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Let C be a nonempty set of a Hilbert space H.
Let f: C — ]—o0,+00] be a proper function and let X € C.

e X € domf is a local minimizer of f if there exists an open neigborhood O
of X such that
(Vxe 0N C) f(Xx) < f(x).

e X is a (global) minimizer of f if

(Vxe C)  f(R) < f(x).




Let C be a nonempty set of a Hilbert space H.
Let f: C — ]—o0,+00] be a proper function and let X € C.

e X is a strict local minimizer of f if there exists an open neigborhood O of
X such that

(Vx € (0NO\{R})  f(R) < f(x).

e X is a strict (global) minimizer of f if

(Vxe C\{x}) f(X) < f(x).




Let f: RN — ]—o00, +00] be a proper differentiable function in the neighborhood

of x € RV,
The directional derivative of f at x with respect to the direction y € RV is

defined as:

_ e fxtay) = f(x)
Witk | v) = llm . :




1st order necessary and sufficient condition (P. Fermat)
Let f € To(RN) be continuously differentiable function on RV. X is a global
minimizer of f i.e

X € Argmin f(x) &= Vi(x)=0
xERN
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1st order necessary and sufficient condition (P. Fermat)
Let f € To(RN) be continuously differentiable function on RV. X is a global
minimizer of f i.e

X € Argmin f(x) &= Vi(x)=0
xERN

Proof (=): Let e € RN. We set, for every a € R, g(a) = f(Xx—ac). Then

% — (e Vi)
Leading to
BO _ (. vr@)
= lim fezaq) = (%) >0 (because X is a minimizer of f)
a0 «
Thus

(e, VF(X)) <0 3



1st order necessary and sufficient condition (P. Fermat)
Let f € To(RN) be continuously differentiable function on RV. X is a global
minimizer of f i.e

X € Argmin f(x) &= Vi(x)=0
xERN

Proof (<) : f being a convex function, this yields to
(V(x,2) € R¥ x RM)(Va € [0,1]) f((1 — a)x + az) < (1 — a)f(x) + af(2)
& fix+alz—x)) <(1—a)f(x)+af(z)

fecrale =290 =76l o o g

Thus
. fix+a(z—x)) —f(x)
lim
a0 «
If Vf(x) =0, then

= (z—x,VFf(x)) < f(z) — f(x)

(Vz e RY) f(2) > f(x) 3



1st order necessary and sufficient condition (P. Fermat)
Let f € To(RN) be continuously differentiable function on RV. X is a global
minimizer of f i.e

X € Argmin f(x) &= Vi(x)=0
xERN

Proof (<) : f being a convex function, this yields to
(V(x,2) € R¥ x RM)(Va € [0,1]) f((1 — a)x + az) < (1 — a)f(x) + af(2)
& fix+alz—x)) <(1—a)f(x)+af(z)

fecrale =290 =76l o o g

Thus

im f(x+ a(z —x)) — f(x)
a0 «

=[(z = x, V() < f2) — F(x)]

—» caracterization of the convexity.



e Goal: build a sequence (xx)ken that converges to X.

e |teration type :
Xk+1 = Xk + tiedk
where
e t, > 0: step-length,
e d, € R": step direction. y
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e Goal: build a sequence (xx)ken that converges to X.

e |teration type :
Xk+1 = Xk + tiedk

where
e t, > 0: step-length,
e d, € R": step direction. \
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e Goal: build a sequence (xx)ken that converges to X.

e lteration type :
Xp41 = Xk + tidy

where

e t, > 0: step-length,
e d, € R": step direction.

e The choice of dj is such that it is possible to find a t, > 0 satisfying

f(Xk + tkdk) = | f(Xk-i-l) < f(Xk) |




Taylor expansion: Let f : R¥ — R be continuously differentiable, then for every
x and y in RV,

fy) = f(x) + (VF(x),y —x) + o(lly — x[[)




Taylor expansion: Let f : R¥ — R be continuously differentiable, then for every
x and y in RV,

fy) = f(x) + (VF(x),y —x) + o(lly — x[[)

e Considering iterations of the form:
Xi+1 = Xk + tidy

we get
f(Xk + tkdk) = f(Xk) + <Vf(Xk), tkdk> + O(||tkdk||)



Taylor expansion: Let f : R¥ — R be continuously differentiable, then for every
x and y in RV,

fy) = f(x) + (VF(x),y —x) + o(lly — x[[)

e Considering iterations of the form:
Xi+1 = Xk + tidy

we get
f(Xk + tkdk) = f(Xk) + <Vf(Xk), tkdk> + O(||tkdk||)

e In order to have f(xxy1) < f(xk), we need

(VF(xk),dk) <0



Taylor expansion: Let f : R¥ — R be continuously differentiable, then for every
x and y in RV,

fy) = f(x) + (VF(x),y —x) + o(lly — x[[)

e Considering iterations of the form:
X1 = Xk + tedk
we get
f(xk + tedk) = f(xk) + (VF(xk), tdi) + o] txdk||)
e In order to have f(xxy1) < f(xk), we need
(VF(xk),dk) <0
e The most natural choice is

dy = —Vf(Xk)



Taylor expansion: Let f : R¥ — R be continuously differentiable, then for every
x and y in RV,

fy) = f(x) + (VF(x),y —x) + o(lly — x[[)

Considering iterations of the form:
Xk+1 = Xk + tidk

we get
f(Xk + tkdk) = f(Xk) + <Vf(Xk), tkdk> + O(Hi’kdkH)

In order to have f(xkt+1) < f(xx), we need

(VF(xk),dk) <0

The most natural choice is

dy = —Vf(Xk)

Steepest descent: |xk+1 =Xk — t, VI (xk) | 6




Quadratic approximation: Let f : RY — R be twice continuously differentiable
and h in RV,
Then, the best quadratic approximation of f in a neighbourhood of x is

T(x,h) = f(x) + (VF(x),h) + <h,v2f(x)h>

mk(x7h)

e When h = d, and x = x,, we have:

f(Xk+1) < f(Xk) + <Vf(Xk), dk> + <dk, V2f(Xk)dk>

mi (xk,dx)

e The Newton direction is the minimizer of my is

di = —(V2F(x)) " VF ()

e lterations: | xp4 1 = Xk — (sz(xk))AVf(xk)




Quadratic approximation: Let f : RV — R be L—smooth. Then for any 5 > L,
we have

Fly) < F() +(VF(,y = x) + 2 lly = x?

e When y = xx11 and x = xi, we have:

Floxken) < FOx) + (VF (), di) + 2 ekl

my(xx,dk)

e The step direction dj leading to the minimum my is

C/k = —%Vf(xk)

. 1
e lterations: | xk11 = xk — = VF(xk)

B




Quadratic approximation: Let f : R¥ — R be twice continuously differentiable.
Then,

Fly) = Fx) + (VFG),y = x) + 5y =, He(y — x))

my(x,y—x)

where H, symmetric positive-definite.

e When y = xx11 and x = xi, we have:

f(xe1) < F(x) + (VF(xk), de) + (dk, Hedi)

my (X, )

e The Newton direction is the minimizer of my is

dk = —H 'V (x)

e lterations: | xx11 = xx — Hk_IVf(xk)




e lterations: | xx11 = xx — Hk_IVf(xk)

e Choice for Hy:
o H, = th2f(Xk)
e H diagonal e.g. hyxx = ﬁ;x:rkz
e Hy = thZf(xo)
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e Goal: build a sequence (xx)ken that converges to X.

e lteration type :

where

e t, > 0: step-length,
e d, € R": step direction.
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e Goal: build a sequence (xx)ken that converges to X.

e lteration type :

where xo
e t, > 0: step-length,

e d, € R": step direction. (‘)




e Goal: build a sequence (xx)ken that converges to X.

e lteration type :
Xk+1 = Xk + tkdk
where

e t, > 0: step-length,
e d, € R": step direction.

Zo

e Choice of di (cf. previous slides)

e Choice of t;

e Armijo condition : not too large.
e Wolfe condition : not too small.
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The Armijo rule requires that

f(Xk + tkdk) < f(Xk) + tkC1<Vf(Xk), dk>

where ¢; € (0,1).

Remarks:
e Armijo rule is stronger than J (. +tdy,)
just asking the simple descrease Fan) + ter (Vf (), di)
f(xk+1) < f(x)
because

<Vf(Xk), dk> < 0.

e Choosing t according to Armijo

rule avoids choosing t too large.

Acceptable

12



The Wolfe rule requires that

(VF(xk + trdy), di) > c2(VF(xk), di)

where ¢ € (c1,1).

Remarks:

e Require that the slope of flak + tdr)

f(Xk + tkdk) ~f’Q(Vf(z'k).,p/zc) «—— Desired slope
to be greater than the negative
slope (V£ (x), d)

e Ensure that the slope has been

reduced sufficiently. — 4

Acceptable
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Algorithm: Given xx, to, dk, bmax, &1 € (0,1), v € (0,1)
ty = tp
For b=10,1,..., bmax
If f(xk + tedk) < f(x) + tecr(VF(xx), d) (satisfy Armijo)
Stop
Otherwise set t, = vt

Remarks:

e The name backtracking is due to the fact that k if progressively reduced.
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e BFGS: Broyden, Fletcher, Goldfarb, and Shanno (1970)

e Quasi-Newton algorithm:
Xk4+1 = Xk — thk_1Vf(Xk)

where By is a symmetric positive definite matrix that will be updated at each
iteration.

15



e BFGS: Broyden, Fletcher, Goldfarb, and Shanno (1970)

e Quasi-Newton algorithm:
Xk4+1 = Xk — thk_IVf(Xk)
where By is a symmetric positive definite matrix that will be updated at each

iteration.

e By is used in place of the true Hessian in the Newton method.
e How to choose B, ?
e Secant equation: Bii1Sk = yk
where s = xi11 — xk and yx = VI (xky1) — VF(x«)
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BFGS: Broyden, Fletcher, Goldfarb, and Shanno (1970)
Quasi-Newton algorithm:

Xk4+1 = Xk — th;1Vf(Xk)

where By is a symmetric positive definite matrix that will be updated at each
iteration.

By is used in place of the true Hessian in the Newton method.
e How to choose B, ?
e Secant equation: Bii1Sk = yk

where s, = X1 — xk and yx = VI (xer1) — VF(x«)

— interpretation: extension of the finite difference approximation of the
second order derivative.
e Secant equation for B!, = Hi1:

Hir1yx = sk
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e H1 should satisfy the secant equation and must be positive definite:

H=HT

min ||H — Hg|| s.t.
H Hyi = si

e The unique solution Hi;1 when considering a weighted Frobenius norm is:
Hisr = (Id — pesiyd Y Hie(Id — piyesy ) + prsesy

where
Sk = Xk4+1 — Xk
Yk = Vf(Xk+1) — Vf(Xk)

_ 1
Pk = sy
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