H and G be two Hilbert spaces.

Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H × G) ⟨y | Lx⟩G = ⟨L∗y | x⟩H .

Example:

If L : H → Hn : x 7→ (x , . . . , x)

then L∗ : Hn → H : y = (y1, . . . , yn) 7→
n∑

i=1

yi

Proof: ⟨Lx | y⟩ = ⟨(x , . . . , x) | (y1, . . . , yn)⟩ =
n∑

i=1

⟨x | yi ⟩ =

〈
x |

n∑
i=1

yi

〉
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Norm and adjoint

� About L∗:

⊙ Compute gradient and proximity operator operations (Parts III and IV)

⊙ Dual formulation (cf. Part VI)

⊙ Finite dimensions: If L ∈ B(RN ,RK ) then L∗ = L⊤.

⊙ Check the correct implementation by using its definition

(∀(x , y) ∈ RN × RK ) ⟨Lx | y⟩ = ⟨x | L∗y⟩

� About ∥L∥:
⊙ Required for gradient-based algorithms;

⊙ We have ∥L∗∥ = ∥L∥;
⊙ Normalized power method → Morgane Bergot course
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Functional analysis: definitions

Find x̂ ∈ Argmin
x∈H

f (x)

Class of functions f ∈ Γ0(H):

� Proper function

� Lower semi-continuous function

� Convex function
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Reminder about norms in finite dimension

� Vectors

� Let x = (xi )1≤i≤N ∈ RN .

� ℓ1-norm: ∥x∥1 =
∑

i |xi |.
� ℓ2-norm: ∥x∥2 =

√∑
i x

2
i .

� Matrices

� Let A be a real symmetric N × N matrix.

� Spectral/eigen decomposition: A can be factored as

A = QΛQ⊤

where Q ∈ RN×N is orthogonal (i.e. Q⊤Q = Id) and Λ = diag(λ1, . . . λN)

(where the real numbers λi are the eigenvalues of A).

The column of Q form an orthonormal set of eigenvectors of A.

� Spectral norm: ∥A∥2 = maxi |λi |.
� Frobenius norm: ∥A∥F =

√∑
i λ

2
i .
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Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

� The domain of f is dom f = {x ∈ H | f (x) < +∞}.
� The function f is proper if dom f ̸= ∅.
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Functional analysis: definitions

Let C ⊂ H.

The indicator function of C is

(∀x ∈ H) ιC (x) =

{
0 if x ∈ C

+∞ otherwise.
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{
(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ
}
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Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous function on H if and only if epi f is closed
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Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous function on H if and only if epi f is closed

� Examples:

⊙ Do not allow for strict constraints e.g. Ax < b or x > 0;

⊙ Allow for inequality or equality constraints e.g. Ax = b, Ax ≤ b or x > 0;
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Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous function on H if and only if epi f is closed

� Examples:

⊙ Do not allow for strict constraints e.g. Ax < b or x > 0;

⊙ Allow for inequality or equality constraints e.g. Ax = b, Ax ≤ b or x > 0;

� Properties:

⊙ Every continuous function on H is l.s.c.

⊙ Every finite sum of l.s.c. functions is l.s.c.
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Convex set

C ⊂ H is a convex set if

(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C
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Convex function: definitions

f : H → ]−∞,+∞] is a convex function if(
∀(x , y) ∈ H2

)
(∀α ∈]0, 1[) f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.
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Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.

� Properties :

⊙ Composition of an increasing convex funct. and a convex funct. is convex.

⊙ If f : H → ]−∞,+∞] is convex, then dom f is convex.

⊙ f : H → [−∞,+∞[ is concave if −f is convex.

⊙ Every finite sum of convex functions is convex.

� Γ0(H): class of convex, l.s.c., and proper functions from H to ]−∞,+∞].

� ιC ∈ Γ0(H) ⇔ C is a nonempty closed convex set.
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Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)
x ̸= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).
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Functional analysis: minimizers

Find x̂ ∈ Argmin
x∈C

f (x)

� Class of functions f ∈ Γ0(H):

� Minimizers

⊙ Local versus global minimizers

⊙ Coercivity and existence

⊙ Convex function
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Minimizers

Let C be a nonempty set of a Hilbert space H.

Let f : C → ]−∞,+∞] be a proper function and let x̂ ∈ C .

� x̂ ∈ dom f is a local minimizer of f if there exists an open neigborhood O

of x̂ such that

(∀x ∈ O ∩ C ) f (x̂) ≤ f (x).

� x̂ is a (global) minimizer of f if

(∀x ∈ C ) f (x̂) ≤ f (x).

16



Minimizers

Let C be a nonempty set of a Hilbert space H.

Let f : C → ]−∞,+∞] be a proper function and let x̂ ∈ C .

� x̂ is a strict local minimizer of f if there exists an open neigborhood O of

x̂ such that

(∀x ∈ (O ∩ C ) \ {x̂}) f (x̂) < f (x).

� x̂ is a strict (global) minimizer of f if

(∀x ∈ C \ {x̂}) f (x̂) < f (x).
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Minimizers of a convex function

Theorem: Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convex

function such that µ = inf f > −∞.

�

{
x ∈ H

∣∣ f (x) = µ
}
is convex.

� Every local minimizer of f is a global minimizer.

� If f is strictly convex, then there exists at most one minimizer.
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Minimizers of a convex function

Theorem: Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convex

function such that µ = inf f > −∞.

�

{
x ∈ H

∣∣ f (x) = µ
}
is convex.

� Every local minimizer of f is a global minimizer.

� If f is strictly convex, then there exists at most one minimizer.
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Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is coercive if lim∥x∥→+∞ f (x) = +∞.
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Existence and uniqueness of a minimizer

Theorem: Let H be a Hilbert space and C a closed convex subset of H. Let

f ∈ Γ0(H) such that dom f ∩ C ̸= ∅.

If f is coercive or C is bounded, then there exists x̂ ∈ C such that

f (x̂) = inf
x∈C

f (x).

If, moreover, f is strictly convex, this minimizer x̂ is unique.
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Functional analysis: minimizers

Find x̂ ∈ Argmin
x∈C

f (x)

� Class of functions f ∈ Γ0(H):

� Minimizers

� Differentiability and optimality condition
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Differentiable functions

If f : RN → R is differentiable function in x ∈ RN , the gradient of f at x is

∇f (x) ∈ RN and its components are the partial derivatives of f :

∇f (x) =

(
∂f (x)

∂xj

)
1≤i≤N

� Example: Let x ∈ RN , z ∈ RK and A ∈ RK×N and f (x) = 1
2∥Ax − z∥2, then

∇f (x) = A∗(Ax − z)
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Differentiable functions

Let f : RN → ]−∞,+∞] be a proper differentiable function in the neighborhood

of x ∈ RN .

The directional derivative of f at x with respect to the direction y ∈ RN is

defined as:

⟨∇f (x) | y⟩ = lim
α→0

f (x + αy)− f (x)

α
.
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Optimality condition

1st order necessary and sufficient condition (P. Fermat)

Let f ∈ Γ0(H) be continuously differentiable function on H.

x̂ is a global minimizer of f i.e

x̂ ∈ Argminx∈RN f (x) ⇔ ∇f (x̂) = 0

� More details about optimality conditions here :

[Jean-Charles Gilbert course]

[Nocedal-Wright, 1999]

� Limitations :

⊙ Lead to a N equations - N unknown problem.

⊙ Closed form expression for only few cases.

⊙ If no closed form expression exists, an iterative procedure is required.
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Optimality condition

� Example: Solving mean squares

Find x̂ = Argminx∈RN∥Ax − y∥22 with

{
A ∈ RN×N full rank

y ∈ RM

→ Optimality condition:

∇f (x̂) = 0 ⇔ A⊤(Ax̂ − y) = 0

x̂ = (A⊤A)−1(A⊤y)

→ Closed form expression but sometimes difficult to invert A⊤A.
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Optimality condition

� Example: Logistic based criterion:

Find x̂ ∈ Argminx∈R log
(
1 + exp(−yx)

)
with y ∈ R

→ Optimality condition:

∇f (x̂) = 0 ⇔ −y exp(−y x̂)

1 + exp(−y x̂)
= 0

→ No closed form expression. An iterative procedure is required.
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Gradient descent

Gradient descent

Let f : RN → R be continuously differen-

tiable on RN . Let x0 ∈ RN and

(∀n ∈ N) xn+1 = xn − γn∇f (xn).

� An iterative method consists to build a sequence (xn)n∈N such that, at each

iteration n

f (xn+1) < f (xn)

� How to proove convergence of the sequence (xn)n∈N to x̂ ∈ Argmin f (x).

� Choose γn for convergence ? For faster convergence ?
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Hessian matrix

The second derivative of a real-valued function f : RN → R or the Hessian matrix

of f at x , denoted ∇2f (x) ∈ RN×N , is given by

∇2f (x) =

(
∂2f (x)

∂xi∂xj

)
1≤i≤N,1≤j≤N

� Let A be a real symmetric N × N matrix.

� Spectral/eigen decomposition: A can be factored as

A = QΛA⊤

where Q ∈ RN×N is orthogonal (i.e. Q⊤Q = Id) and Λ = diag(λ1, . . . λN)

(where the real numbers λi are the eigenvalues of A The column of Q form

an orthonormal set of eigenvectors of A.

� Spectral norm: ∥A∥2 = maxi |λi |.
� Frobenius norm: ∥A∥F =

√∑
i λ

2
i .
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L-smooth

A function f ∈ Γ0(RN) is Lipschitz smooth with constant L or L-smooth if its

gradient is Lipschitz continuous with constant L:

(∀(x , y) ∈ RN × RN) ∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥

Remark:

� If f is twice differentiable, a function is L smooth if

(∀x ∈ RN) ∇2f (x) ≤ L · Id

� Particular case: f = ∥A · −z∥22 is β-smooth with β = vpmax(A
⊤A) = ∥A∥2.
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Iterative scheme

Problem: Let f ∈ Γ0(RN), find x̂ ∈ Argmin
x∈RN

f (x).

• If f is L-smooth with L > 0, the (explicit) gradient method:

(∀n ∈ N) xn+1 = xn − γn∇f (xn)

→ Convergence insured when 0 < infn∈N γn et supn∈N γn < 2L−1.

• If f nonsmooth, the (explicit) subgradient method (be defined next):

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn)

→ Convergence insured when γn ∈]0,+∞[ such that
∑+∞

n=0 γ
2
n < +∞ and∑+∞

n=0 γn = +∞. [Shor, 1979].

• If f nonsmooth, the implicit subgradient method is

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn+1)

→ Convergence insured when
∑+∞

n=0 γn = +∞ .

30



Iterative scheme

Problem: Let f ∈ Γ0(RN), find x̂ ∈ Argmin
x∈RN

f (x).

• If f is L-smooth with L > 0, the (explicit) gradient method:

(∀n ∈ N) xn+1 = xn − γn∇f (xn)

→ Convergence insured when 0 < infn∈N γn et supn∈N γn < 2L−1.

• If f nonsmooth, the (explicit) subgradient method (be defined next):

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn)

→ Convergence insured when γn ∈]0,+∞[ such that
∑+∞

n=0 γ
2
n < +∞ and∑+∞

n=0 γn = +∞. [Shor, 1979].

• If f nonsmooth, the implicit subgradient method is

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn+1)

→ Convergence insured when
∑+∞

n=0 γn = +∞ .

30



Iterative scheme

Problem: Let f ∈ Γ0(RN), find x̂ ∈ Argmin
x∈RN

f (x).

• If f is L-smooth with L > 0, the (explicit) gradient method:

(∀n ∈ N) xn+1 = xn − γn∇f (xn)

→ Convergence insured when 0 < infn∈N γn et supn∈N γn < 2L−1.

• If f nonsmooth, the (explicit) subgradient method (be defined next):

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn)

→ Convergence insured when γn ∈]0,+∞[ such that
∑+∞

n=0 γ
2
n < +∞ and∑+∞

n=0 γn = +∞. [Shor, 1979].

• If f nonsmooth, the implicit subgradient method is

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn+1)

→ Convergence insured when
∑+∞

n=0 γn = +∞ .
30



Iterative scheme
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n=0 γ
2
n < +∞ and∑+∞
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• If f nonsmooth, the implicit subgradient method is

(∀n ∈ N) xn+1 = xn − γnun with un ∈ ∂f (xn+1)

→ Convergence insured when
∑+∞

n=0 γn = +∞ ⇒ Proximity operator.
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