1/41

PNN: From proximal algorithms to robust unfolded image restauration networks

Nelly Pustelnik CNRS, ENS Lyon, France

Conférence 30 ans de mathématiques pour l'imagerie optique 25 septembre 2023, Marseille

Context: Image recovery

• Data: $\mathbf{z} \in \mathbb{R}^M$ degraded version of an original image $\overline{\mathbf{x}} \in \mathbb{R}^N$:

$$\mathbf{z} = \mathbf{A}\overline{\mathbf{x}} + \mathbf{w}$$

- $\mathbf{A} : \mathbb{R}^{M \times N}$: linear degradation (e.g. a blur)
- w : noise (e.g. Gaussian noise)

Introduction ○●○○○○○○○	PNN for restoration	PNN for denoising	Conclusions
PNN: From proximal algorit	THMS TO ROBUST UNFOLDED IMAGE RES	FAURATION NETWORKS	3/41

Context: image restoration

Synthesis formulation

 $\widehat{\mathbf{x}} = \mathbf{D}^* \widehat{\alpha}$ with $\mathbf{D} \in \mathbb{R}^{P \times N}$

$$\widehat{\alpha} \in \operatorname{Argmin}_{\alpha} \frac{1}{2} \| \mathbf{A} \mathbf{D}^* \alpha - \mathbf{z} \|_2^2 + \lambda \| \alpha \|_{\bullet}$$

Analysis formulation

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{z}\|_{2}^{2} + \lambda \|\mathbf{D}\mathbf{x}\|_{\bullet}$$

\Rightarrow Equivalence for D orthonormal basis.

[Elad, Milanfar, Ron, 2007] [Chaari, Pustelnik, Chaux, Pesquet, 2009] [Selesnick, Figueiredo, 2009], [Carlavan, Weiss, Blanc-Féraud, 2010] [Pustelnik, Benazza-Benhayia, Zheng, Pesquet, 2010]

Introduction ○●○○○○○○○	PNN for restoration	PNN for denoising	Conclusions
PNN: From proximal algor	ITHMS TO ROBUST UNFOLDED IN	AAGE RESTAURATION NETWORKS	3/41

Context: image restoration

Synthesis formulation

 $\widehat{\mathbf{x}} = \mathbf{D}^* \widehat{\alpha}$ with $\mathbf{D} \in \mathbb{R}^{P \times N}$

$$\widehat{\alpha} \in \operatorname{Argmin}_{\alpha} \frac{1}{2} \|\mathbf{A}\mathbf{D}^* \alpha - \mathbf{z}\|_2^2 + \lambda \|\alpha\|_{\bullet}$$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{z}\|_{2}^{2} + \lambda \|\mathbf{D}\mathbf{x}\|_{\bullet}$$

\Rightarrow Equivalence for D orthonormal basis.

- X-lets
- Sparse coding

- Horizontal/vertical gradients: TV
- Hessian operator
- Nonlocal total variation: weighted nonlocal gradients: NLTV
- Local dictionaries of patches

(webpage L. Duval)[Aharon, Elad, Bruckstein, 2006] [Mairal, Sapiro, Elad,
2007][Gilboa, Osher, 2008][K Bredies, K Kunisch, T Pock, 2010][Jacques, Duval,
Chaux, Peyré, 2011] [S Lefkimmiatis, A Bourquard, M Unser, 2011] [Zoran, Weiss,
2011] [G Kutyniok, D Labate, 2012][Chierchia et al.,2014][Boulanger et al., 2018]...

	4/41
Introduction PNN for restoration PNN for denoising 00●000000 0000000 000000000000000000000000000000000000	Conclusions

"Semi-smooth" minimization problem

Objective

$$\mathsf{Find}\ \widehat{\bm{x}} \in \operatorname*{Argmin}_{\bm{x} \in \mathcal{H}} \left\{\mathsf{F}(\bm{x}) = \mathsf{h}(\bm{x}) + \mathsf{g}(\bm{D}\bm{x})\right\}$$

• $h \in \Gamma_0(\mathcal{H})$ and β -Lipschitz differentiable

•
$$\mathbf{D} \colon \mathcal{H} \to \mathcal{G} \text{ and } \mathbf{g} \in \Gamma_0(\mathcal{G})$$

- **Remark**: Usually prox_F does not have a closed form solution.
- Idea: Use splitting methods to handle h and g separately.

Introduction 00000000	PNN for restoration	PNN for denoising	Conclusions 00000000
PNN: FROM PROXIMAL ALGO	RITHMS TO ROBUST UNFOLDED	IMAGE RESTAURATION NETWORKS	5/41

FB algorithm

OBJECTIVE

$$\mathsf{Find}\ \widehat{\bm{x}} \in \operatorname*{Argmin}_{\bm{x} \in \mathcal{H}} \left\{ \mathsf{F}(\bm{x}) = \mathsf{h}(\bm{x}) + \mathsf{g}(\bm{D}\bm{x}) \right\}$$

- $h \in \Gamma_0(\mathcal{H})$ and β -Lipschitz differentiable
- $\mathbf{D} \colon \mathcal{H} \to \mathcal{G} \text{ and } \mathbf{g} \in \Gamma_0(\mathcal{G})$

ALGORITHM: Let
$$\mathbf{x}^{[0]} \in \mathcal{H}$$
,
For $k = 0, 1, ...$
 $\begin{bmatrix} \mathbf{x}^{[k+1]} = \operatorname{prox}_{\gamma_k \mathbf{g} \circ \mathbf{D}} (\mathbf{x}^{[k]} - \gamma_k \nabla \mathbf{h}(\widetilde{\mathbf{x}}^{[k]})) \end{bmatrix}$

THEOREM (FB): Let, for every $k \in \mathbb{N}$, $0 < \gamma_k < 2\beta^{-1}$. Then

• $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges to a minimizer $\hat{\mathbf{x}}$ of F.

[Combettes & Wajs, 2005]

Introduction	PNN for restoration	PNN for denoising	Conclusions
000000000	0000000	000000000000000000000000000000000000000	00000000
PNN: FROM PROXIMAN	L ALGORITHMS TO ROBUST UNFOLDED IN	MAGE RESTAURATION NETWORKS	6/41

Primal-dual algorithm

OBJECTIVE

$$\mathsf{Find}\ \widehat{\boldsymbol{x}} \in \operatorname*{Argmin}_{\boldsymbol{x} \in \mathbb{R}^N} \left\{\mathsf{F}(\boldsymbol{x}) = \mathsf{h}_1(\boldsymbol{x}) + \mathsf{h}_2(\boldsymbol{x}) + \mathsf{g}(\boldsymbol{\mathsf{D}}\boldsymbol{x})\right\}$$

• $h_1 \colon \mathcal{H} \to]-\infty, +\infty]$ is convex, proper and β -Lipschitz differentiable

•
$$h_2 \in \Gamma_0(\mathcal{H})$$
, $\mathbf{D} \colon \mathcal{H} \to \mathcal{G}$, and $g \in \Gamma_0(\mathcal{G})$

$$\begin{array}{l} \text{ALGORITHM:} \quad \mathbf{x}^{[0]} \in \mathcal{H} \\ \text{For } k = 0, 1, \dots \\ \\ \left[\begin{array}{c} \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau h_2} \left(\mathbf{x}^{[k]} - \tau \left(\nabla \mathbf{h}_1(\mathbf{x}^{[k]}) + \mathbf{D}^* \mathbf{u}^{[k]} \right) \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\sigma \mathbf{g}^*} \left(\mathbf{u}^{[k]} + \sigma \mathbf{D}(2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \right) \end{array} \right] \end{array}$$

THEOREM: Choose $\tau > 0$ and $\sigma > 0$ such that $\frac{1}{\tau} - \sigma \|\mathbf{D}\|^2 > \frac{\beta}{2}$. The sequence $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges to a minimizer $\hat{\mathbf{x}}$ of F

[Vũ, 2013][Condat, 2013]

Estimated parameters: $\widehat{\mathbf{x}}(\mathbf{z}; \widehat{\lambda})$

9/41

Training a NN for inverse problem task

• Database:
$$S = \{(\mathbf{z}_i, \overline{\mathbf{x}}_i) \in \mathbb{R}^M \times \mathbb{R}^N \mid i \in \{1, \dots, \mathbb{L}\}\}$$

9/41

Training a NN for inverse problem task

• Database: $S = \{(\mathbf{z}_i, \overline{\mathbf{x}}_i) \in \mathbb{R}^M \times \mathbb{R}^N \mid i \in \{1, \dots, \mathbb{L}\}\}$ We consider two sets of images: the *training set* $(\mathbf{z}_i, \overline{\mathbf{x}}_i)_{i \in \mathbb{I}}$ of size $\#\mathbb{I}$ and the *testing set* $(\mathbf{z}_j, \overline{\mathbf{x}}_j)_{j \in \mathbb{J}}$ of size $\#\mathbb{J}$ where $(\forall i \in \mathbb{I} \cup \mathbb{J}) \quad \mathbf{z}_i = \mathbf{A}\overline{\mathbf{x}}_i + \mathbf{w}_i$

9/41

Training a NN for inverse problem task

- Database: $S = \{(\mathbf{z}_i, \overline{\mathbf{x}}_i) \in \mathbb{R}^M \times \mathbb{R}^N \mid i \in \{1, \dots, \mathbb{L}\}\}$ We consider two sets of images: the *training set* $(\mathbf{z}_i, \overline{\mathbf{x}}_i)_{i \in \mathbb{I}}$ of size $\#\mathbb{I}$ and the *testing set* $(\mathbf{z}_j, \overline{\mathbf{x}}_j)_{j \in \mathbb{J}}$ of size $\#\mathbb{J}$ where $(\forall i \in \mathbb{I} \cup \mathbb{J}) \quad \mathbf{z}_i = \mathbf{A}\overline{\mathbf{x}}_i + \mathbf{w}_i$
- Training: The NN is trained using the *training set* to estimate:

$$\widehat{\boldsymbol{\Theta}} \in \operatorname{Argmin}_{\boldsymbol{\Theta}} \frac{1}{\sharp \mathbb{I}} \sum_{i \in \mathbb{I}} \| \overline{\mathbf{x}}_i - f_{\boldsymbol{\Theta}}(\mathbf{z}_i) \|^2$$

• Testing: The learned NN $f_{\widehat{\Theta}}$ is then validated on the testing set. A properly trained network should satisfy

$$(\forall j \in \mathbb{J}) \quad \overline{\mathbf{x}}_j \approx f_{\widehat{\mathbf{\Theta}}}(\mathbf{z}_j).$$

10/41

Deep learning architecture

11/41

PNN for image restoration

12/41

Pioneer work : LISTA for synthesis formulation

Synthesis formulation:
$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{D}^*\mathbf{x} - \mathbf{z}\|_2^2 + \lambda \|\mathbf{x}\|_1 \quad \text{where } \mathbf{H} = \mathbf{A}\mathbf{D}^* \in \mathbb{R}^{M \times \overline{N}}$$

Forward-backward iterations:

$$\mathbf{x}^{[k+1]} = \mathrm{prox}_{\tau\lambda\|\cdot\|_1} (\mathbf{x}^{[k]} - \tau \mathbf{H}^* (\mathbf{H} \mathbf{x}^{[k]} - \mathbf{z}))$$

Reformulation:

$$\mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau\lambda\|\cdot\|_1}((\operatorname{Id} - \tau \mathbf{H}^*\mathbf{H})\mathbf{x}^{[k]} + \tau \mathbf{H}^* \mathbf{z}))$$

• Layer network: [Gregor, LeCun, 2010]

$$\mathbf{x}^{[k+1]} = prox_{\tau\lambda\|\cdot\|_1} \left(Id - \tau \mathbf{H}^* \mathbf{H} \mathbf{x}^{[k]} + \tau \mathbf{H}^* \mathbf{z} \right)$$

$$\eta^{[k]} \mathbf{W}^{[k]} \mathbf{b}^{[k]}$$

PNN for denoising

Conclusions 00000000

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

13/41

Deep learning versus proximal algorithms

 Most of activation functions are proximity operator : ReLU, Unimodal sigmoid, Softmax ...
 [Combettes, Pesquet, 2020]

13/41

Deep learning versus proximal algorithms

 Most of activation functions are proximity operator : ReLU, Unimodal sigmoid, Softmax ...
 [Combettes, Pesquet, 2020]

Proposition [Le, Pustelnik, Foare, 2022]: The proximity operator of the conjugate of the ℓ_1 -norm scaled by parameter $\lambda > 0$ fits the HardTanh activation function, i.e., for every $\mathbf{x} = (\mathbf{x}_i)_{1 \leq i \leq N}$:

$$P_{\|\cdot\|_{\infty} \leq \lambda}(\mathbf{x}) = \text{HardTanh}_{\lambda}(\mathbf{x}) = (p_i)_{1 \leq i \leq N}$$

where

$$\mathbf{p}_{i} = \begin{cases} -\lambda & \text{if } \mathbf{p}_{i} < -\lambda \\ \lambda & \text{if } \mathbf{p}_{i} > \lambda, \\ \mathbf{p}_{i} & \text{otherwise.} \end{cases}$$

13/41

Deep learning versus proximal algorithms

- Most of activation functions are proximity operator : ReLU, Unimodal sigmoid, Softmax ...
 [Combettes, Pesquet, 2020]
- Let W^[k] be a bounded linear operators, b_k a vector, η_k proximity operators (1/2-averaged operator),
 f_Θ = T_K ∘ · · · ∘ T₁ with T_k = η_k(W_k · +b_k) model allows to derive tight Lipschitz bounds for feedforward neural networks in order to evaluate their robustness i.e.

$$\|f_{\Theta}(\mathbf{z}+\boldsymbol{\epsilon}) - f_{\Theta}(\mathbf{z})\| \leqslant \chi \|\boldsymbol{\epsilon}\|$$

. [Combettes, Pesquet, 2020]

Preliminary work: DeepPDNet for Analysis formulation

• Analysis formulation:

 $\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{z}\|_2^2 + \|\mathbf{H}\mathbf{x}\|_1 \quad \text{where } \mathbf{H} = \lambda \mathbf{D}$

Condat-Vũ iterations:

$$\begin{array}{ll} \mathbf{x}^{[k+1]} &= \mathbf{x}_k - \tau \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}) - \tau \mathbf{H}^* \mathbf{u}^{[k]} \\ \mathbf{u}^{[k+1]} &= \operatorname{prox}_{\gamma \| \cdot \|_1^*} \big(\mathbf{u}^{[k]} + \gamma \mathbf{H} (2 \mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \big) \end{array}$$

• Reformulation:

$$\begin{aligned} \mathbf{x}^{[k+1]} &= (\mathrm{Id} - \tau \mathbf{A}^* \mathbf{A}) \mathbf{x}^{[k]} - \tau \mathbf{H}^* \mathbf{u}^{[k]} + \tau \mathbf{A}^* \mathbf{z} \\ \mathbf{u}^{[k+1]} &= \mathrm{prox}_{\gamma \parallel \cdot \parallel_1^*} \big(\gamma \mathbf{H} (\mathrm{Id} - 2\tau \mathbf{A}^* \mathbf{A}) \mathbf{x}^{[k]} + (\mathrm{Id} - 2\tau \gamma \mathbf{H} \mathbf{H}^*) \mathbf{u}^{[k]} + 2\tau \gamma \mathbf{H} \mathbf{A}^* \mathbf{z} \big). \end{aligned}$$

15/41

Analysis formulation and the proposed DeepPDNet

$$f_{\Theta}(\mathbf{x}) = \eta^{[K]} \left(W^{[K]} \dots \eta^{[1]} (W^{[1]} \mathbf{x} + b^{[1]}) \dots + b^{[K]} \right)$$

• Network with fixed layer: $\Theta = \{\mathbf{H}, \tau, \gamma\}$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} \\ \mathbf{u}^{[k+1]} \end{bmatrix} = \begin{bmatrix} \mathrm{Id} \\ \mathrm{prox}_{\gamma \parallel \cdot \parallel_{1}^{*}} \\ \eta^{[k]} \end{bmatrix} \begin{pmatrix} [\mathrm{Id} - \tau \mathbf{A}^{*} \mathbf{A} & -\tau \mathbf{H}^{*} \\ \gamma \mathbf{H} (\mathrm{Id} - 2\tau \mathbf{A}^{*} \mathbf{A}) & \mathrm{Id} - 2\tau \gamma \mathbf{H} \mathbf{H}^{*} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[k]} \\ \mathbf{u}^{[k]} \end{bmatrix} + \begin{bmatrix} \tau \mathbf{A}^{*} \mathbf{z} \\ 2\tau \gamma \mathbf{H} \mathbf{A}^{*} \mathbf{z} \end{bmatrix} \end{pmatrix} \\ \eta^{[k]} \end{bmatrix} V^{[k]} \qquad V^{[k]}$$

• Network with variable layers: $\Theta = \{H^{[k]}, \tau_k, \gamma_k, \}_{1 \leqslant k \leqslant K}$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} \\ \mathbf{u}^{[k+1]} \end{bmatrix} = \begin{bmatrix} \mathrm{Id} \\ \mathrm{prox}_{\gamma_k \parallel \cdot \parallel_1^*} \end{bmatrix} \begin{pmatrix} \mathrm{Id} - \tau_k \mathbf{A}^* \mathbf{A} & -\tau_k \mathbf{H}^*_k \\ \gamma_k \mathbf{H}_k (\mathrm{Id} - 2\tau_k \mathbf{A}^* \mathbf{A}) & \mathrm{Id} - 2\tau \gamma_k \mathbf{H}_k \mathbf{H}^*_k \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[k]} \\ \mathbf{u}^{[k]} \end{bmatrix} + \begin{bmatrix} \tau_k \mathbf{A}^*_k \mathbf{z} \\ 2\tau_k \gamma_k \mathbf{H}_k \mathbf{A}^* \mathbf{z} \end{bmatrix} \\ \eta^{[k]} \\ + \text{ specificities for the first and last layers.} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[k]} \\ \mathbf{u}^{[k]} \end{bmatrix} + \begin{bmatrix} \tau_k \mathbf{A}^*_k \mathbf{z} \\ 2\tau_k \gamma_k \mathbf{H}_k \mathbf{A}^* \mathbf{z} \end{bmatrix} \end{pmatrix}$$

16/41

Analysis formulation and the proposed DeepPDNet

► Learn a prediction function
$$f_{\Theta}$$
:
 $\widehat{\Theta} \in \operatorname{Argmin}_{\Theta} \operatorname{E}(\Theta) := \frac{1}{\sharp \mathbb{I}} \sum_{i \in \mathbb{I}} \|\overline{\mathbf{x}}_i - d_{\Theta}(\mathbf{z}_i)\|^2$

→ Gradient based strategy

$$\boldsymbol{\Theta}_{k,\ell+1} = \boldsymbol{\Theta}_{k,\ell} - \gamma_{\boldsymbol{\Theta}} \frac{\partial E(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{[k]}}$$

Analysis formulation and the proposed DeepPDNet

• Learn a prediction function
$$f_{\Theta}$$
:
 $\widehat{\Theta} \in \operatorname{Argmin}_{\Theta} \operatorname{E}(\Theta) := \frac{1}{\sharp \mathbb{I}} \sum_{i \in \mathbb{I}} \| \overline{\mathbf{x}}_i - d_{\Theta}(\mathbf{z}_i) \|^2$

→ Gradient based strategy

$$\boldsymbol{\Theta}_{k,\ell+1} = \boldsymbol{\Theta}_{k,\ell} - \gamma_{\boldsymbol{\Theta}} \frac{\partial E}{\partial \mathbf{u}_K} \frac{\partial \mathbf{u}_K}{\partial \mathbf{u}_{K-1}} \dots \frac{\partial \mathbf{u}_{k+1}}{\partial \mathbf{u}_k} \frac{\partial \mathbf{u}_k}{\partial \boldsymbol{\Theta}_k}$$

where

$$\frac{\partial \mathbf{u}_k}{\partial \mathbf{u}_{k-1}} = \frac{d\eta_k(\mathbf{v}_k)}{d\mathbf{v}_k} \mathbf{W}_k$$
$$\frac{\partial \mathbf{u}_k}{\partial \mathbf{\Theta}_k} = \left(\frac{\partial \eta_k(\mathbf{v}_k)}{\partial \mathbf{v}_k} \left(\frac{\partial \mathbf{W}^{[k]}}{\partial \mathbf{\Theta}^{[k]}} \mathbf{u}_k + \frac{\partial b_k}{\partial \mathbf{\Theta}_k}\right) + \frac{\partial \eta_k(\mathbf{v}_k)}{\partial \mathbf{\Theta}_k}\right)$$

with $v_k = W_k u_{k-1} + b_k$ and $u_k = \eta_k(v_k)$

PNN for denoising

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

17/41

Analysis formulation and proposed DeepPDNet

[Jiu, Pustelnik, 2021]

Introduction
000000000

18/41

PNN: focus on denoising task

Introduction 000000000

PNN: From proximal algorithms to robust unfolded image restauration networks

19/41

D(i)FB algorithm

OBJECTIVE

Find
$$\widehat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{Argmin}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} + g(\mathbf{D}\mathbf{x}) + \iota_{C}(\mathbf{x}) \right\}$$

• $C \subset \mathcal{H}$ is a closed, convex, non-empty. $\mathbf{D} \colon \mathcal{H} \to \mathcal{G}$ and $\mathbf{g} \in \Gamma_0(\mathcal{H})$

ALGORITHM: Let
$$\mathbf{x}_0 \in \mathcal{H}$$
,
For $k = 0, 1, ...$
$$\begin{bmatrix} \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{v}^{[k]} + \tau_k \mathbf{D} \mathbf{P}_C (\mathbf{z} - \mathbf{D}^\top \mathbf{v}^{[k]}) \right), \\ \mathbf{v}^{[k+1]} = (1 + \rho_k) \mathbf{u}^{[k+1]} - \rho_k \mathbf{u}^{[k]}, \end{bmatrix}$$

THEOREM : Assume that one of the following conditions is satisfied. 1. (DFB): $\forall k \in \mathbb{N}, \tau_k \in (0, 2/\|\mathbf{D}\|_S^2)$, and $\rho_k = 0$.

2. (DIFB): $\forall k \in \mathbb{N}, \tau_k \in (0, 1/\|\mathbf{D}\|_S^2)$, and $\rho_k = \frac{t_k - 1}{t_{k+1}}$ with $t_k = \frac{k+a-1}{a}$ and a > 2. Then we have

$$\widehat{\mathbf{x}} = \lim_{k \to \infty} \mathbf{P}_C(\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}),$$

Introduction	
000000000	

20/41

S(c)CP algorithm

OBJECTIVE

Find
$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\}$$

• $C \subset \mathcal{H}$ is a closed, convex, non-empty. $\mathbf{D} \colon \mathcal{H} \to \mathcal{G}$ and $\mathbf{g} \in \Gamma_0(\mathcal{G})$

ALGORITHM: Let $\mathbf{x}_0 \in \operatorname{dom} \mathbf{g}, (\tau_k)_{k \in \mathbb{N}}$ and $(\mu_k)_{k \in \mathbb{N}}$ are positive sequences For k = 0, 1, ... $\begin{bmatrix} \mathbf{x}^{[k+1]} = \operatorname{P}_C \left(\frac{\mu_k}{1+\mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1+\mu_k} \mathbf{x}^{[k]} \right), \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \left((1+\alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}^{[k]} \right) \right),$

THEOREM : Assume that one of the following conditions is satisfied. 1. (CP): $\forall k \in \mathbb{N}, \tau_k \mu_k \|\mathbf{D}\|_S^2 < 1$, and $\alpha_k = 1$.

2. (ScCP): $\forall k \in \mathbb{N}, \ \alpha_k = 1/\sqrt{1+2\mu_k}, \ \mu_{k+1} = \alpha_k \mu_k, \ \tau_{k+1} = \tau_k \alpha_k^{-1} \text{ with } \mu_0 \tau_0 \|\mathbf{D}\|_S^2 \leq 1.$ Then we have

$$\widehat{\mathbf{x}} = \lim_{k \to \infty} \mathbf{x}^{[k]}.$$

21/41

S(c)CP to D(i)FB

$$\begin{array}{l} \textbf{Objective} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\frac{\mu_k}{1+\mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1+\mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \left((1+\alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}_k \right) \right) \end{bmatrix}$$

• S(c)CP: Starting point.

21/41

$$\begin{array}{l} \textbf{Objective} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\frac{\mu_k}{1+\mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1+\mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \left((1+\alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}_k \right) \right) \end{bmatrix}$$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.

$$\begin{array}{l} \hline \textbf{Objective} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\frac{\mu_k}{1+\mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1+\mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \end{bmatrix}$$

- **S(c)CP:** Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.

21/41

$$\begin{array}{l} \hline \textbf{Objective} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\frac{\mu_k}{1+\mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1+\mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \end{bmatrix}$$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- **DFB:** $\mu_k \to +\infty$.

21/41

$$\begin{array}{l} \hline \textbf{OBJECTIVE} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = P_C \left(\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \end{bmatrix}$$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- **DFB:** $\mu_k \to +\infty$.

$$\begin{array}{l} \hline \textbf{Objective} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

 $\begin{bmatrix} \mathbf{x}^{[k+1]} = P_C \left(\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \end{bmatrix}$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- DFB: $\mu_k \to +\infty$.
- **• DiFB:** Inertia step on the dual variable.

21/41

$$\begin{array}{l} \textbf{Objective} \\ \textbf{Find } \widehat{\mathbf{x}} \in \operatorname*{Argmin}_{\mathbf{x} \in \mathcal{H}} \left\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathbf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \right\} \end{array}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\mathbf{z} - \mathbf{D}^\top \mathbf{v}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \\ \mathbf{v}^{[k+1]} = (1 + \rho_k) \mathbf{u}^{[k+1]} - \rho_k \mathbf{u}^{[k]} \end{bmatrix}$$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- DFB: $\mu_k \to +\infty$.
- DiFB: Inertia step on the dual variable.

PNN for denoising

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

22/41

Arrow- Hurwicz algorithm

The reformulation of Arrow-Hurwicz can be written as:

$$\begin{split} & L_{\mathbf{z},\nu,\Theta_k}: \quad \mathcal{H} \times \mathcal{G} \rightarrow \mathcal{H} \\ & (\mathbf{x}^{[k]},\mathbf{u}^{[k]}) \mapsto L_{\mathbf{z},\Theta_k,\mathcal{P}}, \mathcal{P}(\mathbf{x}, L_{\Theta_k,\mathcal{D}}, \mathcal{D}(\mathbf{x}^{[k]}, \mathbf{u}^{[k]})), \end{split}$$
with

$$\begin{split} & L_{\nu,\Theta_k,\mathcal{D}}, \mathcal{D}(\mathbf{x}, \mathbf{u}) = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\tau_k \mathbf{D} \mathbf{x} + \mathbf{u}\right), \\ & L_{\mathbf{z},\Theta_k,\mathcal{P}}, \mathcal{P}(\mathbf{x}, \mathbf{u}) = \mathbf{P}_{\boldsymbol{C}} \left(\frac{1}{1+\mu_k} \mathbf{x} - \frac{\mu_k}{1+\mu_k} \mathbf{D}^\top \mathbf{u} + \frac{\mu_k}{1+\mu_k} \mathbf{z}\right), \end{split}$$

[Le, Repetti, Pustelnik, 2023]

PNN for denoising

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

23/41

Deep Arrow-Hurwicz building block

The reformulation of Arrow-Hurwicz can be written as:
$$\begin{split} \mathrm{L}_{\mathbf{z},\nu,\Theta_k} \colon & \mathcal{H}\times\mathcal{G} \to \mathcal{H} \\ & (\mathbf{x}^{[k]},\mathbf{u}^{[k]}) \mapsto \mathrm{L}_{\mathbf{z},\Theta_{k,\mathcal{P}},\mathcal{P}}(\mathbf{x}^{[k]},\mathrm{L}_{\Theta_{k,\mathcal{D}},\mathcal{D}}(\mathbf{x}^{[k]},\mathbf{u}^{[k]})), \end{split}$$

with

$$\begin{split} \mathbf{L}_{\nu,\Theta_{k,\mathcal{D}},\mathcal{D}}(\mathbf{x},\mathbf{u}) &= \mathrm{prox}_{\tau_{k}(\nu g)^{*}}\left(\tau_{k}\mathbf{D}_{k,\mathcal{D}}\mathbf{x} + \mathrm{Id}\mathbf{u}\right), \\ \mathbf{L}_{\mathbf{z},\Theta_{k,\mathcal{P}},\mathcal{P}}(\mathbf{x},\mathbf{u}) &= \mathbf{P}_{C}\left(\frac{1}{1+\mu_{k}}\mathbf{x} - \frac{\mu_{k}}{1+\mu_{k}}\mathbf{D}_{k,\mathcal{P}}^{\top}\mathbf{u} + \frac{\mu_{k}}{1+\mu_{k}}\mathbf{z}\right), \end{split}$$

[Le, Repetti, Pustelnik, 2023]

Figure: Architecture of the proposed DAH-Unified block for the *k*-th layer. Inertial step for ScCP (top) and DiFB (bottom).

25/41

	Θ_k	Comments
DDFB-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$	absorb $ au_k$ in $\mathbf{D}_{k,\mathcal{D}}$
DDiFB-LFO	$\mathbf{D}_{k,\mathcal{P}}$, $\mathbf{D}_{k,\mathcal{D}}$, $lpha_k$	fix α_k , and absorb $ au_k$ in $\mathbf{D}_{k,\mathcal{D}}$
DDFB-LNO	$\mathbf{D}_{k,\mathcal{P}} = \mathbf{D}_{k,\mathcal{D}}^{ op}$	define $ au_k = 1.99 \ \mathbf{D}_k \ ^{-2}$
DDiFB-LNO	$\mathbf{D}_{k,\mathcal{P}} = \mathbf{D}_{k,\mathcal{D}}^{\top}$	fix $\alpha_k = rac{t_k - 1}{t_{k+1}}$, $t_{k+1} = rac{k+a-1}{a}$, $a > 2$, and $\tau_k = 0.99 \ \mathbf{D}_k\ ^{-2}$
DCP-LFO	$\mathbf{D}_{k,\mathcal{P}}$, $\mathbf{D}_{k,\mathcal{D}}$, μ	learn $\mu = \mu_0 = \cdots = \mu_K$, and absorb τ_k in $\mathbf{D}_{k,\mathcal{D}}$
DScCP-LFO	$\mathbf{D}_{k,\mathcal{P}}$, $\mathbf{D}_{k,\mathcal{D}}$, μ_0	learn μ_0 , absorb τ_k in $\mathbf{D}_{k,\mathcal{D}}$, and fix $\alpha_k = (1 + 2\mu_k)^{-1/2}$, and $\mu_{k+1} = \alpha_k \mu_k$
DCP-LNO	$\mathbf{D}_{k,\mathcal{P}} = \mathbf{D}_{k,\mathcal{D}}^{ op}$, μ	learn $\mu = \mu_0 = \cdots = \mu_K$, and fix $\tau_k = 0.99 \mu^{-1} \ \mathbf{D}_k\ ^{-2}$
DScCP-LNO	$\mathbf{D}_{k,\mathcal{P}} = \mathbf{D}_{k,\mathcal{D}}^{ op}$, μ_k	learn μ_k , and fix $\alpha_k = (1 + 2\mu_k)^{-1/2}$, and $\tau_k = 0.99\mu_k^{-1} \ \mathbf{D}_k\ ^{-2}$

Figure: Training Setting 2: Denoising performance. PSNR values obtained with the proposed s (with (K, J) = (20, 64)), for 20 images of BSDS500 validation set, degraded with noise level $\delta = 0.05$.

Introduction 000000000 PNN for restoration 0000000

PNN for denoising

Conclusions

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

27/41

Noisy 26.03dB DRUnet 35.81dB DDFB-LNO 32.81dB DScCP-LNO 34.74dB

Denoising performance on Gaussian noise. Example of denoised images (and PSNR values) for Gaussian noise $\delta = 0.05$ obtained with DRUnet and the proposed DDFB-LNO and DScCP-LNO, with (K, J) = (20, 64).

Introduction 000000000	PNN for restoration	PNN for denoising	Conclusions
PNN: FROM PROXIMAL ALGOR	THMS TO ROBUST UNFOLDED I	MAGE RESTAURATION NETWORKS	28/41

NN robustness

• Given an input **z** and a perturbation ϵ , the error on the output can be upper bounded :

$$\|f_{\Theta}(\mathbf{z}+\epsilon) - f_{\Theta}(\mathbf{z})\| \leqslant \chi \|\epsilon\|.$$

where χ certificated of the robustness.

• [Combettes, Pesquet, 2020]: χ can be upper bounded by:

$$\chi \leqslant \prod_{k=1}^{K} \left(\|W_{k,\mathcal{P}}\|_{S} \times \|W_{k,\mathcal{D}}\|_{S} \right).$$

 [Pesquet, Repetti, Terris, Wiaux, 2021, 2020]: tighter bound by Lipschitz continuity:

$$\chi \approx \max_{(\mathbf{z}_s)_{s \in \mathbb{I}}} \| \mathbf{J} f_{\Theta}(\mathbf{z}_s) \|_S.$$

where ${\rm J}$ denotes the Jacobian operator.

29/41

NN robustness

Figure: Training Setting 2: Robustness. Distribution of $(\| J f_{\Theta}(\mathbf{z}_s) \|_S)_{s \in \mathbb{J}}$ for 100 images extracted from BSDS500 validation dataset \mathbb{J} , for the proposed PNNs and DRUnet.

Introduction 00000000	PNN for restoration	PNN for denoising	Conclusions
PNN: From proximal	ALGORITHMS TO ROBUST UNFOLDED IN	MAGE RESTAURATION NETWORKS	30/41

PnP based on PNN

• Variational approach $(k \to \infty)$: $\mathbf{x}^{[k+1]} = \operatorname{prox}_{\gamma g \circ \mathbf{D}} (\mathbf{x}^{[k]} - \gamma \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}))$ • PnP $(k \to \infty)$: $\mathbf{x}^{[k+1]} = f_{\widehat{\Theta}} (\mathbf{x}^{[k]} - \gamma \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}))$ Introduction 000000000 PNN for restoration 0000000

PNN for denoising

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

31/41

Figure: Deblurring (Training Setting 2): Restoration performance. Restoration example for $\sigma = 0.015$, with parameters $\gamma = 1.99$ and β chosen optimally for each scheme.

Introduction 000000000 PNN for restoration 0000000

PNN for denoising

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

32/41

Figure: Deblurring (Training Setting 2): Restoration performance. Restoration example for $\sigma = 0.015$, with parameters $\gamma = 1.99$ and β chosen optimally for each scheme.

33/41

PnP based on PNN

Figure: Deblurring (Training Setting 2): Restoration performance. Best PSNR values obtained with DDFB-LNO, DScCP-LNO, DRUnet and BM3D, on 12 images from BSDS500 validation set degraded, with $\sigma = 0.03$.

Introduction
000000000

34/41

The study case of circumstellar environnement reconstruction

Direct model

 \implies Data: $\mathbf{z} \in \mathbb{R}^M$ degraded version of an original image $\overline{\mathbf{x}} \in \mathbb{R}^N$:

$$z = A\overline{x} + w$$

- $\mathbf{A} : \mathbb{R}^{M \times N}$: linear degradation (e.g. a blur)
- w : noise (e.g. Gaussian noise)

Introduction 00000000	PNN for restoration	PNN for denoising	Conclusions 00●00000
PNN: FROM PROXIMAL	ALGORITHMS TO ROBUST UNFOLDED IM	IAGE RESTAURATION NETWORKS	36/41
FB formula	ations		
• Variational	approach $(k \to \infty)$:		
	$\mathbf{x}^{[k+1]} = \operatorname{prox}_{\gamma g \circ \mathbf{D}} \left(\mathbf{x}^{k+1} \right)$	$\mathbf{x}^{[k]} - \gamma \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}))$	
$ \bullet PnP(k \rightarrow$	∞):		

 $\mathbf{x}^{[k+1]} = \frac{f_{\widehat{\Theta}}}{f_{\widehat{\Theta}}} (\mathbf{x}^{[k]} - \gamma \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}))$

• **Unfolded** (k fixed):

$$\mathbf{x}^{[k+1]} = \mathbf{f}_{\Theta} \left(\mathbf{x}^{[k]} - \gamma \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}) \right)$$

Introduction 00000000	PNN for restoration	PNN for denoising	Conclusions 00000000
PNN: From proximal algorithms to robust unfolded image restauration networks			37/41

Primal-Dual formulations

• Variational approach $(k \to \infty)$:

$$\begin{split} \mathbf{x}^{[k+1]} &= \mathbf{x}^{[k]} - \tau \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}) - \tau \mathbf{D}^* \mathbf{u}^{[k]} \\ \mathbf{u}^{[k+1]} &= \operatorname{prox}_{\gamma \| \cdot \|_1^*} \left(\mathbf{u}^{[k]} + \gamma \mathbf{D} (2 \mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \right) \end{split}$$

• **Unfolded** (k fixed):

$$\begin{aligned} \mathbf{x}^{[k+1]} &= \mathbf{x}^{[k]} - \tau_k \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}) - \tau_k \mathbf{D}_k^* \mathbf{u}^{[k]} \\ \mathbf{u}^{[k+1]} &= \operatorname{prox}_{\gamma_k \| \cdot \|_1^*} \left(\mathbf{u}^{[k]} + \gamma_k \mathbf{D}_k (2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \right) \end{aligned}$$

Introduction 000000000

PNN: FROM PROXIMAL ALGORITHMS TO ROBUST UNFOLDED IMAGE RESTAURATION NETWORKS

38/41

Summary

Conclusions and open questions

- ► PNN gives an intuition to build a neural network.
- PNN leads to better results than PnP. Faster solution even weaker "convergence" guarantees.
- Stuck on standard variational formulation not sufficient.
- ► More complex penalization (non-linearities).

000000000	0000000	000000000000000000000000000000000000000	00000000
PNN: From proximal algorithms to robust unfolded image restauration networks			40/41

Refs

- M. Jiu and N. Pustelnik, A deep primal-dual proximal network for image restoration, IEEE JSTSP Special Issue on Deep Learning for Image/Video Restoration and Compression, vol. 15, no. 2,pp. 190–203, Feb. 2021.
- M. Jiu, N. Pustelnik Alternative Design of DeepPDNet in the Context of Image Restoration, IEEE Signal Processing Letters, vol. 29, pp. 932 - 936, 2022.
- H.T.V. Le, N. Pustelnik, M Foare, The faster proximal algorithm, the better unfolded deep learning architecture? The study case of image denoising, EUSIPCO, Belgrade, Serbie, 29 Aug - 2 Sept. 202.
- H.T.V. Le, A. Repetti, N. Pustelnik, PNN: From proximal algorithms to robust unfolded image denoising networks and Plug-and-Play methods, arXiv:2308.03139, 2023.