Optimization

Introduction –

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

(several slides in this part traced back Tutorial ICASSP 2014 written in collaboration with **Jean-Christophe Pesquet** from Centre de Vision Numérique, CentraleSupelec, University Paris-Saclay, Inria, France.)

Optimization?

We think that convex optimization is an important enough topic that everyone who uses computational mathematics should know at least a little bit about it. In our opinion, convex optimization is a natural next topic after advanced linear algebra and linear programming.

(Stephen Boyd and Lieven Vandenberghe)

Optimization?

Whatever people do, at some point they get a craving to organize things in a best possible way. This intention, converted in a mathematical form, turns out to be an optimization problem of certain type.

(Yurii Nesterov)

Optimization: Minimization problems

- Minimization problems involve :
 - a cost function $f: \mathbb{R}^N \to \mathbb{R}$;
 - a subset D of \mathbb{R}^N .

Optimization: Minimization problems

- Minimization problems involve :
 - a cost function $f: \mathbb{R}^N \to \mathbb{R}$;
 - a subset D of \mathbb{R}^N .

• Goal: We want to

Find
$$\widehat{x} \in D$$
 such that $(\forall x \in D) f(\widehat{x}) \leq f(x)$
 \Leftrightarrow Find $\widehat{x} \in D$ such that $f(\widehat{x}) = \inf_{x \in D} f(x)$

$$\Leftrightarrow$$
 Find $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$.

Optimization: Maximization problems

- Maximization problems involving :
 - a reward function $f: \mathbb{R}^N \to \mathbb{R}$;
 - a subset D of \mathbb{R}^N .

Optimization: Maximization problems

- Maximization problems involving :
 - a reward function $f: \mathbb{R}^N \to \mathbb{R}$;
 - a subset D of \mathbb{R}^N .

• Goal: We want to

Find
$$\widehat{x} \in D$$
 such that $(\forall x \in D) f(\widehat{x}) \ge f(x)$
 \Leftrightarrow Find $\widehat{x} \in D$ such that $(\forall x \in D) - f(\widehat{x}) \le -f(x)$
 \Leftrightarrow Find $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} (-f(x))$.

4

Optimization: Maximization problems

- Maximization problems involving :
 - a reward function $f: \mathbb{R}^N \to \mathbb{R}$;
 - a subset D of \mathbb{R}^N .

Without loss of generality, we can focus on minimization problems

Find $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$.

Find

$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$$

 $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$ with $D = \mathbb{R}^N$: unconstrained problem

• Find $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$ with D countable: discrete optimization

$$\hat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$$

• Find $\left| \widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} \ \overline{f(x)} \right|$ with D being equality or inequality constraints

• Example: Optimization problem with P equality constraints

$$D = \{x \in \mathbb{R}^N \mid (\forall i \in \{1, ..., P\}) \mid g_i(x) = 0\}$$

where $g_i : \mathbb{R}^N \to \mathbb{R}$.

$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$$

 $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} \ \overline{f(x)}$ with D being equality or inequality constraints

• Example: Optimization problem with P equality constraints

$$D = \{x \in \mathbb{R}^N \mid (\forall i \in \{1, ..., P\}) \mid g_i(x) = 0\}$$

where $g_i : \mathbb{R}^N \to \mathbb{R}$.

• Particular case: linear (or affine) constraints

$$g_i(x) = \langle a_i \mid x \rangle + b_i$$
$$= \sum_{n=1}^{N} a_{i,n} x_n + b_i$$

where $a_i \in \mathbb{R}^N$ and $b_i \in \mathbb{R}$.

$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$$

 $\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} \ \overline{f(x)}$ with D being equality or inequality constraints

• Example: Optimization problem with P inequality constraints

$$D = \left\{ x \in \mathbb{R}^N \mid (\forall i \in \{1, \dots, P\}) \quad g_i(x) \le 0 \right\}$$

where $g_i : \mathbb{R}^N \to \mathbb{R}$.

• Particular case: linear (or affine) constraints

$$g_i(x) = \langle a_i \mid x \rangle + b_i$$
$$= \sum_{n=1}^{N} a_{i,n} x_n + b_i$$

where $a_i \in \mathbb{R}^N$ and $b_i \in \mathbb{R}$.

Find

$$\hat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$$

 $|\hat{x} \in \text{Argmin } f(x)|$ with D being equality or inequality constraints

• Example: Optimization problem with P equality constraints

$$D = \left\{ x \in \mathbb{R}^N \mid (\forall i \in \{1, \dots, P\}) \quad g_i(x) \le 0 \right\}$$

where $g_i : \mathbb{R}^N \to \mathbb{R}$.

→ Continuous optimization

Constrained and unconstrained minimization problems

• Reformulation using indicator function

Find
$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x) \Leftrightarrow \operatorname{Find} \widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) + \iota_D(x)$$

where

$$(\forall x \in \mathbb{R}^N) \quad \iota_D(x) = \begin{cases} 0 & \text{if } x \in D \\ +\infty & \text{otherwise.} \end{cases}$$

7

Constrained and unconstrained minimization problems

• Reformulation using indicator function

Find
$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x) \Leftrightarrow \operatorname{Find} \widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) + \iota_D(x)$$

where

$$(\forall x \in \mathbb{R}^N)$$
 $\iota_D(x) = \begin{cases} 0 & \text{if } x \in D \\ +\infty & \text{otherwise.} \end{cases}$

• or equivalently

Find
$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \widetilde{f}(x)$$
 where
$$(\forall x \in \mathbb{R}^N) \quad \widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in D \\ +\infty & \text{otherwise.} \end{cases}$$

7

Constrained and unconstrained minimization problems

• Reformulation using indicator function

Find
$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x) \Leftrightarrow \operatorname{Find} \widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) + \iota_D(x)$$

where

$$(\forall x \in \mathbb{R}^N) \quad \iota_D(x) = \begin{cases} 0 & \text{if } x \in D \\ +\infty & \text{otherwise.} \end{cases}$$

Allowing non finite valued functions leads to a unifying view of constrained and unconstrained minimization problems.

1. **Existence/uniqueness** of a solution \hat{x} ?

- 1. **Existence/uniqueness** of a solution \hat{x} ?
- 2. Characterization of solutions: **necessary/sufficient conditions** for \hat{x} to be a solution.

- 1. **Existence/uniqueness** of a solution \hat{x} ?
- 2. Characterization of solutions: **necessary/sufficient conditions** for \hat{x} to be a solution.
- 3. Designing an algorithm to approximate a solution in the frequent case when no closed form solution is available, i.e. building a sequence $(x_n)_{n\in\mathbb{N}}$ of \mathbb{R}^N such that

$$\lim_{n\to+\infty}x_n=\widehat{x}.$$

- 1. **Existence/uniqueness** of a solution \hat{x} ?
- 2. Characterization of solutions: **necessary/sufficient conditions** for \hat{x} to be a solution.
- 3. Designing an algorithm to approximate a solution in the frequent case when no closed form solution is available, i.e. building a sequence $(x_n)_{n\in\mathbb{N}}$ of \mathbb{R}^N such that

$$\lim_{n\to+\infty} x_n = \widehat{x}.$$

- 4. Evaluation of the performance of the optimization algorithm:
 - Convergence rate or at least convergence of the iterates Example: If there exists $\rho \in]0,1[$ and $n^* \in \mathbb{N}$ such that $(\forall n \geq n^*)$ $||x_{n+1} - \widehat{x}|| \leq \rho ||x_n - \widehat{x}||$, then (Q-) linear convergence rate.
 - Robustness to numerical errors
 - Amenability to parallel/distributed implementations.

Reference books

- D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont, Massachussets, 1995.
- Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2004.
- **S. Boyd and L. Vandenberghe**, Convex optimization, Cambridge University Press, 2004.
- J. Nocedal and S. Wright, Numerical Optimization, Springer, 2006.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
- A. Beck, First-Order Methods In Optimization, MOS-SIAM, 2019.