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Context: Image recovery

☛ Data: z ∈ RM degraded version of an original image x ∈ RN :

z = Ax+w

• A : RM×N : linear degradation (e.g. a blur)

• w : noise (e.g. Gaussian noise)

SIM SPHERE-IRDIS
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Context: image restoration

Synthesis formulation Analysis formulation
x̂ = D∗α̂ with D ∈ RP×N

α̂ ∈ Argmin
α

1

2
∥AD∗α− z∥22 + λ∥α∥• x̂ ∈ Argmin

x

1

2
∥Ax− z∥22 + λ∥Dx∥•

⇒ Equivalence for D orthonormal basis.
[Elad, Milanfar, Ron, 2007] [Chaari, Pustelnik, Chaux, Pesquet, 2009]
[Selesnick, Figueiredo, 2009], [Carlavan, Weiss, Blanc-Féraud, 2010]

[Pustelnik, Benazza-Benhayia, Zheng, Pesquet, 2010]



Introduction PNN for restoration PNN for denoising Conclusions

PNN: From proximal algorithms to robust unfolded image restauration networks 3/41

Context: image restoration

Synthesis formulation Analysis formulation
x̂ = D∗α̂ with D ∈ RP×N

α̂ ∈ Argmin
α

1

2
∥AD∗α− z∥22 + λ∥α∥• x̂ ∈ Argmin

x

1

2
∥Ax− z∥22 + λ∥Dx∥•

⇒ Equivalence for D orthonormal basis.

• X-lets • Horizontal/vertical gradients: TV
• Sparse coding • Hessian operator

• Nonlocal total variation: weighted
nonlocal gradients: NLTV

• Local dictionaries of patches
(webpage L. Duval)[Aharon, Elad, Bruckstein, 2006] [Mairal, Sapiro, Elad,

2007][Gilboa, Osher, 2008][K Bredies, K Kunisch, T Pock, 2010][Jacques, Duval,

Chaux, Peyré, 2011] [S Lefkimmiatis, A Bourquard, M Unser, 2011] [Zoran, Weiss,

2011] [G Kutyniok, D Labate, 2012][Chierchia et al.,2014][Boulanger et al., 2018]. . .
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“Semi-smooth” minimization problem

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = h(x) + g(Dx)

}
• h ∈ Γ0(H) and β-Lipschitz differentiable

• D : H → G and g ∈ Γ0(G)

☛ Remark: Usually proxF does not have a closed form solution.

☛ Idea: Use splitting methods to handle h and g separately.
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FB algorithm

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = h(x) + g(Dx)

}
• h ∈ Γ0(H) and β-Lipschitz differentiable

• D : H → G and g ∈ Γ0(G)

Algorithm: Let x[0] ∈ H,
For k = 0, 1, . . .⌊

x[k+1] = proxγkg◦D
(
x[k] − γk∇h(x̃[k])

)
Theorem (FB): Let, for every k ∈ N, 0 < γk < 2β−1. Then

• (x[k])k∈N converges to a minimizer x̂ of F.

[Combettes & Wajs, 2005]
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Primal-dual algorithm

Objective

Find x̂ ∈ Argmin
x∈RN

{
F(x) = h1(x) + h2(x) + g(Dx)

}
• h1 : H →]−∞,+∞] is convex, proper and β-Lipschitz differentiable

• h2 ∈ Γ0(H), D : H → G, and g ∈ Γ0(G)

Algorithm: x [0] ∈ H
For k = 0, 1, . . . x[k+1] = proxτh2

(
x[k] − τ

(
∇h1(x

[k]) +D∗u[k]
))

u[k+1] = proxσg∗

(
u[k] + σD(2x[k+1] − x[k])

)
Theorem: Choose τ > 0 and σ > 0 such that 1

τ − σ∥D∥2 > β
2 .

The sequence (x[k])k∈N converges to a minimizer x̂ of F

[Vũ, 2013][Condat, 2013]
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Context

Data: z

Direct/acquisition model

Design a cost function

Minimization algorithm

Hyperparameter tuning

Estimated parameters: x̂(z; λ̂)

Data: z

z = D(Ax)

x̂(z;λ) ∈ Argmin
x

1
2
∥Ax−z∥22+λ∥Dx∥•

Sequence xk+1 = Txk

λ̂ ∈ Argmin
λ

∥x− x̂(z;λ)∥22

Estimated parameters: x̂(z; λ̂)



Introduction PNN for restoration PNN for denoising Conclusions

PNN: From proximal algorithms to robust unfolded image restauration networks 8/41

Standard learning and deep learning

Data: z

Direct/acquisition model

Design a cost function

Minimization algorithm

Hyperparameter tuning

Estimated parameters: x̂(z; λ̂)

Data: z

Deep learning procedure

Estimated parameters: x̂(z; Θ̂)
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Training a NN for inverse problem task

☛ Database: S =
{
(zi, xi) ∈ RM × RN

∣∣ i ∈ {1, . . . ,L}
}
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Training a NN for inverse problem task

☛ Database: S =
{
(zi, xi) ∈ RM × RN

∣∣ i ∈ {1, . . . ,L}
}

We consider two sets of images: the training set (zi, xi)i∈I of
size ♯ I and the testing set (zj , xj)j∈J of size ♯ J where

(∀i ∈ I ∪ J) zi = Axi +wi
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Training a NN for inverse problem task

☛ Database: S =
{
(zi, xi) ∈ RM × RN

∣∣ i ∈ {1, . . . ,L}
}

We consider two sets of images: the training set (zi, xi)i∈I of
size ♯ I and the testing set (zj , xj)j∈J of size ♯ J where

(∀i ∈ I ∪ J) zi = Axi +wi

☛ Training: The NN is trained using the training set to
estimate:

Θ̂ ∈ Argmin
Θ

1

♯ I
∑

i∈I ∥xi − fΘ(zi)∥2

☛ Testing: The learned NN f
Θ̂

is then validated on the testing
set. A properly trained network should satisfy

(∀j ∈ J) xj ≈ f
Θ̂
(zj).
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Deep learning architecture

Deep learning – Framework

• Database : S =
{
(zi, xi) ∈ RM × RN

∣∣ i ∈ {1, . . . ,L}
}

• Prediction function : fΘ(zi) = η[K]
(
W [K] . . . η[1](W [1]zi + b[1]) . . .+ b[K]

)
⊙ Linear operators: W [1],W[2], . . . ,W [K]

⊙ Activation functions: η[1], η[2], . . . , η[K]

⊙ Biais vectors: b[1], b[2], . . . , b[K]

⇒ Θ = {W [1], . . . ,W [K], b[1], . . . , b[K]}
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PNN for image restoration
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Pioneer work : LISTA for synthesis formulation

☛ Synthesis formulation:

min
x

1

2
∥AD∗x− z∥22 + λ∥x∥1 where H = AD∗ ∈ RM×N

☛ Forward-backward iterations:

x[k+1] = proxτλ∥·∥1(x
[k] − τH∗(Hx[k] − z))

☛ Reformulation:
x[k+1] = proxτλ∥·∥1((Id− τH∗H)x[k] + τH∗ z))

☛ Layer network: [Gregor, LeCun, 2010]

x[k+1] = proxτλ∥·∥1

(
Id− τH∗H x[k] + τH∗z

)

η[k] W[k] b[k]
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Deep learning versus proximal algorithms

☛ Most of activation functions are proximity operator :
ReLU, Unimodal sigmoid, Softmax . . .
[Combettes, Pesquet, 2020]

https://pcombet.math.ncsu.edu/svva5.pdf
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Deep learning versus proximal algorithms

☛ Most of activation functions are proximity operator :
ReLU, Unimodal sigmoid, Softmax . . .
[Combettes, Pesquet, 2020]

Proposition [Le, Pustelnik, Foare, 2022]: The proximity operator of the
conjugate of the ℓ1-norm scaled by parameter λ > 0 fits the HardTanh activation
function, i.e., for every x = (xi)1⩽i⩽N :

P∥·∥∞⩽λ(x) = HardTanhλ(x) = (pi)1⩽i⩽N

where

pi =


−λ if pi < −λ,

λ if pi > λ,

pi otherwise.

https://pcombet.math.ncsu.edu/svva5.pdf
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Deep learning versus proximal algorithms

☛ Most of activation functions are proximity operator :
ReLU, Unimodal sigmoid, Softmax . . .
[Combettes, Pesquet, 2020]

☛ Let W[k] be a bounded linear operators, bk a vector, ηk
proximity operators (1/2-averaged operator),
fΘ = TK ◦ · · · ◦ T1 with Tk = ηk(Wk ·+bk) model allows to
derive tight Lipschitz bounds for feedforward neural networks
in order to evaluate their robustness i.e.

∥fΘ(z+ ϵ)− fΘ(z)∥ ⩽ χ∥ϵ∥

. [Combettes, Pesquet, 2020]

https://pcombet.math.ncsu.edu/svva5.pdf
 https://pcombet.math.ncsu.edu/simods1.pdf
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Preliminary work: DeepPDNet for Analysis formulation

☛ Analysis formulation:

min
x

1

2
∥Ax− z∥22 + ∥Hx∥1 where H = λD

☛ Condat-Vũ iterations:

x[k+1] = xk − τA∗(Ax[k] − z)− τH∗u[k]

u[k+1] = proxγ∥·∥∗1

(
u[k] + γH(2x[k+1] − x[k])

)
☛ Reformulation:

x[k+1] = (Id− τA∗A)x[k] − τH∗u[k] + τA∗z
u[k+1] = proxγ∥·∥∗

1

(
γH(Id− 2τA∗A)x[k] + (Id− 2τγHH∗)u[k] + 2τγHA∗z

)
.

☛ Layer network: [Jiu, Pustelnik, 2021][
x[k+1]

u[k+1]

]
=

Id
proxγ∥·∥∗1

( [
Id− τA∗A −τH∗

γH(Id− 2τA∗A) Id− 2τγHH∗

] [
x[k]

u[k]

]
+

[
τA∗z

2τγHA∗z

])

η[k] W [k] b[k]
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Analysis formulation and the proposed DeepPDNet

fΘ(x) = η[K]
(
W [K] . . . η[1](W [1]x+ b[1]) . . .+ b[K]

)
☛ Network with fixed layer: Θ = {H, τ, γ}[
x[k+1]

u[k+1]

]
=

Id
proxγ∥·∥∗1

( [
Id− τA∗A −τH∗

γH(Id− 2τA∗A) Id− 2τγHH∗

] [
x[k]

u[k]

]
+

[
τA∗z

2τγHA∗z

])

η[k] W [k] b[k]

☛ Network with variable layers: Θ = {H[k], τk, γk, }1⩽k⩽K[
x[k+1]

u[k+1]

]
=

Id
proxγk∥·∥∗1

( [
Id− τkA

∗A −τkH
∗
k

γkHk(Id− 2τkA
∗A) Id− 2τγkHkH

∗
k

] [
x[k]

u[k]

]
+

[
τkA

∗
kz

2τkγkHkA
∗z

])

η[k] W [k] b[k]
+ specificities for the first and last layers.
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Analysis formulation and the proposed DeepPDNet

Learn a prediction function fΘ:

Θ̂ ∈ Argmin
Θ

E(Θ) :=
1

♯ I
∑
i∈I

∥xi − dΘ(zi)∥2

Gradient based strategy

Θk,ℓ+1 = Θk,ℓ − γΘ
∂E(θ)

∂θ[k]
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Analysis formulation and the proposed DeepPDNet

Learn a prediction function fΘ:

Θ̂ ∈ Argmin
Θ

E(Θ) :=
1

♯ I
∑
i∈I

∥xi − dΘ(zi)∥2

Gradient based strategy

Θk,ℓ+1 = Θk,ℓ − γΘ
∂E

∂uK

∂uK
∂uK−1

. . .
∂uk+1

∂uk

∂uk
∂Θk

where

∂uk
∂uk−1

=
dηk(vk)

dvk
Wk

∂uk
∂Θk

=

(
∂ηk(vk)

∂vk

(
∂W[k]

∂Θ[k]
uk +

∂bk
∂Θk

)
+

∂ηk(vk)

∂Θk

)

with vk = Wkuk−1 + bk and uk = ηk(vk)
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Analysis formulation and proposed DeepPDNet

u

<latexit sha1_base64="Ks16MnbpeMT63gVe9m3lVPRY5J8=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlgEVyWVoi6LblxWsA9oS0nSaRvMi8lELKEbd+LWH3CrHyT+gf6Fd8YU1CI6IcmZc+85M/deO/LcWJjma06bm19YXMovF1ZW19Y39M2tRhwm3GF1J/RC3rKtmHluwOrCFR5rRZxZvu2xpn11JuPNa8ZjNwwuxThiXd8aBu7AdSxBVE/f6YQUluq041tixP30ZjLp6UWzZKplzIJyBorIVi3UX9BBHyEcJPDBEEAQ9mAhpqeNMkxExHWREscJuSrOMEGBtAllMcqwiL2i75B27YwNaC89Y6V26BSPXk5KA/ukCSmPE5anGSqeKGfJ/uadKk95tzH97czLJ1ZgROxfumnmf3WyFoEBTlQNLtUUKUZW52QuieqKvLnxpSpBDhFxEvcpzgk7Sjnts6E0sapd9tZS8TeVKVm5d7LcBO/yljTg8s9xzoLGYal8VKpcVIrV02zUeexiDwc0z2NUcY4a6uSd4hFPeNY62q12p91/pmq5TLONb0t7+ACw+ZkU</latexit>

x

[Jiu, Pustelnik, 2021]



Introduction PNN for restoration PNN for denoising Conclusions

PNN: From proximal algorithms to robust unfolded image restauration networks 18/41

PNN: focus on denoising task
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D(i)FB algorithm

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

• C ⊂ H is a closed, convex, non-empty. D : H → G and g ∈ Γ0(H)

Algorithm: Let x0 ∈ H,
For k = 0, 1, . . .⌊

u[k+1] = proxτk(νg)∗
(
v[k] + τkDPC(z−D⊤v[k])

)
,

v[k+1] = (1 + ρk)u[k+1] − ρku[k],

Theorem : Assume that one of the following conditions is satisfied.
1. (DFB): ∀k ∈ N, τk ∈ (0, 2/∥D∥2S), and ρk = 0.

2. (DiFB): ∀k ∈ N, τk ∈ (0, 1/∥D∥2S), and ρk = tk−1
tk+1

with tk = k+a−1
a

and a > 2.

Then we have
x̂ = lim

k→∞
PC(z−D⊤u[k]),

[Combettes & Wajs, 2005]
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S(c)CP algorithm

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

• C ⊂ H is a closed, convex, non-empty. D : H → G and g ∈ Γ0(G)

Algorithm: Let x0 ∈ dom g,(τk)k∈N and (µk)k∈N are positive sequences
For k = 0, 1, . . . x[k+1] = PC

(
µk

1+µk
(z−D⊤u[k]) + 1

1+µk
x[k]
)
,

u[k+1] = proxτk(νg)∗
(
u[k] + τkD

(
(1 + αk)x[k+1] − αkx[k]

))
,

Theorem : Assume that one of the following conditions is satisfied.
1. (CP): ∀k ∈ N, τkµk∥D∥2S < 1, and αk = 1.

2.(ScCP): ∀k ∈ N, αk = 1/
√
1 + 2µk, µk+1 = αkµk, τk+1 = τkα

−1
k with µ0τ0∥D∥2S ⩽ 1.

Then we have
x̂ = lim

k→∞
x[k].
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . . x[k+1] = PC

(
µk

1+µk
(z−D⊤u[k]) + 1

1+µk
x[k]
)

u[k+1] = proxτk(νg)∗
(
u[k] + τkD

(
(1 + αk)x

[k+1] − αkxk
))

☛ S(c)CP: Starting point.
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . . x[k+1] = PC

(
µk

1+µk
(z−D⊤u[k]) + 1

1+µk
x[k]
)

u[k+1] = proxτk(νg)∗
(
u[k] + τkD

(
(1 + αk)x

[k+1] − αkxk
))

☛ S(c)CP: Starting point.
☛ Arrow-Hurwicz iterations: αk ≡ 0.
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . .⌊
x[k+1] = PC

(
µk

1+µk
(z−D⊤u[k]) + 1

1+µk
x[k]
)

u[k+1] = proxτk(νg)∗
(
u[k] + τkDx[k+1]

)
☛ S(c)CP: Starting point.
☛ Arrow-Hurwicz iterations: αk ≡ 0.
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . .⌊
x[k+1] = PC

(
µk

1+µk
(z−D⊤u[k]) + 1

1+µk
x[k]
)

u[k+1] = proxτk(νg)∗
(
u[k] + τkDx[k+1]

)
☛ S(c)CP: Starting point.
☛ Arrow-Hurwicz iterations: αk ≡ 0.
☛ DFB: µk → +∞.
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . .⌊
x[k+1] = PC

(
z−D⊤u[k]

)
u[k+1] = proxτk(νg)∗

(
u[k] + τkDx[k+1]

)
☛ S(c)CP: Starting point.
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . .⌊
x[k+1] = PC

(
z−D⊤u[k]

)
u[k+1] = proxτk(νg)∗

(
u[k] + τkDx[k+1]

)
☛ S(c)CP: Starting point.
☛ Arrow-Hurwicz iterations: αk ≡ 0.
☛ DFB: µk → +∞.
☛ DiFB: Inertia step on the dual variable.
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S(c)CP to D(i)FB

Objective

Find x̂ ∈ Argmin
x∈H

{
F(x) = 1

2∥x− z∥22 + g(Dx) + ιC(x)
}

Algorithm: For k = 0, 1, . . . x[k+1] = PC

(
z−D⊤v[k]

)
u[k+1] = proxτk(νg)∗

(
u[k] + τkDx[k+1]

)
v[k+1] = (1 + ρk)u

[k+1] − ρku
[k]

☛ S(c)CP: Starting point.
☛ Arrow-Hurwicz iterations: αk ≡ 0.
☛ DFB: µk → +∞.
☛ DiFB: Inertia step on the dual variable.
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Arrow- Hurwicz algorithm

The reformulation of Arrow-Hurwicz can be written as:

Lz,ν,Θk
: H× G →H
(x[k],u[k])7→Lz,Θk,P ,P(x,LΘk,D,D(x[k],u[k])),

with

Lν,Θk,D,D(x,u) = proxτk(νg)∗ (τkDx+ u) ,

Lz,Θk,P ,P(x,u) = PC

(
1

1 + µk
x− µk

1 + µk
D⊤u+

µk

1 + µk
z

)
,

[Le, Repetti, Pustelnik, 2023]
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Deep Arrow-Hurwicz building block

The reformulation of Arrow-Hurwicz can be written as:

Lz,ν,Θk
: H× G →H
(x[k],u[k]) 7→Lz,Θk,P ,P(x[k],LΘk,D,D(x[k],u[k])),

with

Lν,Θk,D,D(x,u) = proxτk(νg)∗ (τkDk,Dx+ Idu) ,

Lz,Θk,P ,P(x,u) = PC

(
1

1 + µk
x− µk

1 + µk
D⊤

k,Pu+
µk

1 + µk
z

)
,

[Le, Repetti, Pustelnik, 2023]
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Figure: Architecture of the proposed DAH-Unified block for the k-th
layer. Inertial step for ScCP (top) and DiFB (bottom).
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Θk Comments

DDFB-LFO Dk,P , Dk,D absorb τk in Dk,D

DDiFB-LFO Dk,P , Dk,D, αk fix αk, and absorb τk in Dk,D

DDFB-LNO Dk,P = D⊤
k,D define τk = 1.99∥Dk∥−2

DDiFB-LNO Dk,P = D⊤
k,D fix αk = tk−1

tk+1
, tk+1 = k+a−1

a
,

a > 2, and τk = 0.99∥Dk∥−2

DCP-LFO Dk,P , Dk,D, µ learn µ = µ0 = · · · = µK ,
and absorb τk in Dk,D

DScCP-LFO Dk,P , Dk,D, µ0 learn µ0, absorb τk in Dk,D,

and fix αk = (1 + 2µk)
−1/2,

and µk+1 = αkµk

DCP-LNO Dk,P = D⊤
k,D, µ learn µ = µ0 = · · · = µK ,

and fix τk = 0.99µ−1∥Dk∥−2

DScCP-LNO Dk,P = D⊤
k,D, µk learn µk, and fix αk = (1 + 2µk)

−1/2,
and τk = 0.99µ−1

k ∥Dk∥−2
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Figure: Training Setting 2: Denoising performance. PSNR values
obtained with the proposed s (with (K,J) = (20, 64)), for 20 images of
BSDS500 validation set, degraded with noise level δ = 0.05.
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Noisy DRUnet DDFB-LNO DScCP-LNO
26.03dB 35.81dB 32.81dB 34.74dB

Denoising performance on Gaussian noise. Example of denoised images (and
PSNR values) for Gaussian noise δ = 0.05 obtained with DRUnet and the
proposed DDFB-LNO and DScCP-LNO, with (K,J) = (20, 64).
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NN robustness

☛ Given an input z and a perturbation ϵ, the error on the output
can be upper bounded :

∥fΘ(z+ ϵ)− fΘ(z)∥ ⩽ χ∥ϵ∥.

where χ certificated of the robustness.
☛ [Combettes, Pesquet, 2020]: χ can be upper bounded by:

χ ⩽
K∏
k=1

(
∥Wk,P∥S × ∥Wk,D∥S

)
.

☛ [Pesquet, Repetti, Terris, Wiaux, 2021, 2020]: tighter bound by
Lipschitz continuity:

χ ≈ max
(zs)s∈I

∥ J fΘ(zs)∥S .

where J denotes the Jacobian operator.

 https://pcombet.math.ncsu.edu/simods1.pdf
 https://arxiv.org/abs/2012.13247
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NN robustness

Figure: Training Setting 2: Robustness. Distribution of
(∥ J fΘ(zs)∥S)s∈J for 100 images extracted from BSDS500 validation
dataset J, for the proposed PNNs and DRUnet.
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PnP based on PNN

• Variational approach (k → ∞):

x[k+1] = proxγg◦D (x[k] − γA∗(Ax[k] − z))

• PnP (k → ∞):

x[k+1] = f
Θ̂
(x[k] − γA∗(Ax[k] − z))
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Ground truth Noisy (σ = 0.015) – 20.11 dB BM3D – 27.10 dB

DRUnet – 25.09 dB DDFB-LNO – 27.23 dB DScCP-LNO – 26.48 dB

Figure: Deblurring (Training Setting 2): Restoration performance.
Restoration example for σ = 0.015, with parameters γ = 1.99 and β
chosen optimally for each scheme.
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Ground truth Noisy (σ = 0.015) – 20.11 dB BM3D – 27.10 dB

DRUnet – 25.09 dB DDFB-LNO – 27.23 dB DScCP-LNO – 26.48 dB

Figure: Deblurring (Training Setting 2): Restoration performance.
Restoration example for σ = 0.015, with parameters γ = 1.99 and β
chosen optimally for each scheme.
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PnP based on PNN

PSNR with optimal β

Figure: Deblurring (Training Setting 2): Restoration performance.
Best PSNR values obtained with DDFB-LNO, DScCP-LNO, DRUnet and
BM3D, on 12 images from BSDS500 validation set degraded, with
σ = 0.03.
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The study case of circumstellar environnement
reconstruction
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Direct model

Data: z ∈ RM degraded version of an original image x ∈ RN :

z = Ax+w

• A : RM×N : linear degradation (e.g. a blur)
• w : noise (e.g. Gaussian noise)

SPHERE-IRDIS
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FB formulations

• Variational approach (k → ∞):

x[k+1] = proxγg◦D (x[k] − γA∗(Ax[k] − z))

• PnP (k → ∞):

x[k+1] = f
Θ̂
(x[k] − γA∗(Ax[k] − z))

• Unfolded (k fixed):

x[k+1] = fΘ (x[k] − γA∗(Ax[k] − z))
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Primal-Dual formulations

• Variational approach (k → ∞):

x[k+1] = x[k] − τA∗(Ax[k] − z)− τD∗u[k]

u[k+1] = proxγ∥·∥∗1

(
u[k] + γD(2x[k+1] − x[k])

)
• Unfolded (k fixed):

x[k+1] = x[k] − τkA
∗(Ax[k] − z)− τkD

∗
ku

[k]

u[k+1] = proxγk∥·∥∗1

(
u[k] + γkDk(2x

[k+1] − x[k])
)



Introduction PNN for restoration PNN for denoising Conclusions

PNN: From proximal algorithms to robust unfolded image restauration networks 38/41

Summary
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Conclusions and open questions

▶ PNN gives an intuition to build a neural network.

▶ PNN leads to better results than PnP. Faster solution even
weaker “convergence” guarantees.

▶ Stuck on standard variational formulation not sufficient.

▶ More complex penalization (non-linearities).
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