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Focus on the following issues

1. Convergence of the iterates of first order schemes: convex and
non-convex.
e Banach-Picard
e «-averaged operators
e Kl-based convergence

Algorithms dealing with non-linearities

2. From variational approaches to deep learning
e Unfolded schemes
e Plug-and-play

3. lllustrations in the context of inverse problem.



Framework

e Non-convexity: f or g non-convex

minimize ¥U(x) := f(x) + g(x)

X

e Non-convexity: bi-convex problem

minimize ¥(x, e) := f(x) + g1(x,e) + g2(e)

x,e

e Non-convexity: non-linear operator

minimize ¥(x) := f(A(x)) + g(x)

X




Framework

e Signal/image processing: data z = AX+¢

e Standard data-fidelity term + prior formulation

minimize ¥(x) := f(x;z) + g(x)
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Framework

e Signal/image processing: data z = AX+¢

e Non-convex: bi-convex problem

minimize U(x, e) := f(x;2) + g1(x,€) + g2(e)

X,€

minimize [|Ax — z||> 4+ 8]|(1 — ¢) @ Dx||*> + Alle|x 4
x,e



Framework

e Signal/image processing: data z = A(x) + ¢

e Non-convex:non-linear operator

minimize ¥(x) := f(A(x);z) + g(x)
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Nonsmooth convex optimization



Hilbert spaces

A (real) Hilbert space # is a complete real vector space

endowed with an inner product (- | -). The associated norm

(MxeH) x| = x]x).

e Particular case: H = RY (Euclidean space with dimension N).

is

e Course dedicated to finite dimension.



Norm and adjoint

Let H and G be two Hilbert spaces.
A linear operator D: H — G is bounded (or continuous) if

ID[} = sup [[Dx]lg < +o0
Il <1
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Norm and adjoint

Let H and G be two Hilbert spaces.
A linear operator D: H — G is bounded (or continuous) if

ID[} = sup [[Dx]| < +o0
el <1

e In finite dimension, every linear operator is bounded.

B(H,G): Banach space of bounded linear operators from #H
to G.




Norm and adjoint

Let H and G be two Hilbert spaces.
Let D € B(H,G). Its adjoint D* is the operator in B(G,H)

defined as

(V(x,y) e HxG)  (y[Dx)g = (D |x)y

Example:

If D:H—H": x> (X,...,%)
then D": H" — H: y= Y17"'7yn szz

Proof:

(Dx [y) = (%, X) [ (Y1,---5¥0)) = D (x| y;) = <XIZyZ>

d=il
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Subdifferential of function

27 is the power set of H, i.e. the family of all subsets of .

Let ¥ : H — |—00,+00] be a proper function.
The (Moreau) subdifferential of ¥, is such that

o - H — 2™
x—>{ueH|(Vy eH) (y—x|u) +T(x) <Py}
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Subdifferential of function

27 is the power set of H, i.e. the family of all subsets of .

Let ¥ : H — |—00,+00] be a proper function.
The (Moreau) subdifferential of ¥, is such that

o - H — 2™
x—>{ueH|(Vy eH) (y—x|u) +T(x) <Py}

Fermat's rule: 0€0¥(x) & Xe Argmin U(x)

X




Subdifferential of function

Let  be a Hilbert space. Let ®: H — 27t
The set of zeros of ® is : zer® = {x € H|0 € ®x}.

Fermat’s rule:

0€d¥(X) & X€zerd¥ (i.e. ® = 0V)
< X € Argmin ¥(x)

Remark: If ¥ differentiable, 0¥ = {VV}

10



Proximity operator of a function min U(x)

X

Definition [Moreau,1965] Let U: H — ]—o0, +00] be a con-
vex, |.s.c., and proper function. The proximity operator of ¥
at point x € H is the unique point denoted by proxy x such
that

1 2
_ i x — v
(Vx € ’H) proxy X = arg %171{1 5 [x —v|| + ¥(v)

== Existing many closed form expressions

proxy.|,: soft-thresholding with a fixed threshold A > 0.
exhaustive list: PROX Repository

= Identity
= Soft-thresholding


http://proximity-operator.net/

Proximity operator of a function

Let H be a Hilbert space and ¥ € I'g(H).

(Vx e H) p=proxg(x) < x—pecai¥(p).

12



Proximity operator of a function

Let H be a Hilbert space and ¥ € I'g(H).

(Vx e H) p=proxg(x) < x—pecai¥(p).

e Proof:

, 1
p = argmin ¥(y) + o[y — x|
yeH

& 0ea(+ ) @)

& 0€o0¥(p)+p—x
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Proximity operator of a function min U(x)

X

Gradient descent step :
xFH = xIF v (xM)
(Explicit) sub-gradient descent step :

xFH1 = [kl — ylFl where ul*! € oW (x*)

(Implicit) sub-gradient descent step = Proximal step :

k-+1]

xt = xIMl — ulfl where ul? € yow (x[F+1)

= pl"OX\IJ(X[k])

13



Iterative scheme

== Minimization problem :

[ X € Argxmin\I/(x) = f(x) + g(x) ]

== Design of a recursive sequence of the form

(Vk € N) xF 1 — xlFl,

Gradient descent ®=1d—~(Vf+ Vyg)

Proximal point algorithm ~ ® = prox, (s,

Forward-Backward ® = prox, ,(Id — 7V ()

Peaceman-Rachford ® = (2prox,, —Id) o (2prox, ; —Id)

Douglas-Rachford ® = prox, (2 prox, ; —Id) + Id — prox,
14



Fixed point algorithm: zeros and fixed points

Let  be a Hilbert space. Let ®: H — 27
The set of zeros of ® is : zer® = {x € H|0 € Ox}.
The set of fixed points of ® is : Fix® = {x € H |x € &x}.

ii5)



Banach-Picard theorem

7~

=

An operator ®: H — H is w—Lipschitz continuous for some
w € [0, +oo[ if
(Vx e H)(Vy € H) [[@x — @y[| <wlx -yl

® is nonexpansive if it is 1—Lipschitz continuous.

Banach-Picard theorem Let w € [0,1], let ®: H — H be a
w—Lipschitz continuous operator, and let xg € H. Set

(Vk e N)  xlF+1 = oxlkl,
Then, Fix ® = {x} for some X € H and we have
(Ve e N) [|IxI" — || < w||x —x]].

Moreover, (x!*),cn converges to X with linear convergence rate w.




Averaged nonexpansive operator

s D

An operator ®: ‘H — H is a—averaged nonexpansive for some
a €10,1] if, for every x € H and y € H,

11—«

Jx— @y1? < -yl = (122 - @) -y

® is firmly nonexpansive if it is 1/2—averaged.

Theorem Let o €]0,1], let ®: H — H be a a—averaged nonex-
pansive operator such that Fix ® # &, and let x[%) € #. Set
(Vk e N)  xtF+1 = oxlkl,

Then (x*]),.cn converges weakly to a point in Fix &®.

17



Averaged operator: example

Let H be a Hilbert space, I'g(#) denotes the class of proper,
lower semi-continuous, and convex functions from H to | —

00, +00].

Gradient descent operator
U € I'g(H) with v-Lipschitz gradient with v > 0.
For some v €]0, 2[, I—yVV is a yv/2-averaged operator.

Proximal operator
LS F()(H).
For some v > 0, prox,y Is a 1/2-averaged operator.

18



Composition of averaged operator

Theorem Let S be a nonempty subset of . Let a; €]0, 1]
and ay €]0,1[. Let ®; : S — S be aj-averaged and ® :
S — S be ax-averaged.

Then & = &P, is a-averaged with

—2
o= a1 + Qg — 2009 €lo, 1[.
1—ajan

Proof: Extracted from Theorem 26.14 [Bauschke-Combettes, 2017]

19



Forward-backward splitting

f € To(H) with v-Lipschitz gradient and g € T'o(H).
For some v > 0,

® := prox,  (I-—Vf)

o lterations:(Vk € N) z[F+1) = proxw(x[k] — V().

20



Forward-backward splitting

f € To(H) with v-Lipschitz gradient and g € T'o(H).
For some v > 0,

® := prox,  (I-—Vf)

o lterations:(Vk € N) z[F+1) = proxw(x[k] — V().

e Roots in projected gradient method [Levitin 1966] when g = v for some
closed convex set C.

e Also named Proximal Gradient (PG) algorithm or Iterative Soft
Thresholding Algorithm (ISTA).

20



Forward-backward splitting

f € To(H) with v-Lipschitz gradient and g € T'o(H).
For some v > 0,

® := prox,  (I-—Vf)

e lterations:(Vk € N) 2! = prox_ (s — 4V f(2!H])).

e prox  (I-yVf) is a-averaged nonexpansive where

a1 taz — 20102

1-— 102
where az = yv//2 and a1 = 1/2 leading to
1
= 1.
o= g €l0.1]
Leading to
v < 2/v.

20



Forward-backward splitting

f € To(H) with v-Lipschitz gradient and g € T'o(H).
For some v > 0,

® := prox,  (I-—Vf)

e lterations:(Vk € N) 2! = prox_ (s — 4V f(2!H])).
e prox  (I—yVf) is a-averaged nonexpansive

e Forevery v > 0, zer (Vf + dg) = Fix ®.

Proof:
z € Fix® < 2 = prox, (v — vV f(z))

S —yVf(z) —x € yogz
< 0€e€ Vf(z)+ dg(x)
S x €zer (Vf+0g)

20



Forward-backward splitting

f € To(H) with v-Lipschitz gradient and g € T'o(H).
For some v > 0,

® := prox,  (I-—Vf)

o lterations:(Vk ¢ N) zlF+1) — proxw(x[k] — AV ().
e prox,,(I-yVf) is a-averaged nonexpansive
e Forevery v > 0, zer (Vf + dg) = Fix ®.

e For every v € ]0,2v7 [, the FBS method converges to a point in
zer (Vf + 0g).

20



Strong convexity

[ is p-strongly convex with p > 0 if f — £|| - ||3 is convex.

Properties:

o If fis p-strongly convex then

(Vz,y € H)  (Vf(z) = VIW)lz—y) = pllz—yl?

o If f is twice differentiable, then f is p-strongly convex if and
only if all the eigenvalues of the Hessian matrix of f are at
most equal to p.

21



min f(x) + g(x)

Linear convergence

Proposition [Briceno-Arias, Pustelnik, 2021]

f € To(H) with v-Lipschitz gradient, p—strongly convex for some
p €10,v], and g € To(H) with S-Lipschitz gradient. Let v > 0.
Then,

1. FBS Suppose that v € 0,207 [. Then
® = prox,,(I -V f) is w(7y)—Lipschitz continuous, where

w(y) = max {|1 —pl|, |1 — [} €]0,1[.

The minimum is achieved at

2
*: d * * pr—
Y p+v an TTl(’y )

v—p
V—&—p'

22
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min f(x) + g(x)

Linear convergence

Proposition [Briceno-Arias, Pustelnik, 2021]

f € To(H) with v-Lipschitz gradient, p—strongly convex for some
p €10,v], and g € To(H) with S-Lipschitz gradient. Let v > 0.
Then,

1. FBS Suppose that v € ]0,237!]. Then
® = prox., (I —7Vg) is w(y)—Lipschitz continuous, where

1
L+9p

w(y) = €10,1.
The minimum is achieved at

1
* —1 *\
vt =28 and 77, (y )—m-

22
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Regime diagram
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8

Comparison of the convergence rates of Forward-Backward,

Peaceman-Rachford, Douglas-Rachford for two choices of @ = v;l,

8= yg_l, and p.[Bricefio-Arias, Pustelnik, 2021] -


https://arxiv.org/abs/2101.06152
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Conclusion nonsmooth convex optimization

e Convergence of the iterates important in signal /image processing.
e Two types of convergence: a-averaged and Lipschitz continuity.

e With linear rate possibility to compare algorithms but one need
to be sure that the bound is tight (cf. A. Taylor et al. work).

e Establish systematically diagram regimes when algorithms are

compared to capture their regime of efficiency.

25



Nonsmooth nonconvex
optimization: generalities



Subdifferential of function

Let U : RY — ]—00, +00] be a proper function.
The (Fréchet) subdifferential of W, denoted by 9V, is such that,
for every x € dom ¥,

(y) = C(x) — {y —xJu) _
Ix =yl

O¥(x) =ueH]| liminf\Ij
Y
y#X

If x ¢ dom ¥, then 0¥(x) = @.

.

Remarks:
e If U convex, Fréchet subdifferential matches Moreau subdifferential

[Rockafellar, Wets, 1997].
e The set of critical points = zeros of Jf.
e When f € T'o(RY), the critical points are the global minimizers.

e XEArgmin ¥(x) = 0¢€9V(X) 26



Proximity operator

Proposition [Rockafellar, Wets, 1998] Let W: RV —
|—00, +c] be a l.s.c. and proper function. The proximity
operator of ¥ at point x € R and for v > 0 is

1
(vx € RY) ProX. g X = argaréiﬁl 5 Ix = v||® + 7T (v)

Proposition (Well-definedness of proximal maps)

[Bolte et al., 2014] Let ¥: RN — ]—o0, +00] be a l.s.c. and
proper function with inf ¥ > —oo. Then, for every v > 0,
prox.g X is nonempty and compact.

27



Proximity operator

Proposition [Gribonval, Nikolova, 2020] Let S C H be non-
empty. A function g: S — H is a proximity operator of a
function U: H — (—oo, +o0] if, and only if, there exists a

convex l.s.c. function ¢: H — (—o00, 00| such that for each
y €S, o(y) € 9p(y).

J

e |f U is continuous, there exists a convex differentiable function

¢ such that proxy (y) = Ve(y).

28



Non-convex case: Lojasiewicz inequality

e Fundamental tool in non-convex optimization to demonstrate
the convergence of sequences that are not necessarily convex.

e Inequality first proposed in [Lojasiewicz, 1963].

e Satisfied by any analytic real function.

Let ¥: H — R be an analytic real function, and X a critical
point of this function. There exist § € [1/2,1] and k €
10, +o0o[ such that WU satisfies Lojasiewicz's inequality in a
neighborhood N (X) of X, i.e.,

(¥x € N(x)) [¥(x) — ¥(®)|° <6 VE(X)|

29



Non-convex case: Kurdyka-Lojasiewicz (KL) inequality

Let U: H —] — 0o, +o0] be an analytic real function. ¥
satisfies the KL inequality if, for any £ € R, and, for any
bounded subset S of H, there exist three constants x > 0,
¢ >0, and 6 € [0, 1] such that

(Vu € 8¥(x) [¥(x) —&° < wull

for every x € S such that |[¥(x) — &| < C.

o Generalization [Kurdyka, 1998] [Bolte et al., 2006 2007]

e As pointed out in [Attouch et al., 2010], the logarithm and
exponential functions are neither real semi-algebraic nor real
analytic, and they do not satisfy the inequality. However, there
exists a function such that the KL inequality in its most general

form is satisfied. 30



Converge proof receipe

e U:H — (—o0,+00]| be a proper |.s.c function bounded from below.

e Let ® which generates a sequence (x[k])keN ie. x P — @xlkl,

1. sufficient decrease property, which requires to find a positive
constant p; such that, for any iteration k

prlx" = M2 < w () — w( )

2. subgradient lower bound for the iterates gap , which requires
to find a positive constant ps such that

Hu[k+1 | < pQHX[kJrl _X[k]H with ulFt = a\l,(x[k+1])

3. U constant on a subset of critical points, From (1)+(2) the set
of all limit/accumulation points is a nonempty, compact and
connected set. The objective function W is finite and constant on
the set of all limit points/subset of the critical points of W.

4. using the KL property and show that the generated sequence

(x[k])keN is a Cauchy sequence and hence is a convergent. 31




Nonsmooth nonconvex
optimization: alternated schemes



Gauss-Seidel iterations  min V(x,e) := f(x) + gi1(x,e) + g2(e)

x,e

Gauss-Seidel = coordinate descent

Set el € RIEI.

For ke N
xFH1 € Arg min, ¥(x, el®])
elF+1] € Argmine ¥(xF+1 )

e Under technical assumptions, convergence of the sequence
(x*], el*) o to a critical point (X,€) of W.

Technical assumptions = minimum is attained at each
iteration, e.g. by assuming strict convexity w.r.t one
argument. [Auslender1976, Bertsekas1999]
32



min ¥(x,e) := f(x) + g1 (x,€) + gs(e)

x,e

PAM = Proximal Alternating Minimization
[Attouch et al 2010]
Set el¥) ¢ RIEI,
For ke N
cp > 0,di >0
xF1) € Argmin, W(x,ell) + % ||x — x*||2
el" 1l € Argmine U(x*+1 e) + % |e — el|2

e Can be rewritten as
For k € N
xlF+1 ¢ proxiuv,e[k])(x[k])
ettt ¢ prowax[kH].,)(e“"])
dy ’

e Under technical assumptions, convergence of the sequence

(x[’“},e[k])keN to a critical point (X, €) of U. 3


https://arxiv.org/pdf/0801.1780

min ¥(x,e) := f(x) + g1 (x,€) + gs(e)

x,e

PAM = Proximal Alternating Minimization
[Attouch et al 2010]
Set el¥) ¢ RIEI,
For ke N
cp > 0,di >0
xF1) € Argmin, W(x,ell) + % ||x — x*||2
el" 1l € Argmine U(x*+1 e) + % |e — el|2

e Can be rewritten as

For k e N
xlF+1] ¢ proxiq,(,’e[k])(x[k]) = PI'OX%kfwu(-,e[H)(X[k])
elk 1 ¢ prOX%kW<X[k+1]")(e[k3]) = med%m o g (el

e Can be difficult to compute the proximity operator of a sum

of two functions. 33


https://arxiv.org/pdf/0801.1780

Proximity operator of a sum of two functions

— ?
Proxg, 44, = Proxg, o prox,, ‘

[Combettes-Pesquet, 2007] N =1, go = ¢ of a non-empty
closed convex subset of C' and g; is differentiable at 0 with
1'(0) = 0

[Chaux-Pesquet-Pustelnik,2009] C and gy are separable in the

same basis.
[Yu, 2013][Shi et al., 2017] 9ga2(x) C dga(prox gi(x)).

Other recent results [Pustelnik, Condat, 2017][Yukawa,
Kagami, 2017|[del Aguila Pla, Jaldén, 2017]

34



min ¥(x,e) := f(x) + g1 (x,€) + gs(e)

x,e

PALM = Proximal Alternating Linearized Minimization
[Bolte et al 2014]

Set el e RIEI,

For k e N
Set 4 > 1and ¢y = v, (el

k1] ¢ prox.1 (x[k+1} - 1v,qg (x[k]7e[k]))
Set 7 > landdy = T, (x[k+1})

| el eprox, (e[k+1l — 1Veq (x[k+1}7e[k1))

e Under technical assumptions, convergence of the sequence
(x*], elF) o to a critical point (X,€) of W.

85


https://www.researchgate.net/profile/Jerome-Bolte/publication/257480087_Proximal_alternating_linearized_minimization_for_nonconvex_and_nonsmooth_problems/links/547216f30cf2d67fc035b0c5/Proximal-alternating-linearized-minimization-for-nonconvex-and-nonsmooth-problems.pdf

min ¥(x,e) := f(x) + g1 (x,€) + gs(e)

x,e

SL-PAM = Semi-linearized Proximal Alternating Minimiza-
tion

Set el € RIEl
For ke N
Set 4 > 1and ¢ = v, (el
x[k+1] & pI‘OXLf (XUH_H - évxgl (x[k]ae[k]))

‘k

Set d, > 0
e[k+1] & pI'OXigl(x[kJﬁu")

(W)

+92

e [Foare et al., 2019]
e Under technical assumptions, convergence of the sequence

(x[¥], elk]) cn to a critical point (X, @) of U,
36



Direct model

z = D(AX)

where
e O={1,...,N1} x{1,...,Nao};
e x € RI®l: original image
o A € RMXIQ: linear degradation (e.g. a
blur)
e D: RM — RM: random degradation (e.g.
a Gaussian or Poisson noise)

~

z € RM: degraded image

X and € (red)

Goal: Recover x and its associated contours € from z.

37



Proposed Discrete Mumford-Shah like (D-MS) model

minimize ¥(x, e) := L(Ax;2) + 8]|(1 — e) ® Dx||? + AR(e)

x,e

L(A-;z): data fidelity term;
D € RIEXIQI: models a finite difference operator;

R: favors sparse solution (i.e. “short |K|");
x € RI9: piecewise smooth approximation of z;

e € REl: edges between nodes whose value is 1 when a

contour change is detected and 0 otherwise.

u wy uy 1€1.4

zZ=m [
w us ug | |12 |
K z=m u ug g | (fe=1}
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Proposed Discrete Mumford-Shah like (D-MS) model

minimize ¥(x, e) := L(Ax;z) + B]|(1 — e) ® Dx||* + AR (e)
—— ——

x,e

f(x) g1(x,e) g2(e)

L(A-;z): data fidelity term;
D e REXIQI: models a finite difference operator;

R: favors sparse solution (i.e. “short |K|");

x € RI€l: piecewise smooth approximation of z;

e € RIEl: edges between nodes whose value is 1 when a

contour change is detected and 0 otherwise.

Goal: Identify the assumptions on £ and R to design an
algorithmic scheme with convergence guarantees and fast

to deal with large scale problems. 20



Proposed D-MS and algorithmic solution

minimize ¥(x, e) := L(Ax;z) + B]/(1 — e) @ Dx|> + AR(e)

x,e

e R: favors sparse solution (i.e."“short |K

”
) and convex.

1. Ambrosio-Tortorelli
approximation:

_ 1 _
R(e) = HDe||§+ZHe||§ with >0

8
2. ly-norm: R(e) = |le]1 0.6
0.4 K /'
3. Quadratic /;:
[Foare, Pustelnik, Condat, 2017]
2 0 , ,
R(e) = 3./ max {|€z‘7 ZL} ) 4 05 0 05 1
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Proposed D-MS and algorithmic solution

Proposition [Foare, Pustelnik, Condat, 2017]
For every n € R and v,¢ > 0

. . ull
= o, min [, max (16, )]}
proxvmax{l"y%}(n) sign(n) max{ min ||n|—y, max ( 4e T 41
I. 1
’ — S0
05 o |llI3/4e R
-5
0 —/—
0.2 -0.5 .-~-»:'"«'
0 1
-1 -0.5 0 0.5 1 1 -0.5 0 0.5 1
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Proposed D-MS and algorithmic solution

Proposition [Foare, Pustelnik, Condat, 2019]
We assume that R is separable, i.e,

|E|

(Ve=(ei)i<icp))  R(e) = Zm(ei),

where o; : RIFI —] — 00; +00] with a closed form proximity operator
expression.
Let dx > 0, then

dyel®
prox 1 ey = [ prox__ o, B(Delt)? 4 T2
7 AR+S5(D;) ./ B(Delk)? 4 %k -

28(Dx[*1)2 44,
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=
o
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Data

Ground truth
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TV (Strekalovskiy, Discret AT Quadratic-¢;
Cremers, 2014)  (Foare et al., 2016)

—1

SNR = 24.67 dB SNR = 2242 dB SNR = 23.43 dB SNR = 23.75 dB
SSIM = 0.944 SSIM = 0.855 SSIM = 0.867 SSIM = 0.877
Time = 29.25 s Time = 1.92s Time = 1992s Time = 57.84s
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Convergence PALM versus SL-PALM: ¥ (x4 el¥) w.r.t.

iterations /
200 : :
\ — PALM, d;, = 1.01 8| D
\ SL-PAM, dj, = 1.01 = 3|| D|?
\ -=- SL-PAM, d), = 1.01 % || D||? * 10~*
\ — SL-PAM, d;, = 1.01 % || D||? * 1072

150 ‘\ wn SL-PAM, d;, = 1.01 % 8| D||?> * 1073

0 100 200 300
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Experiments 3

[Le, Foare, Pustelnik, 2022]

6=0.02

6=0.08

L

6=0.1

6=0.2

ana~
. N MY

b2

(a) 0.864 (b) 0.659 (c) 0.572 (d) 0.362
g —PALM-AT (£ \) —PALM-AT (¢ \)
08 £ PALM-£; PALM-£,
E o~ --- Hohm et al. --- Hohm et al.
ool e N - T-ROF T-ROF
e \T
1%
04 b o
0.2 15 N‘-\‘i
2.1072 5-1072 8.1072 0.11 0.14 0.17 02 2.10°2 5-1072 8.107% 0.11 0.14 017 0.2
Jaccard PSNR
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Experiments 4

Ground Truth Data T-ROF BZ DMS-¢ Proposed

PSNR / Jaccard 26.0dB /ND 343 dB/0.068 33.1dB /0.084 30.3dB/0.081 34.2dB/0.101

¥ ¥ 8 V.
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Alternative formulation

(%,€) € Argmin L(Ax,2) + & S 6(Dex) (1 — e0)>+ XX, v(er).
XER‘Q‘
eER‘E‘

|E|
X € Argmin £(Ax,z) + \° Z%\/(Q (¢(Dex)) ,

x€RI€I =1

prox__ (1) if ¢ (Dex) >0,
and e = (é\e)egE with €, = { <2¢(Dﬁ)w

0 otherwise,

where, for every n > 0,

Baealn) = B = prox 3, (D) + Z(prox (D)

CQ

and 0 otherwise.

\ J

[Pustelnik, 2023] 48




Alternative formulation

(%,€) € Argmin L(Ax,2) + & S 6(Dex) (1 — e0)>+ XX, v(er).
XER‘Q‘
eER‘E‘

Reformulation when ¢ = |- | and ¢ = | - |2,

4 € Argmin L£(Ax,2) + & Z‘E‘ ¢A/C2 ((Dex)?),

ueRl
w0 @ proxCZ(DA - (1) if (D¢x)* >0,
€y = yAd
0 otherwise,
where L(2 _ L) if > A
~ 4-2 4-2,7 1 77 4-27
(Vn=0) ¢ér/c2(n) =17 if 0<77<%27
0 if n=0.

[Pustelnik, 2023] 48



Experiments

Original image X

Degraded image z = X + ¢
10*

Dual-GD
—Dual-GP
--Dual-BFGS

Primal-SLPAM-GD
—Primal-SLPAM

’ 05 1 15 2 25 3 35
Primal objective function w.r.t time Estimated contours €
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Nonsmooth nonconvex
optimization: nonlinear operator




Primal-dual algorithm

min ¥(x) := f(Ax) + g(x)

X

e If f is smooth, forward-backward requires A* o V fo A.
e If f is nonsmooth, require the computation of prox;(,.).
@& Few closed form.

e Reformulation in the dual: mixg1 [*(w) + g*(—A*w),
we

50



Conjugate: definition

Let H be a Hilbert space and f: H — ]—o0, +o0].
The conjugate of f is the function f*: H — [—o0, +00]
such that

(VueH)  f*(u)=sup (x| u)— f(x)).

xeH

Bl



Conjugate: definition

Let H be a Hilbert space and f: H — ]—o0, +o0].
The conjugate of f is the function f*: H — [—o0, +00]
such that

(vueH)  f(u)=sup ({x]u)—f(x))

\. J

Examples :

o f=351-1P=f =3I

Proof : For every (x,u) € 12,
(x| u) = 3[ull®> = 3|ul|®> = 3|lu — x||? is maximum at x = u.

Consequently, f*(u) = ||ul|%.
51



Conjugate: definition

Let H be a Hilbert space and f: H — ]—o0, +o0].
The conjugate of f is the function f*: H — [—o0, +00]
such that

(vueH)  f(u)=sup ({x]u)—f(x))

\. J

Examples :

o f=s51-12=f =517

o (WxeRY) f(x)=1 HxHq with ¢ €]1, +o00[
= (Vu e RY) f*(u ) L[ullZ with 2+ L =1

Hil}



Conjugate: definition

Let H be a Hilbert space and f: H — ]—o0, +o0].
The conjugate of f is the function f*: H — [—o0, +00]
such that

(ueH)  fH(u)=sup (x| u)— f(x)).

xeH

Moreau-Fenchel theorem
Let H be a Hilbert space and f: H — ]|—o00,+00] be a
proper function.

fis l.s.c. and convex < f** = f.

Bl




Primal-dual algorithm

min ¥(x) := f(Ax) + g(x)

X

Assumptions: For f € Ty(G) and g € T'o(H).
mxin U(x) := f(Ax) + g(x) = mxinsup ((Ax | u) = f*(u)) + g(x)
u
— maxinf A*u) — f*
maxinf ( (x| A%) — f*(w) + g(x)
— max — f*(u) — g*(~Au)
u

Comment extracted from [Chambolle, Pock, 2016]: Under very mild conditions on f,g
(such as f(0) j & and g continuous at 0 (see e.g. [Ekeland, Témam,1999, (4.21)]; in
finite dimensions it is sufficient to have a point x with both Kx in the relative interior

of domf and x in the relative interior of dom g [Rockafellar 1997, Corollary 31.2.1)],

one can swap the min and sup. 52



Fenchel-Rockafellar duality

Primal problem

Let H and G be two real Hilbert spaces. Let A € B(H,G).
Let f: G = ]—00,400], g: H — |—00, +00].
We want to

. A '
minimise f(Ax) + g(x)

Dual problem

Let H and G be two real Hilbert spaces. Let A € B(H,G).
Let f: G — |—00, +0], g: H — |—00, +0].
We want to

minimise f*(v) 4+ ¢*(—A*v).
veg -




Fenchel-Rockafellar duality

Weak duality

Let H and G be two real Hilbert spaces. Let A € B(H,G).
Let f be a proper fonction from G to |—o0,+00], g be a
proper function from H to |—o0, +00].

= inf f(Ax)+g(x) and p* =inf f*(v) + g*"(—A*v).
xEH veg

We have > —p*. If p € R, p+ p* is the duality gap.
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Fenchel-Rockafellar duality

Weak duality

Let H and G be two real Hilbert spaces. Let A € B(H,G).
Let f be a proper fonction from G to |—o0,+00], g be a
proper function from H to |—o0, +00].

:'f A d *:.f* *_A* .
p=inf f(AX)+g(x) and 1 3I€1gf(v)+9( v)

We have > —p*. If p € R, p+ p* is the duality gap.

Proof: According to Fenchel-Young inequality, for every x € H and
veg,
FAX) +g(x) + f7(v) + g"(=A"v) = (Ax | v) + (x| —A"v) =0
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Fenchel-Rockafellar duality

Strong duality
Let H and G be two real Hilbert spaces. Let A € B(H,G)
Let f € To(G) and g € To(H)

If int(dom f) N A(dom g) # @ or dom f Nint(A(dom g)) #
&, then

p=Inf F(Ax)+g(x) = —min f*(v) + g*(-A'v) = —p".
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Fenchel-Rockafellar duality

Duality theorem
Let H and G be two real Hilbert spaces. Let A € B(H,G).

Let f € I'o(G), g € T'o(H).
e If there exists X € H such that 0 € A*9f(AX) + 9g(X), then

X is a solution to the primal problem. Moreover, there exists
a solution V to the dual problem such that —A*vV € dg(X)
and AX € 9f*(V).

e If there exists (X,V) € H X G such that —A*v € dg(X) and
AX € 9f*(v) then X (resp. V) is a solution to the primal
(resp. dual) problem.

If (X,v) € H x G is such that —A*v € 9g(X) and AX € 9f*(V),
then (X, V) is called a Kuhn-Tucker point.

56




Primal-dual algorithm

min ¥(x) := f(Ax) + g(x)

X

e If f is smooth, forward-backward requires A* o V fo A.
e If f is nonsmooth, require the computation of prox;(,.).
@& Few closed form.

e Reformulation in the dual: mig [*(v) + g"(—=A*v),
ve
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Primal-dual algorithm

min ¥(x) := f(Ax) + g(x)

X

@ Primal-dual algorithms [Chambolle-Pock,2011]

Hyperparameters setting: 7 > 0, v > 0, such that 7y[|A[?> < 1
For k=0,1,...

xlk+1] — prox, (x[k} — TA*V[k])

vl — PrOX., p« (v[k] + ~A(2x[F+1] — x[k]))

58



Toward nonlinear Ax — A(x)

Let  and G be two real Hilbert spaces. Let L € B(H,G).
Let f € L'o(G), g € T'o(H).

minmax g(x) + (Ax | u) — f*(u)

Let H and G be two real Hilbert spaces. Let A € Cl(’H,g).
Let f € T0(G), g € To(H).

minmax g(x) + (A(x) [ u) — f*(u)

J

@ 1st-order optimality conditions for (x,v) [Valkonen,2014]

VAR € 9g(R)
A(x) € 0f*(v)
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Toward nonlinear Ax — A(x)

Let H and G be two real Hilbert spaces. Let A € C1(H,G).
Let f €T0(G), g € Fo(H).

minmax () + (A(x) | w) = /(1)

@ Primal-dual algo. for nonlinear operators [Valkonen, 2014]

Hyperparameters setting: 7 > 0, v > 0 + conditions to satisfy.
For k=0,1,...

xk+1] = prox,, (x[k] - TVA(x[k’])*v[k})

v = Prox. - (VIF] + y(AxH) + W A(xIF)* (2xE+1] — xlE])
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Identifying piecewise affine signal from nonlinear observation

e 7: Timing profile.
e z: Signal provided by FORK-seq.
e A the coordinatewise composition of nonlinear function ¢ that mea-

sures the concentration of BrdU in time.

z~ A(T)
with (V7 = (71,...,7n) € R")  A(7) = (a(71), .-y a(Tn)).
Assumptions: T is in the set of piecewise linear vectors with a maximum

of C' > 0 breakpoints. [Lage, C. et al. 2024]

A Timing profile vl c wlt)

v
\

B Rate of BrdU incorporation
h w y 7 :
Chromossome position in kb Time

Time

Brdu




Identifying piecewise affine signal from nonlinear observation

e 7: Timing profile.

e z: Signal provided by FORK-seq.

e A the coordinatewise composition of nonlinear function ¢ that mea-
sures the concentration of BrdU in time.

2~ A(x)

with (Vx = (z1,...,zn) € R")  A(x) = (a(z1), ..., a(zn)).
Assumptions: x is in the set of piecewise linear vectors with a maximum

of C' > 0 breakpoints.

X := argmin||z — A(x)]|3.
xEPc
with

Pc:={x : ||Dx||, < C} o




Identifying piecewise affine signal from nonlinear observation

/ A f.\ A .r.\ A
: / \ /NN \ PR WA / .

o N - < v V| Vo »7/ v \/
s~ ) N7 \/

0 15 20 25 30 0 5 10 15 20 25 30

0 5 0 15 20 25 30 0 5 10 15 20 25 30 0
Results of Valkonen's algorithm for different initial points.

(Top): different values of x[.
(Bottom): solutions of the Valkonen's algorithm in green. In
orange we observe 2 = A;'(z) and in blue z! = A (2).
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Identifying piecewise affine signal from nonlinear observation

Alternative optimization problem

(x*,d*) = argmin HX_AJI(Z)szuda
{(x,d)ePcx{0,1}"}

with
A3 (@) = (¢g, (21), -, 05, (20)) ER"
and
wyg := (1 —d) ®wo +d® w1, forallie{l,.., n}
and

{so/mol(zi)) 03 (z:) # 2
0
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Identifying piecewise affine signal from nonlinear observation

Alternative optimization problem

(x*,d") ;= argmin [lx = AG'(2)]3,,
{(xd)ePex{0,1}7}

Algorithm
Initialization: D, wo, w1, and Dpast = 0
For d € D
Step 0: Dpast < Dpast U {d}.
Step 1: Solve the optimization problem

" .1
xq = argmin [ © (x — 1), + *Il(l —d) © (x = 20) [l + AlIDX]|1-
Step 2: Extract the optimal x3 for d € Dpast :

(x",d") := argmin F(xq) := ||d®(xd*21)|| +*||(1 d)O(xg—20)1*.
{Xd 9 dEDpast} 65




Identifying piecewise affine signal from nonlinear observation

c
c
14
E
IS
2
T ! x w0 w0 B "

0 0 00 0 n
Chromosome position in kb

(Top) Simulated signals A,B,C,D (black). Approximations of each
signal computed by DNA-inverse (magenta) and Matching
Pursuit (green).

(Bottom) Timing profile obtained via the DNA-inverse
(magenta) compared to ground truth (black). In orange A, (2),

and in blue A;'(2) for each simulated signal .
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Identifying piecewise affine signal from nonlinear observation

0 10 20 30 0 20 30 0 10 20
Chromosome position in kb

(Top) Simulated signals A,B,C,D (black). Approximations of each
signal computed by DNA-inverse (magenta) and Matching
Pursuit (green).

(Bottom) Timing profile obtained via the DNA-inverse
(magenta) compared to ground truth (black). In orange A, (2),

and in blue A;'(2) for each simulated signal .
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Identifying piecewise affine signal from nonlinear observation

08 08 08
0.6 0.6 0.6 160
0.4 04 04 140
02 02 02 120 I
00 0.0 0.0 100
13 2 2 0 o 0 20 w2 0 10 20 BY
8 8 8 0
6 6 6 60
4 4 | a0
2 2 > S 20
IN d
o — N £ oL . 0
o o 10 20 30 0 10 20 30 0 200 400 600

Time in seconds

(Top) Different reads in blue.
(BOttom) Solution XSNA—inverse (magenta) and xzdapted Valkonen
(green) for the different reads.
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Conclusions on nonconvex optimization

@ Extension of subdifferential and proximal operator for nonconvex
case.

@ Allows for convergence to critical points.
@ Sensitivity to initialization.
@ Main challenge: provide good initialization.

@ Linear convergence rate in the non-convex setting ? Performance
diagram 7.

70



Toward deep learning




Data: z
L
’Direct /acquisition model‘ z = D(AX)
1 !

X(z; \) € Argmin f(x;z) + Ag(x)

’Design a cost function‘

L v

’Minimization algorithm‘ Sequence x/"+1 = &x[*]
’Hyperparameter tuning ‘ A€ Arg;nin\\i —X(z;\) H%

Estimated parameters: x(z; X)
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Standard learning and deep learning

Data: z Data: z

L

’ Direct /acquisition model ‘

L

’Design a cost function‘ ¥

l ’ Deep learning procedure

’ Minimization algorithm ‘

!

’ Hyperparameter tuning ‘

L |

~ ~

Estimated parameters: X(z;6) Estimated parameters: X(z;0)
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Context: Image restoration

=) Data: z € RM degraded version of an original image x € R:

z=AX+w

e A ¢ RM*N: Jinear degradation (e.g. a blur)
e w: noise (e.g. Gaussian noise)

SPHERE-IRDIS
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Training a prediction function for a restoration task

@ Database: S = {(z;,%;) € RM xRV | ie{1,...,L}}
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Training a prediction function for a restoration task

@ Database: S = {(z;,%;) € RM xRV | ie{1,...,L}}
We consider two sets of images: the of
size #1 and the of size §J where
(Vi eTUJ) z =A% +w;
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Training a prediction function for a restoration task

@ Database: S = {(z;,%;) € RM xRV | ie{1,...,L}}
We consider two sets of images: the training set (z;,%;);-1 of
size §1 and the testing set (z;,X;);cy of size §J where
(Vi e TUl) z; = AX; + w;

@ Training: A prediction function fg is learned using the
training set:

Oc Argmln ZZ’GH 1% — fo(z:)l?

B

@ Testing: The learned fg is then validated on the testing set.
A properly trained network should satisfy

(Vield) x;=fg(z))
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Variational approach versus Deep learning architecture

Variational approach fg(z;) = Argmin {F(x) = f(Ax,z;) + g(Dx) + Lc<x)}

xeH
© Data fidelity term:  f(A-, z;)
® Prior: g(D-)
©® Constraint set : C

= O = {D, K = #iter}

Deep learning feo(z;) = n!& (WKL pll(Wllz; +p1) . 4 plE)

©® Linear operators: wil , VV[Q]7 RN WK
® Activation functions:  nl!l, 2, 5]
©® Biais vectors: bm, b[2], e bl

= @={whil . wiE pil pE}
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Mixing variational approach and Deep learning architecture

==) Synthesis formulation:

1 —
min §||AD*x —2||2 + A||x||1 |where H = AD* € RV*N

== Forward-backward iterations:

‘ x B = prox, ., (x*¥ — 7H* (Hx[¥) — 2))

== Reformulation:
‘ x [F+1 — prox, ., (I —rH*H)x* + 7H* 2))

== Layer network:

L prox.y ( Id-7HH | x% +| rH )

] Wi bk

76
[Gregor, LeCun, 2010]



Unfolded schemes: Study case on
denoising




D(i)FB algorithm

OBJECTIVE: X = argmin{F(x) = 1|x — 2|3 + g(Dx) + Lc(x)}
x€H
® (' C H is a closed, convex, non-empty.

e D:H — GandgeTo(G)

7



D(i)FB algorithm

4 )

OBJECTIVE: X = argmin{F(x) = 1|x — 2|3 + g(Dx) + Lc(X)}
x€H
® (' C H is a closed, convex, non-empty.

e D:H — GandgeTo(G)

\. J

4 )

ALGORITHM: Let vl € G,
For k=0,1,...

k+1]

ul o (vg)* (v[k} + 1.DPo(z — DTV[k]))

v = (1 4 pulF ] — puld]

= prox

7



D(i)FB algorithm

r

OBJECTIVE: X = argmin{F(x) = 1|x — 2|3 + g(Dx) + Lc(x)}
x€H
® (' C H is a closed, convex, non-empty.
e D:H — GandgeTo(G)

\.

r

AvcoriTHM: Let vl% € G,

For k=0,1,...
ulht1l = PrOX,, (1g)+ (vm + 7DPc(z — DTv[k]))
VT Z (14 pultH - puld

THEOREM: Assume that one of the following conditions is satisfied.
e (DFB):Vk €N, 7, € (0,2/||D||%), and pi = 0.

e (DIFB): Yk €N, 7, € (0,1/|D||3), pr = ’ii;l with ¢, = £2=1 and ¢ > 2.
Then we have X = limj_,o Pc(z — D Tul¥l),

7



(Sc)CP algorithm

OBJECTIVE: X = argmin{F(x) = 1|x — 2|3 + g(Dx) + Lc(x)}
x€H
® (' C H is a closed, convex, non-empty.

e D:H — GandgeTo(G)
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(Sc)CP algorithm

OBJECTIVE: X = argmin{F(x) = 1|x — 2|3 + g(Dx) + Lc(X)}
x€H
® (' C H is a closed, convex, non-empty.

e D:H — GandgeTo(G)

\. J

AvrcoritaM: Let x/% € # and ul® € G.
For k=0,1,...
xtil = Po (ﬁfw (z—DTult) + 1+1ukx[k])

ulF+1 = prox (u[k] + TkD<<1 + oy, )xlF 1] — akx[k]>)

Tk (vg)*
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(Sc)CP algorithm

N

OBJECTIVE: X = argmin{F(x) = 1|x — 2|3 + g(Dx) + Lc(x)}
x€H
® (' C H is a closed, convex, non-empty.
e D:H — GandgeTo(G)

\.

r

AvcoriTHM: Let x[% € # and ul” € G.
For k=0,1,...
xk 1 = pe <1ﬁfjk (z—DTulM) 4 1+1.U/k Xm)
(u¥ + 7D (1 + s — ayxl¥) )

ulF 1 = prox_ ()

THreoRrEM: Assume that one of the following conditions is satisfied.
e (CP): Tk,MkHD”% <1, and aj = 1.
® (SCCP):ap =TT 20 ') fkt1 = Qpli, Thp1 = Teog - with po7ol|D[1% < 1.

Then we have X = limy,_, oo x[¥1. -



S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...
K4 = Po (25 (2 — DTul) + pLox)
ulk+1 = (u[’“] + TkD<(1 + oy )x[EF1 — akxk»

= prox,

k(vg)*

@ S(c)CP: Starting point.
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S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...
K4 = Po (25 (2 — DTul) + pLox)
ulk+1 = (u[’“] + TkD<(1 + oy )x[EF1 — akxk»

= POXr(vg)"

@ S(c)CP: Starting point.
@ Arrow-Hurwicz iterations: oy = 0.
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S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...

1] = Py, (%(ZiDTu[k})Jrﬁx[k])

ulF+1] = PIOX,, (1g)* (u[k] + Tka[H”)

@ S(c)CP: Starting point.
@ Arrow-Hurwicz iterations: oy = 0.
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S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...

1] = Py, (%(ZiDTu[k})Jrﬁx[k])

ulF+1] = PIOX,, (1g)* (u[k] + Tka[H”)

@ S(c)CP: Starting point.
@ Arrow-Hurwicz iterations: oy = 0.
@ DFB: pp — +o00.
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S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...
xk+1 = pg (z— DTu[k])
ulF I = prox, ()« (UM + 7, DxlEH1)

@ S(c)CP: Starting point.
@ Arrow-Hurwicz iterations: o = 0.
@ DFB: pp — +00.
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S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...
xk+1 = pg (z— DTu[k])
ulF I = prox, ()« (UM + 7, DxlEH1)

@ S(c)CP: Starting point.

@ Arrow-Hurwicz iterations: o = 0.
@ DFB: pp — +00.

@ DiFB: Inertia step on the dual variable.
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S(c)CP to D(i)FB

7

OBJECTIVE: X = argmin{F(x) = 1{jx — z[|3 + g(Dx) + Lc(x)}
xeH

\.

4 )

ALGORITHM: For k=0,1,...
xk1 = P (z— DTV[k])
ulk+1 = PrOX,, (1g)+ (u[k’] + Tka[k“])
v[k+1] — (1 + pk)u[k+1] — pku[k]

@ S(c)CP: Starting point.

@& Arrow-Hurwicz iterations: o = 0.

@ DFB: pp — +o00.

@ DiFB: Inertia step on the dual variable.
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Arrow-Hurwicz building block

~

ITERATION: Arrow-Hurwicz iteration can be written as:

LZ7V79kr: HxG —H
(xH w1, 6, 5 p(x, Lo, oo (xH, ulf))

with

Lu,@k,'D,D(X, U) = pl“OX,,_k(Vg)* (Tka + u) ,

1 ok T Kk
L,e x,u) = P¢ X— D u+ z
Z:Ok,7’>7)( ) C <1 «|» ‘L/Jk 1 + ll/k 1 Jr /1,14,'

DEEP LEARNING NOTATION:

fo = nlEI(WEL Wil 4pltly 4 plE)
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Deep Arrow-Hurwicz building block

~

LAYER: Arrow-Hurwicz layer can be written as:

Lz,y,@ki H x g —H
(x[H [F )HLZ,@k,P,’Pb([k], Lek,D,D(X[k]v ulkl),

with

LV@k,D,D(Xv u) = PrOXz, (vg)* (7&Dk,px +u),

1 HE T [k )
L x,u) =P X— Dypu+——2z|,
=0, (% ) ¢ (1 Fur Thpe PP L4,
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HardTanh versus proximity operator of /;

@ Most of activation functions are proximity operator :
ReLU, Unimodal sigmoid, Softmax ...
[Combettes, Pesquet 2020]

Proposition [Le, Pustelnik, Foare 2022]: The proximity operator of
the conjugate of the ¢1-norm scaled by parameter A > 0 fits the

HardTanh activation function, i.e., for every x = (X;)1<i<n:

Prox(y|.f,)* (X) = P .<a(x) = HardTanhy (x) = (pi)1<i<n

where A pr< oA,
Pi=4 A it p; > A,

pi  otherwise.
82


https://pcombet.math.ncsu.edu/svva5.pdf

Deep Arrow-Hurwicz building block + skip connections

1 1
° 1
2 5 1
2 1 Lt g 1
H 1 1 1
- ' ey I '
5 1 -
f | o] I 1
.J: Xk — kDkD PrO%r (vg) (el Po T +1
a : * :
e - T Uk
| e e e e e e e e e e e e —— - )
Lz,
r —————— 1
: : )

Figure 1: Architecture of the proposed DAH-Unified block for the k-th
layer. Inertial step for ScCP (top) and DiFB (bottom). 83



Variations on the proposed architecture

‘ Oy ‘ Comments
DDFB—LFO Dk;p, Dk,D absorb Tk in Dkﬁp

DDFB-LNO | Dip =D/ p | define 7 = 1.99|| Dy 2

84




Variations on the proposed architecture

‘ Ok ‘ Comments
DDFB-LFO Dk;p, Dk,p absorb Tk in Dk,p
DDFB-LNO | Dip =D/ p define 75, = 1.99||Dy || 2
DCP—LFO Dk)p, Dk,Dy 12 learn W= uno =" = UK,

and absorb 7 in Dy p

DCP-LNO Dip = DkT,D, po| learn p=po =+ = pr,
and fix 7, = 0.99#71\|Dk”72

84




Variations on the proposed architecture

‘ Oy ‘ Comments
DDFB-LFO Dk,p, Dk;’p absorb Tk in Dk;’p

DDiFB-LFO Dw,p, Di,p, i fix a;, and absorb 75 in Dy p

DDFB-LNO | Dx,p =D/ p define 7, = 1.99(| Dy || =2

DDiFB-LNO | Dip =D/ p fix o = ’;k:, o = bbo=1,
a>2, and 73, = 0.99||Dy|| >

DCP-LFO Di,p, Di,p, 1 learn pt = po = -+ = px,

and absorb 7, in Dy, p

DCP-LNO Dip =Dip, p | leamn p=po =" = px,
and fix 7, = 0.99p~ || Dy|| 2

84




Variations on the proposed architecture

‘ O ‘ Comments
DDFB-LFO Dw,p, Di,p absorb 7 in Di,p
Di,p, Di,p, i fix a, and absorb 73 in Dy p
DDFB-LNO | Dy» =D} p define 7, = 1.99||Dy|| 2
DDiFB-LNO | Di.p =Dy p fix o = B, gy = b=t
a>2, and 75, = 0.99(|Dy|| 2
DCP-LFO Drp, Do, p learn = po =+ = pxk,

and absorb 7 in Dy p
DScCP-LFO Dw,p, Di,p, 1o learn pp, absorb 7 in Dy p,
and fix a = (14 2us) "2,
and k41 = ik

DCP-LNO Di,p = DkT‘,D' po| learn p=po =--- = pxk,

and fix 7, = 0.99u ! ||Dg [ =2

DScCP-LNO | Dy,p = D;D, k| learn py, and fix ap = (1 + 2;1;?)71/2,
and 7, = 0.99u; ' ||Dy || 2 84




Limit case for deep unfolded NNs

' D

[Le, Repetti, Pustelnik 2023]
We consider the unfolded NNs DD(i)FB and D(Sc)CP. Assume that, for every
ke {l,...,K}, Dyp =D and Dyp» = D', for D: RN — R, In addition,
for each architecture, we further assume that, for every k € {1,..., K},

e DDFB: 71 € (0,2/||D||3).

e DDIFB: 75, € (0,1/|D||%) and px = j*;_: with ¢, = ££2=1 and a > 2.

o DCP: (73, pux) € (0,400)? such that 75| D||E < 1.

e DScCP: ay, = (1 + 2,uk)71/2, k41 = ik, and Tr41 = kaoz,zl with
TopolD[IE < 1.
Then, we have xx — X when K — 400, where xx is the output of either of
the unfolded NNs DD(i)FB or D(Sc)CP, and X is a solution to

1 )
min S [Ix = z[l2 + g(Dx) + v (x).
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Denoising performance

36
34}
32
30 —PSNR noisef |
—DDFB-LFO
28+ — DDFB-LNO
DDiFB-LFO
26 DDiFB-LNO =
—DCP-LFO
24 - DCP-LNO 1
DScCP-LFO
22 - DScCP-LNO
0 5 10 15 20 0 5 10 15 20

Denoising performance.
PSNR (with (K, J) = (20, 64)), for 20 images of BSDS500
validation set, degraded with noise level § = 0.05.
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Denoising performance

Noisy DRUnet DDFB-LNO DScCP-LNO
26.03dB 35.81dB 32.81dB 34.74dB

Denoising performance on Gaussian noise. Example of denoised images (and
PSNR values) for Gaussian noise § = 0.05 obtained with DRUnet and the
proposed DDFB-LNO and DScCP-LNO, with (K, J) = (20, 64).
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Complexity of the models

‘ Time (msec) ‘ |O] ‘ FLOPs (x10% G)
BM3D 13x103 + 317 —~ -
DRUnet 96 + 21 32,640, 960 137.24
LNO DDFB 3+15 34, 560 2.26
DDiFB 3+0.5 34, 560
DDCP 6+1 34, 561
DDScCP 7T+1 34, 580
LFO DDFB 4+17 69,120 2.26
DDiFB 5+15 69,121
DDCP 7T+14 69,121
DDScCP 9+ 15 69, 160
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@ Given an input z and a perturbation ¢, the error on the output

can be upper bounded :

Ife(z+€) — fo(2)| < xllell-
where y certificated of the robustness.

@ [Combettes, Pesquet, 2020]: x can be upper bounded by:

K
x < IT (IWiplls x IWills).
k=1
@ [Pesquet, Repetti, Terris, Wiaux, 2020]: tighter bound by Lipschitz
continuity:
X~ max |7 fo(z,)s-

Zs)sel

where J denotes the Jacobian operator.
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 https://pcombet.math.ncsu.edu/simods1.pdf
 https://arxiv.org/abs/2012.13247

25 .

20 .
15 + 4
10 + F |
N
5 é— +
0 f Q\ + Il Il $ \$ Il + |
> o o o o o o o o
& Q,Q N P CE ST N Y
T § SRS AP A . A
Q SIS, > 9 < S of
F S ¥ F
Distribution of (|| J fo(zs)||s)sey for 100 images extracted from

BSDS500 validation dataset J, for the proposed PNNs and
DRUnet. 90



Plug and play algorithms




PnP based on PNN min f(x) + g(x)

e Variational approach (k — co):

K = pro, (x4 — 4V f(x04)))

e PnP (k — o0):

KU = D(xlH — 47 £ (<))

e Convergence of (x"),cy ensured if denoiser firmly
nonexpansive (i.e. o =1/2).
e Most of the existing denoisers used in PnP do not satisfy this
condition
e Some recent works propose denoisers that can be built to
satisfy this condition ([Hasannasab et al, 2020], [Terris et al,
2020], [Terris et al, 2021]) 91



Bayesian interpretation

e Xx: realization of a random vector X.
e z: realization of a random vector Z.

MAP estimator (Maximum A Posteriori)

Duar(z) € Argmax p(x|z)

p(z]x)p(x)
p(2)

< Dumap(z) € Argmin —logp(z|x) —logp(x)
X —_————— ———
Likelihood Prior

< Dymap(z) € Argmax
X

Assuming z = x + b where b ~ N(0, 02 1),

Duap (Z) = ProX_ |og px (X) 0




MMSE and Tweedie

Assuming that x has been sampled from a prior density px
and that z = x + b where b ~ N(0,%1), then

Dyvse(z) =EX|Z =2z =z + o’V, log pz(z).

e pz is given by a standard convolution between pdfs
bz = pB * PX.-
e Identity was first reported by Robbins in 1956.

e E[X|Z = z] posterori mean (i.e. MMSE estimator, conditional
expectation) of x given z.
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Denoiser versus gradient

Proposition [Gribonval-Nikolova, 2020, Hurault et al. 2023]
Let g,: RY — R is a C? function with Vg, be L,_-Lipschitz with
L, <1

Then, for D, := 1-Vg,, there exists a potential
¢o: RN — (—o00,400], such that prox, is one-to-one and
Dy = prox, .

. L - . . _
Moreover ¢, is Lg:+1—weak|y convex and it can be written ¢, =

bo+ K on Im(D, ) (which is open) for some constant K € R and

| CLD=1(x) — x| i (DL
$a<x>={9“(DU () = 51051 () =x|[* i x & Im(D,)

+o00 otherwise.

Additionally ¢, (x) = go(x).
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Weakly convex

For ¥ : RY — ]—o0,+00] be a proper, l.s.c., M-weakly

convex function with M > 0.
We have, forall (x,y) in RY,

(Vu € 0%(x)) (y — x|u) + ¥(x) — %HX —y|? < ¥(y)}
and, for t € [0, 1],

W(tx+ (1 1)y) < 00 + (1= )W(y) + 5 11— 1)~y

95



PnP: Characterization of the limit point

e Characterization of the limit point as solution to a monotone
inclusion problem i.e.

0 € dfR) + M)

with D = # with @Q non-expansive and M = 2(I1+Q)~! —1
a maximally monotone operators [Terris et al, 2021].

e Characterization of the limit point as solution to a variational
(non-convex) minimisation problem

e Denoiser used in the gradient step ([Laumont et al, 2021],
[Hurault et al, 2021])
e Denoiser used in the proximity step ([Hurault et al, 2022])
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PnP imposing firmly non-expansivity of the denoiser

[Pesquet et al., 2021]

% = 3 IR
(b) Observation (c) prox, g, (d) prox,|. .y
(20.48,0.387) (26.13,0.775) (26.57,0.787
" R ' T Y ” Ry

(a) Groundtruth

(f) RealSN (g) DnCNN (h) Pr(;posed 97
(24.68,0.726) (26.12,0.643) (27.09,0.789)

(e) BM3D
(26.09,0.732)




PnP based on PNN

[Le et al., 2023]

Ground truth Noisy (¢ = 0.015) — 20.11 dB BM3D - 27.10 dB

— e
% S -~

-

Restoration performance.
Restoration example for o = 0.015, with parameters v = 1.99 and 3 chosen optimally




Unfolded proximal schemes with
non-linear operators




Context: Image restoration

=) Data: z € RM degraded version of an original image x € R:

z=AX+w

e A ¢ RM*N: Jinear degradation (e.g. a blur)
e w : noise (e.g. Gaussian noise)

SPHERE-IRDIS
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Context: Image restoration (astronomy context)

e Studying circumstellar environments: crucial for understanding
exoplanets and stellar systems.

e High contrast imagery: high contrast between environment and
host star.

e Instrument: Spectro-Polarimetric High-contrast Exoplanet
REsearch (SPHERE) and its instrument InfraRed Dual Imaging and
Spectrograph (IRDIS) installed on the Very Large Telescope (VLT).

e Direct model:

1
20 =Tj.A <2I“ + 1P cos* (0 — 20 — ’L/Jj)> + &0,

or
3

Zjo = § Vjem Tj,éA Sm + €j,05

m=1
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DeepPDNet for high-contrast recovery

1
@ Analysis formulation: | min §HAX — 2|2 + ||Dx||s
X

@ Condat-Vi iterations:
xlbH = %, — 7 A*(AxIH — z) — rD*ul¥l
1 = prox s (Ul 44D (2xFH — xI4))

@ Reformulation:
xF+t1] = (Id — 7A*A)xlFl — 7D*ul*l + 7A*2
(yD(Id — 27A*A)x*! + (Id — 27yDD*)ul*l + 27yDA*z).

[k+1] —
u PTOX. |3

@ Layer network: [Jiu _Pustelnik, _2021] i
xF T Id — TA"A —7D* I L A
ul ] prox, K [[7D(Id = 27A7A)  1d - 27DD" || [ul| |27y DA"2
l Wkl plk]
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DeepPDNet for high-contrast recovery

fe(z) = n[K] (W[K] e ﬁ[l}(WmZ + bm) R b[m)

@ Network with fixed layer: ® = {D, 7,~}

xlk+11] B I [ 1d—rA*A —p* || [x®* N TA*z
ul | prox, s || YD - 27A*A)  1d - 274DD* || |u® 2ryDA"z |
nl#] Wl plk]
@ Network with variable layers: ® = {Dy, 7, &, }1<k<i
i B [ Id—mATA —mDp ] [x¥ ALz
UUCJA] N prOX’Yk”'HI _’yka (Id — 2TkA*A) Id — QT’ykaDz_ u[k] 2Tk’ykaA*Z
e Wkl blkl

+ specificities for the first and last layers.
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e DDIT: Debris Dlsks Tools library produces synthetic images of
(T I7,6).

o IY. .
coronagraphic data from the SPHERE.

e Different semi-major axis of the disk, inclination, eccentricity,

has been obtained from real observational high-contrast

and ratio between the star and disk intensity.

-.
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e DDIT: Debris Dlsks Tools library produces synthetic images of
(Lo 17, 6)-
e /.. has been obtained from real observational high-contrast

coronagraphic data from the SPHERE.
e Different semi-major axis of the disk, inclination, eccentricity,
and ratio between the star and disk intensity.

e Synthetic dataset — Prescribe blur and Gaussian noise with a

standard deviation of 0.1.

e More realistic dataset — z obtained from RHAPSODIE forward

model.
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DeepPDNet for high-contrast recovery

Original Degraded CV Unfolded CV Unfolded CV Unfolded CV Unfolded CV

Dp=D Dy, Dy, = Wi,V non-| hnear
p

(es- ) i)
O > o Jo

N N N
A < A

“
o

\ /
\
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DeepPDNet for high-contrast recovery

Degraded (1% Unfolded CV

Original (PSF: -) Dy=D

Unfolded CV
Unfolded CV Unfolded CV non-linear
Dy, Dy, = Wi Vi Dy() = Wink (Vi)

105



DeepPDNet for high-contrast recovery

Original Degraded CV Unfolded CV Unfolded CV Unfolded CV Unfolded CV
D,=D D, Dy = Wi Vi non-linear

(PSF:-) Di() = Wi (Vi)

«

# Ay b by Ay '
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DeepPDNet for high-contrast recovery

Degraded (0)% Unfolded CV
Original ( PSE: -) Dy=D

4

4 4 4
> - » »

Unfolded CV
Unfolded CV Unfolded CV non-linear
Dy, Dy = Wi Vi, Di(-) = Wine (Vi)

- 4 4
> > >
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DeepPDNet for high-contrast recovery

45+
;g !
__40¢f
m
218
T 35|
w |° °
o
o CV
30 Unfolded CV D, =D
® Unfolded CV Dy
Unfolded CV Di = WiV
ol ® Unfolded CD non-linear Dy (:) = Wini (Vi) 1
10° 102 10* 10°

# Parameters
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DeepPDNet for high-contrast recovery

45 ' Py
—40Te v
o )
S,
o [ )
235/ ®cy
[l Unfolded CV Dy, = D
® Unfolded CV Dy,
30te Unfolded CV D), = W V4
® Unfolded CD non-linear Dy (-) = Wini(Vi-)
25 ‘ ‘ ‘
10° 102 10* 10°

# Parameters
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Conclusions

@ PnP and unfolded: two frameworks to combine variational
approaches and deep neural network.

@ PnP: convergence guarantees but slow.
@ Unfolded: fast but no convergence guarantees.

@ Proximal unfolded schemes may help to design robust neural
networks.

@ Proximal unfolded NN schemes: good compromise between
number of parameters and performance.

@ More parameters + nonlinear D to achieve better performance
with proximal unfolded schemes . 2
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