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(several slides in this part traced back Tutorial ICASSP 2014 written in collaboration with Jean-Christophe
Pesquet from Centre de Vision Numérique, CentraleSupelec, University Paris-Saclay, Inria, France. )



Optimization ?

We think that convex optimization is an important enough topic that everyone
who uses computational mathematics should know at least a little bit about it. In
our opinion, convex optimization is a natural next topic after advanced linear
algebra and linear programming.

(Stephen Boyd and Lieven Vandenberghe)




Whatever people do, at some point they get a craving to organize things in a best
possible way. This intention, converted in a mathematical form, turns out to be

an optimization problem of certain type.
(Yurii Nesterov)




e Minimization problems involve : f(x)

e a cost function f: RV — R:
e asubset D of RV.
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e Goal: We want to

Find x € D such that (Vx € D) f(X) < f(x)
< Findxe D suchthat f(X)= ing f(x)

< Find X € Argmin f(x).
xeD
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e Goal: We want to

Find X € D such that (Vx € D) f(x) > f(x)
< Findxe D suchthat (Vxe€ D) —f(X) < —f(x)
< Find X € Argmin (—f(x)). 4
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¢ Maximization problems involving :

e a reward function f: RV — R;
e asubset D of RV.

f(x)

Without loss of generality, we
can focus on
minimization problems

Find X € Argmin f(x).
xeD




e Find

X € Argmin f(x)
xeD

with D = R": unconstrained problem

f(x)




e Find |X € Argmin f(x)| with D countable: discrete optimization
xeD
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e Find |X € Argmin f(x)|with D being equality or inequality constraints
xeD

e Example: Optimization problem with P equality constraints
D={xeR"|(Vie{l,...,P}) g(x)=0}

where g;: RV — R.
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e Find |X € Argmin f(x)
xeD

with D being equality or inequality constraints

e Example: Optimization problem with P inequality constraints

D={xeR"|(Vie{l,...,P}) g(x) <0}

where g;: RV — R.

e Particular case: linear (or affine) constraints

gi(x) = (ai [ x) + bj A
N
= Z ai,nXn + b; LN
n=1 \

where a; € RY and b; € R.

f(x) = 304 +x3)
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e Find |X € Argmin f(x)|with D being equality or inequality constraints
xeD

e Example: Optimization problem with P equality constraints
D={xeR"|(Vie{1,...,P}) g(x)<0}
where gi: RV — R.
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— Continuous optimization



e Reformulation using indicator function

Find X € Argmin f(x) < Find X € Argmin f(x) + ¢tp(x)
xeD x€RN

where
0 if xe D

+o00  otherwise.

(Vx € RN) 1p(x) = {
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Find X € Argmin f(x) < Find X € Argmin f(x) + ¢tp(x)
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e or equivalently

Find X € Argmin f(x)
x€RN

where
f(x) ifxeD

+00  otherwise.

(Vx eRV) f(x) = {



e Reformulation using indicator function

Find X € Argmin f(x) < Find X € Argmin f(x) + ¢p(x)
xeD xeRN

where
0 if xe D

+o00  otherwise.

(Vx € RN) 1p(x) = {

Allowing non finite valued functions leads to a unifying view of
constrained and unconstrained minimization problems.
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3. Designing an algorithm to approximate a solution in the frequent case when
no closed form solution is available, i.e. building a sequence (x,)nen of RV
such that

lim x,=X.
n—-+o0o
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4. Evaluation of the performance of the optimization algorithm:

e Convergence rate or at least convergence of the iterates
Example: If there exists p €]0,1[ and n* € N such that (Vn > n*)
[[Xn+1 — X|| < p||xa — X||, then (Q-)linear convergence rate.

e Robustness to numerical errors

e Amenability to parallel/distributed implementations.
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