Optimization

Smooth optimization –

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

(several slides in this part are written in collaboration with Elisa Riccietti from LIP, ENS de Lyon)

Solution of a minimization problem

Let C be a nonempty set of a Hilbert space \mathcal{H} .

Let $f: C \to]-\infty, +\infty]$ be a proper function and let $\hat{x} \in C$.

• $\widehat{x} \in \text{dom } f$ is a **local minimizer** of f if there exists an open neigborhood O of \widehat{x} such that

$$(\forall x \in O \cap C)$$
 $f(\widehat{x}) \leq f(x).$

• \hat{x} is a **(global) minimizer** of f if

$$(\forall x \in C)$$
 $f(\widehat{x}) \leq f(x)$.

1

Solution of a minimization problem

Let C be a nonempty set of a Hilbert space \mathcal{H} .

Let $f: C \to]-\infty, +\infty]$ be a proper function and let $\widehat{x} \in C$.

• \widehat{x} is a **strict local minimizer** of f if there exists an open neigborhood O of \widehat{x} such that

$$(\forall x \in (O \cap C) \setminus \{\widehat{x}\})$$
 $f(\widehat{x}) < f(x)$.

• \widehat{x} is a **strict (global) minimizer** of f if

$$(\forall x \in C \setminus \{\widehat{x}\})$$
 $f(\widehat{x}) < f(x)$.

1

Differentiable functions

Let $f: \mathbb{R}^N \to]-\infty, +\infty]$ be a proper differentiable function in the neighborhood of $x \in \mathbb{R}^N$.

The **directional derivative** of f at x with respect to the direction $y \in \mathbb{R}^N$ is defined as:

$$\langle \nabla f(x) \mid y \rangle = \lim_{\alpha \searrow 0} \frac{f(x + \alpha y) - f(x)}{\alpha}.$$

1st order necessary and sufficient condition (P. Fermat)

Let $f \in \Gamma_0(\mathbb{R}^N)$ be continuously differentiable function on \mathbb{R}^N . \widehat{x} is a global minimizer of f i.e

$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) \qquad \Leftrightarrow \qquad \nabla f(\widehat{x}) = 0$$

3

1st order necessary and sufficient condition (P. Fermat)

Let $f \in \Gamma_0(\mathbb{R}^N)$ be continuously differentiable function on \mathbb{R}^N . \hat{x} is a global minimizer of f i.e

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} f(x) \qquad \Leftrightarrow \qquad \nabla f(\widehat{x}) = 0$$

<u>Proof</u> (\Rightarrow): Let $\epsilon \in \mathbb{R}^N$. We set, for every $\alpha \in \mathbb{R}$, $g(\alpha) = f(\hat{x} + \alpha \epsilon)$. Then

$$\frac{dg(\alpha)}{d\alpha} = \langle \epsilon, \nabla f(\widehat{x} + \alpha \epsilon) \rangle$$

Leading to

$$\frac{dg(0)}{d\alpha} = \langle \epsilon, \nabla f(\widehat{x}) \rangle$$

$$= \lim_{\alpha \to 0} \frac{f(\widehat{x} + \alpha \epsilon) - f(\widehat{x})}{\alpha} \geq 0 \quad \text{(because } \widehat{x} \text{ is a minimizer of } f\text{)}$$

Thus

$$) \rangle \geq 0$$

1st order necessary and sufficient condition (P. Fermat)

Let $f \in \Gamma_0(\mathbb{R}^N)$ be continuously differentiable function on \mathbb{R}^N . \hat{x} is a global minimizer of f i.e

$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) \qquad \Leftrightarrow \qquad \nabla f(\widehat{x}) = 0$$

<u>Proof</u> (\Rightarrow): Let $\epsilon \in \mathbb{R}^N$. We set, for every $\alpha \in \mathbb{R}$, $g(\alpha) = f(\hat{x} - \alpha \epsilon)$. Then

$$\frac{dg(\alpha)}{d\alpha} = \langle -\epsilon, \nabla f(\widehat{x} - \alpha \epsilon) \rangle$$

Leading to

$$\frac{dg(0)}{d\alpha} = \langle -\epsilon, \nabla f(\widehat{x}) \rangle$$

$$= \lim_{\alpha \searrow 0} \frac{f(\widehat{x} - \alpha \epsilon) - f(\widehat{x})}{\alpha} \ge 0 \quad \text{(because } \widehat{x} \text{ is a minimizer of } f\text{)}$$

Thus

$$\langle \hat{z} \rangle \leq 0$$

1st order necessary and sufficient condition (P. Fermat)

Let $f \in \Gamma_0(\mathbb{R}^N)$ be continuously differentiable function on \mathbb{R}^N . \hat{x} is a global minimizer of f i.e

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{P}^N} f(x) \qquad \Leftrightarrow \qquad \nabla f(\widehat{x}) = 0$$

 $\underline{\mathsf{Proof}}\ (\Leftarrow): f \ \mathsf{being}\ \mathsf{a}\ \mathsf{convex}\ \mathsf{function}, \ \mathsf{this}\ \mathsf{yields}\ \mathsf{to}$

$$(\forall (x,z) \in \mathbb{R}^N \times \mathbb{R}^N)(\forall \alpha \in [0,1]) \quad f((1-\alpha)x + \alpha z) \le (1-\alpha)f(x) + \alpha f(z)$$

$$\Leftrightarrow \quad f(x+\alpha(z-x)) \le (1-\alpha)f(x) + \alpha f(z)$$

$$\Leftrightarrow \quad \frac{f(x+\alpha(z-x)) - f(x)}{\alpha} \le f(z) - f(x)$$

Thus

$$\lim_{\alpha \searrow 0} \frac{f(x + \alpha(z - x)) - f(x)}{\alpha} = \langle z - x, \nabla f(x) \rangle \leq f(z) - f(x)$$

If $\nabla f(x) = 0$, then

$$(\forall z \in \mathbb{R}^N) \quad f(z) \geq f(\widehat{x})$$

1st order necessary and sufficient condition (P. Fermat)

Let $f \in \Gamma_0(\mathbb{R}^N)$ be continuously differentiable function on \mathbb{R}^N . \hat{x} is a global minimizer of f i.e

$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} f(x) \qquad \Leftrightarrow \qquad \nabla f(\widehat{x}) = 0$$

 $\underline{\mathsf{Proof}}\ (\Leftarrow): f \ \mathsf{being}\ \mathsf{a}\ \mathsf{convex}\ \mathsf{function}, \ \mathsf{this}\ \mathsf{yields}\ \mathsf{to}$

$$(\forall (x,z) \in \mathbb{R}^{N} \times \mathbb{R}^{N})(\forall \alpha \in [0,1]) \quad f((1-\alpha)x + \alpha z) \leq (1-\alpha)f(x) + \alpha f(z)$$

$$\Leftrightarrow \quad f(x + \alpha(z-x)) \leq (1-\alpha)f(x) + \alpha f(z)$$

$$\Leftrightarrow \quad \frac{f(x + \alpha(z-x)) - f(x)}{\alpha} \leq f(z) - f(x)$$

Thus

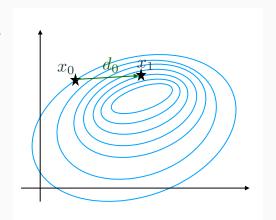
$$\lim_{\alpha \searrow 0} \frac{f(x + \alpha(z - x)) - f(x)}{\alpha} = \boxed{\langle z - x, \nabla f(x) \rangle \leq f(z) - f(x)}$$

 \rightarrow caracterization of the convexity.

- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

$$x_{k+1} = x_k + t_k d_k$$

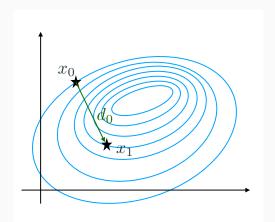
- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.



- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

$$x_{k+1} = x_k + t_k d_k$$

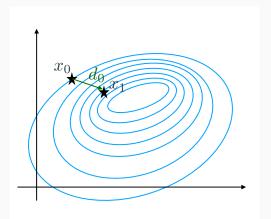
- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.



- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

$$x_{k+1} = x_k + t_k d_k$$

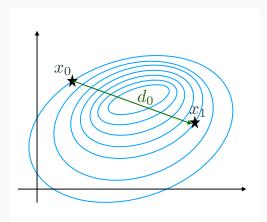
- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.



- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

$$x_{k+1} = x_k + t_k d_k$$

- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.



- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

$$x_{k+1} = x_k + t_k d_k$$

where

- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.
- The choice of d_k is such that it is possible to find a $t_k > 0$ satisfying

$$f(x_k + t_k d_k) = \boxed{f(x_{k+1}) < f(x_k)}$$

5

Taylor expansion: Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable, then for every \mathbf{x} and \mathbf{y} in \mathbb{R}^N ,

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(\|\mathbf{y} - \mathbf{x}\|)$$

Taylor expansion: Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable, then for every \mathbf{x} and \mathbf{y} in \mathbb{R}^N ,

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(\|\mathbf{y} - \mathbf{x}\|)$$

• Considering iterations of the form:

$$x_{k+1} = x_k + t_k d_k$$

we get

$$f(x_k + t_k d_k) = f(x_k) + \langle \nabla f(x_k), t_k d_k \rangle + o(||t_k d_k||)$$

Taylor expansion: Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable, then for every \mathbf{x} and \mathbf{y} in \mathbb{R}^N ,

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(\|\mathbf{y} - \mathbf{x}\|)$$

• Considering iterations of the form:

$$x_{k+1} = x_k + t_k d_k$$

we get

$$f(x_k + t_k d_k) = f(x_k) + \langle \nabla f(x_k), t_k d_k \rangle + o(||t_k d_k||)$$

• In order to have $f(x_{k+1}) < f(x_k)$, we need

$$\langle \nabla f(x_k), d_k \rangle < 0$$

Taylor expansion: Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable, then for every \mathbf{x} and \mathbf{y} in \mathbb{R}^N ,

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(\|\mathbf{y} - \mathbf{x}\|)$$

• Considering iterations of the form:

$$x_{k+1} = x_k + t_k d_k$$

we get

$$f(x_k + t_k d_k) = f(x_k) + \langle \nabla f(x_k), t_k d_k \rangle + o(||t_k d_k||)$$

• In order to have $f(x_{k+1}) < f(x_k)$, we need

$$\langle \nabla f(x_k), d_k \rangle < 0$$

The most natural choice is

$$d_k = -\nabla f(x_k)$$

Taylor expansion: Let $f: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable, then for every \mathbf{x} and \mathbf{y} in \mathbb{R}^N ,

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(\|\mathbf{y} - \mathbf{x}\|)$$

• Considering iterations of the form:

$$x_{k+1} = x_k + t_k d_k$$

we get

$$f(x_k + t_k d_k) = f(x_k) + \langle \nabla f(x_k), t_k d_k \rangle + o(||t_k d_k||)$$

• In order to have $f(x_{k+1}) < f(x_k)$, we need

$$\langle \nabla f(x_k), d_k \rangle < 0$$

The most natural choice is

$$d_k = -\nabla f(x_k)$$

• Steepest descent: $x_{k+1} = x_k - t_k \nabla f(x_k)$

Newton method

Quadratic approximation: Let $f : \mathbb{R}^N \to \mathbb{R}$ be **twice** continuously differentiable and **h** in \mathbb{R}^N .

Then, the best quadratic approximation of f in a neighbourhood of \mathbf{x} is

$$T(\mathbf{x}, \mathbf{h}) = \underbrace{f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{h} \rangle + \frac{1}{2} \langle \mathbf{h}, \nabla^2 f(\mathbf{x}) \mathbf{h} \rangle}_{m_k(\mathbf{x}, \mathbf{h})}$$

• When $\mathbf{h} = d_k$ and $\mathbf{x} = x_k$, we have:

$$f(x_{k+1}) \leq \underbrace{f(x_k) + \langle \nabla f(x_k), d_k \rangle + \langle d_k, \nabla^2 f(x_k) d_k \rangle}_{m_k(x_k, d_k)}$$

• The Newton direction is the minimizer of m_k is

$$d_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$$

• Iterations: $x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$

7

Quadratic approximation: Let $f: \mathbb{R}^N \to \mathbb{R}$ be L-smooth. Then for any $\beta \geq L$, we have

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\beta}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• When $\mathbf{y} = x_{k+1}$ and $\mathbf{x} = x_k$, we have:

$$f(x_{k+1}) \leq \underbrace{f(x_k) + \langle \nabla f(x_k), d_k \rangle + \frac{\beta}{2} \|d_k\|^2}_{m_k(x_k, d_k)}$$

• The step direction d_k leading to the minimum m_k is

$$d_k = -\frac{1}{\beta} \nabla f(x_k)$$

• Iterations: $x_{k+1} = x_k - \frac{1}{\beta} \nabla f(x_k)$

Newton method

Quadratic approximation: Let $f: \mathbb{R}^N \to \mathbb{R}$ be **twice** continuously differentiable. Then,

$$f(\mathbf{y}) = \underbrace{f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, H_k(\mathbf{y} - \mathbf{x}) \rangle}_{m_k(\mathbf{x}, \mathbf{y} - \mathbf{x})}$$

where H_k symmetric positive-definite.

• When $\mathbf{y} = x_{k+1}$ and $\mathbf{x} = x_k$, we have:

$$f(x_{k+1}) \leq \underbrace{f(x_k) + \langle \nabla f(x_k), d_k \rangle + \langle d_k, H_k d_k \rangle}_{m_k(x_k, d_k)}$$

• The Newton direction is the minimizer of m_k is

$$d_k = -H_k^{-1} \nabla f(x_k)$$

• Iterations: $x_{k+1} = x_k - H_k^{-1} \nabla f(x_k)$

9

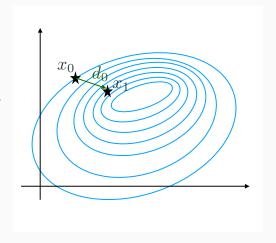
Newton method

- Iterations: $x_{k+1} = x_k H_k^{-1} \nabla f(x_k)$
- Choice for H_k :
 - $H_k = t_k \nabla^2 f(x_k)$
 - H_k diagonal e.g. $h_{k,k} = \frac{d^2 f(x_k)}{dx_k^2}$
 - $\bullet \ \ H_k = t_k \nabla^2 f(x_0)$

Step-size choice

- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

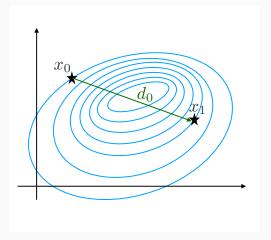
- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.



Step-size choice

- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.

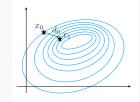


Step-size choice

- Goal: build a sequence $(x_k)_{k\in\mathbb{N}}$ that converges to \widehat{x} .
- Iteration type :

$$x_{k+1} = x_k + t_k d_k$$

- $t_k > 0$: step-length,
- $d_k \in \mathbb{R}^N$: step direction.



- Choice of d_k (cf. previous slides)
- Choice of t_k
 - Armijo condition : not too large.
 - Wolfe condition : not too small.

Armijo condition

The Armijo rule requires that

$$f(x_k + t_k d_k) \leq f(x_k) + t_k c_1 \langle \nabla f(x_k), d_k \rangle$$

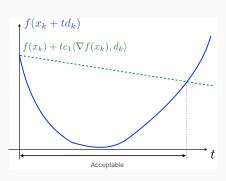
where $c_1 \in (0, 1)$.

Remarks:

• Armijo rule is stronger than just asking the simple descrease $f(x_{k+1}) \le f(x_k)$ because

$$\langle \nabla f(x_k), d_k \rangle < 0.$$

 Choosing t according to Armijo rule avoids choosing t too large.



Wolfe condition

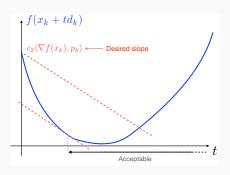
The Wolfe rule requires that

$$\langle \nabla f(x_k + t_k d_k), d_k \rangle \geq c_2 \langle \nabla f(x_k), d_k \rangle$$

where $c_2 \in (c_1, 1)$.

Remarks:

- Require that the slope of $f(x_k + t_k d_k)$ to be greater than the negative slope $c_2 \langle \nabla f(x_k), d_k \rangle$
- Ensure that the slope has been reduced sufficiently.



Backtracking strategy

```
Algorithm: Given x_k, t_0, d_k, b_{\max}, c_1 \in (0,1), \gamma \in (0,1) t_k = t_0 For b = 0, 1, \ldots, b_{\max} If f(x_k + t_k d_k) \leq f(x_k) + t_k c_1 \langle \nabla f(x_k), d_k \rangle (satisfy Armijo) Stop Otherwise set t_k = \gamma t_k
```

Remarks:

The name backtracking is due to the fact that k if progressively reduced.

- BFGS: Broyden, Fletcher, Goldfarb, and Shanno (1970)
- Quasi-Newton algorithm:

$$x_{k+1} = x_k - t_k B_k^{-1} \nabla f(x_k)$$

where B_k is a symmetric positive definite matrix that will be updated at each iteration.

- BFGS: Broyden, Fletcher, Goldfarb, and Shanno (1970)
- Quasi-Newton algorithm:

$$x_{k+1} = x_k - t_k B_k^{-1} \nabla f(x_k)$$

where B_k is a symmetric positive definite matrix that will be updated at each iteration.

- B_k is used in place of the true Hessian in the Newton method.
- How to choose B_k ?
 - Secant equation: $B_{k+1}s_k = y_k$ where $s_k = x_{k+1} - x_k$ and $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$

- BFGS: Broyden, Fletcher, Goldfarb, and Shanno (1970)
- Quasi-Newton algorithm:

$$x_{k+1} = x_k - t_k B_k^{-1} \nabla f(x_k)$$

where B_k is a symmetric positive definite matrix that will be updated at each iteration.

- B_k is used in place of the true Hessian in the Newton method.
- How to choose B_k ?
 - Secant equation: $B_{k+1}s_k = y_k$ where $s_k = x_{k+1} - x_k$ and $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$
 - \rightarrow interpretation: extension of the finite difference approximation of the second order derivative.
 - Secant equation for $B_{k+1}^{-1} = H_{k+1}$:

$$H_{k+1}y_k=s_k$$

• H_{k+1} should satisfy the secant equation and must be positive definite:

$$\min_{H} \|H - H_k\|$$
 s.t.
$$\begin{cases} H = H^{\top} \\ Hy_k = s_k \end{cases}$$

• The unique solution H_{k+1} when considering a weighted Frobenius norm is:

$$H_{k+1} = (\operatorname{Id} - \rho_k s_k y_k^\top) H_k (\operatorname{Id} - \rho_k y_k s_k^\top) + \rho_k s_k s_k^\top$$

$$\begin{cases} s_k = x_{k+1} - x_k \\ y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \\ \rho_k = \frac{1}{\langle y_k, s_k \rangle} \end{cases}$$