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Optimization ?

We think that convex optimization is an important enough topic that everyone

who uses computational mathematics should know at least a little bit about it. In

our opinion, convex optimization is a natural next topic after advanced linear

algebra and linear programming.

(Stephen Boyd and Lieven Vandenberghe)
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Optimization ?

Whatever people do, at some point they get a craving to organize things in a best

possible way. This intention, converted in a mathematical form, turns out to be

an optimization problem of certain type.

(Yurii Nesterov)
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Optimization: Minimization problems

� Minimization problems involve :

� a cost function f : RN → R;
� a subset D of RN .

� Goal: We want to

Find x̂ ∈ D such that (∀x ∈ D) f (x̂) ≤ f (x)

⇔ Find x̂ ∈ D such that f (x̂) = inf
x∈D

f (x)

⇔ Find x̂ ∈ Argmin
x∈D

f (x).
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Optimization: Maximization problems

� Maximization problems involving :

� a reward function f : RN → R;
� a subset D of RN .

Without loss of generality, we

can focus on

minimization problems

Find x̂ ∈ Argmin
x∈D

f (x).

� Goal: We want to

Find x̂ ∈ D such that (∀x ∈ D) f (x̂) ≥ f (x)

⇔ Find x̂ ∈ D such that (∀x ∈ D) − f (x̂) ≤ −f (x)

⇔ Find x̂ ∈ Argmin
x∈D

(−f (x)) .
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Various types of minimization problems

� Find x̂ ∈ Argmin
x∈D

f (x) with D = RN : unconstrained problem
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Various types of minimization problems

� Find x̂ ∈ Argmin
x∈D

f (x) with D countable: discrete optimization
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Various types of minimization problems

� Find x̂ ∈ Argmin
x∈D

f (x) with D being equality or inequality constraints

� Example: Optimization problem with P equality constraints

D =
{
x ∈ RN | (∀i ∈ {1, . . . ,P}) gi (x) = 0

}
where gi : RN → R.
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Various types of minimization problems

� Find x̂ ∈ Argmin
x∈D

f (x) with D being equality or inequality constraints

� Example: Optimization problem with P equality constraints

D =
{
x ∈ RN | (∀i ∈ {1, . . . ,P}) gi (x) = 0

}
where gi : RN → R.

� Particular case: linear (or affine) constraints

gi (x) = ⟨ai | x⟩+ bi

=
N∑

n=1

ai,nxn + bi

where ai ∈ RN and bi ∈ R.

x1

x2

f (x) = 1
2 (x

2
1 + x2

2 )

x1 + x2 = −2
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Various types of minimization problems

� Find x̂ ∈ Argmin
x∈D

f (x) with D being equality or inequality constraints

� Example: Optimization problem with P equality constraints

D =
{
x ∈ RN | (∀i ∈ {1, . . . ,P}) gi (x) ≤ 0

}
where gi : RN → R.

x1

x2

f (x) = 1
2 (x

2
1 + x2

2 )

2

x1 + x2 ≤ −2

→ Continuous optimization
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Constrained and unconstrained minimization problems

� Reformulation using indicator function

Find x̂ ∈ Argmin
x∈D

f (x) ⇔ Find x̂ ∈ Argmin
x∈RN

f (x) + ιD(x)

where

(∀x ∈ RN) ιD(x) =

{
0 if x ∈ D

+∞ otherwise.

Allowing non finite valued functions leads to a unifying view of

constrained and unconstrained minimization problems.
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Main questions to be addressed

1. Existence/uniqueness of a solution x̂ ?

2. Characterization of solutions: necessary/sufficient conditions for x̂ to be a

solution.

3. Designing an algorithm to approximate a solution in the frequent case when

no closed form solution is available, i.e. building a sequence (xn)n∈N of RN

such that

lim
n→+∞

xn = x̂ .

4. Evaluation of the performance of the optimization algorithm:

� Convergence rate or at least convergence of the iterates

Example: If there exists ρ ∈]0, 1[ and n∗ ∈ N such that (∀n ≥ n∗)

∥xn+1 − x̂∥ ≤ ρ∥xn − x̂∥, then (Q-)linear convergence rate.

� Robustness to numerical errors

� Amenability to parallel/distributed implementations.
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