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ABSTRACT

This paper investigates the problem of designing a deterministic
system matrix, that is measurement matrix, for sparse recovery.
An efficient greedy algorithm is proposed in order to extractthe
class of sparse signal/image which cannot be reconstructedby ℓ1-
minimization for a fixed system matrix. Based on the polytope
theory, the algorithm provides a geometric interpretationof the re-
covery condition considering the seminal work by Donoho. The
paper presents an additional condition, extending the Fuchs/Tropp
results, in order to deal with noisy measurements. Simulations are
conducted for tomography-like imaging system in which the design
of the system matrix is a difficult task consisting of the selection of
the number of views according to the sparsity degree.

Index Terms— Compressed sampling, polytope theory, greedy
algorithm, tomography.

1. INTRODUCTION

The main goal of compressed sensing is to design a system matrix
A ∈ R

M×N with M < N for which everys-sparse signalsx ∈ R
N

can be recovered from the observationsy = Ax. The sparsity degree
s denotes the number of nonzero components in the signal. The
considered problem may include an additive perturbation that leads
to an observation vectory = Ax+n wheren ∈ R

M . The objective
of designing a system matrix involves to specify the smallest number
M of required observations we need as well as the way to acquire
them (e.g. random sampling or regular sampling). Moreover,we
have to recall that this design will be obviously dependent on the
sparsity degrees and of the signal sizeN .

The classical approach to look for some sufficiently sparse solu-
tion consists to solve:

x̂ ∈ Argmin
x∈RN

‖x‖1 subject to ‖y − Ax‖2 ≤ ǫ, (1)

whereǫ > 0 and theℓ1-norm is formally defined as, for everyx =
(xi)1≤i≤N ∈ R

N , ‖x‖1 =
∑N

i=1 |xi|. Numerous algorithms have
been proposed to solve problem (1) or its Lagrangian formulation
[1, 2, 3, 4]. By making use of theℓ1/ℓ0-equivalence guarantees, the
latest non-smooth convex optimization techniques proposea specific
framework to exactly recover sparse signals byℓ1-minimization.

The main theoretical results about sparse recovery byℓ1-
minimization are briefly recalled below. On the one hand, sufficient
conditions were proposed by:
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• Donoho and Huo [5] with the concept of coherence for a ma-
trix A. This allows us to characterizeℓ1/ℓ0-equivalence and
thus leads tox = x̂,

• Candès et al. [6] through the restricted isometry property
(RIP) ontoA to establish thatx = x̂,

• Fuchs [7] and Tropp [8] using first order necessary condition
and then the subdifferential of theℓ1 norm in order to prove
thatx = x̂.

Note that these sufficient conditions can include robustness to noise.
On the other hand, Donoho gives a necessary and sufficient condi-
tion based on polytope theory [9] to prove thatx = x̂. Its dual
interpretation is known as the null space property.

Apart from the coherence property proposed in [5], these the-
oretical results require NP-hard computations to test their validity.
Normalized random system matrices have been largely studied in
the compressed sensing literature in order to simplify the recovery
conditions. Indeed, such an assumption onto the system matrix en-
ables to control the associated eigenvalue distribution and thus to
obtain an explicit relation between the observation numberM , the
signal/image sizeN , and the sparsity degrees. However, such a
relation does not exist for deterministic matrices such those encoun-
tered in tomography applications. Until now, in order to design the
system matrix for a specific sparsity degree, it seems that most of the
existing works dealing with a deterministic context have introduced
some randomness in their formulation in order to justify thegood
results obtained fromℓ1-minimization [10, 11, 12].

In this work we propose a greedy algorithm based on Donoho
results [9] in order to extract the class of sparse signals which can-
not be reconstructed byℓ1-minimization for a fixed system matrix.
A consequence will be to extract an approximation of the largest
sparsity degrees allowing us to recover everys-sparse vectors by
ℓ1-minimization based on a given deterministic matrixA.

The paper is organized as follows. Section 2 details a greedy
algorithm designed by Dossal et al. [13] which initially considers
neighborly condition of a polytope associated with a randomma-
trix. Section 3 presents the adaptation of this greedy algorithm in
order to deal with a deterministic matrix and details how to extract
the approximation of the sparsity degrees that allows us to recover
everys-sparse signal byℓ1-minimization. The way to integrate ro-
bustness to noise in the sparsity extraction is also presented. Finally,
Section 4 illustrates the performance of the algorithm in a context of
tomography.



2. POLYTOPE THEORY FOR SPARSE RECOVERY

2.1. Theoretical results

In [9], Donoho describes theℓ1/ℓ0-equivalence by considering ideas
from the convex polytope theory. In this work, Donoho introduced a
necessary and sufficient condition based on the neighborly property
of a polytope.

Definition 2.1 For everyi ∈ {1, . . . , N}, letai denote thei-th col-
umn ofA. The quotient polytope associate toA is formed by taking
the convex hull of the2N points (±ai) in R

M . A polytopeP is
called (s-1)-neighborly if every subset ofs elements(±iℓaiℓ)

s
ℓ=1

are the vertices of a face ofP .

An illustration of a polytopeP is provided in Figure 1(a) for
N = 3 andM = 2. In this example, it appears thatP has2N = 6
vertices and is0-neighborly but not1-neighborly (e.g. (a1, a3) does
not span a face ofP ).

Theorem 2.2 [9, Theorem 1] Let A be a M ×N matrix with M <
N . These two properties of A are equivalent:
(i) The quotient polytope P has 2N vertices and is (s-1)-neighborly;
(ii) Whenever y = Ax has a solution x having at most s nonzeros,
x is the unique optimal solution of the ℓ1-minimization problem.

2.2. Greedy algorithm to extract vectors inside the polytope for
random matrices

The geometric interpretation of Donoho was considered by Dossal
et al. [13], in a context of normalized random matrices, in order to
extract non-ℓ1-identifiable vectors.

Regarding Theorem 2.2, a non-ℓ1-identifiable vector denotes a
vectorx ∈ R

N with a supportI for which the image of theℓ1-ball
associated to the supportI is inside the polytope. In other words,
non-ℓ1-identifiable vectors have a small distance from the center
of the polytope to the hyperplaneHx (hyperplane going through
{sign(xi)ai}i∈I whereI ⊂ {1, . . . , N}). This distance [13, Propo-
sition 1], illustrated in Figure 1(b), is1/Dx where

Dx = ‖d(x)‖2 with

{
d(x) = AI(A

∗
IAI)

−1 sign(xI),

AI = (ai)i∈I .

In Figure 1(b), we can notice that(a1,−a2) does not span a face of
P and has a largeDx while (a1,a2) spans a face ofP and has a
smaller value ofDx.

It results that looking for non-ℓ1-identifiable vectors leads to
search vectorsx with the largest measureDx. Consequently, Dos-
sal et al. [13] have proposed an algorithm allowing to extract sparse
vectors with the largestDx.

The greedy algorithm proposed by Dossal et al. [13] is recalled
in Algorithm 1 and the associated complexity is evaluated inPropo-
sition 2.3.

Algorithm 1 constructs a set ofs-sparse vectors with the largest
Dx values. At each iteration, the new set of non-identifiablek-sparse
vectorsΣ(k)

max is built from the previous vector setΣ(k−1)
max (e.g. set of

vectors with a sparsity degreek − 1). It results that each step looks
for thek-sparse vectors̃x such that̃x = x + o∆i wherex denotes
a (k-1)-sparse vector fromΣ(k−1)

max , o ∈ {−1,+1} and∆i is a Dirac
vector at the locationi. In Algorithm 1, the notationargmax[R]

(resp.argmax[Q]) involves to keep theR indexes and signum which

lead to the maximum‖d(x+o∆i)‖2 (resp. theQ vectors which lead
to the maximum‖d(x)‖2).

Algorithm 1 [13] - Extract sparse vectors with the largeDx.
Set the pruning rateQ and the extension rateR,
Set the sparsity degreeS,
SetΣ(1)

max = {∆1, . . . ,∆N},
Fork = 2, . . . , S

Σmax = ∅,

For everyx ∈ Σ
(k−1)
max

(Î, Ô) = argmax[R]

i/∈I(x);o∈{−1,+1}

‖d(x+ o∆i)‖2

For j ∈ {1, . . . , R}

⌊ Σmax = Σmax ∪ {x+ Ôj∆Îj
}

Set Σ
(k)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 2.3 The iteration complexity of Algorithm 1 is

O
(
2Q(N − k + 1)(N(k + 1) + k3)

)
≪ O(CN

k ).

Regarding Proposition 2.3, it appears that the computational cost
of each iteration is too high to be used in real experiments. However,
it is possible to write [13, Proposition 4]:

‖d(x̃)‖22 = ‖d(x)‖22 + ‖ãi‖
2
2| 〈d(x), ai〉 − o|2 (2)

wherex denotes ak-sparse vector with the supportI , o ∈ {−1,+1},
x̃ denotes a (k+1)-sparse vector with the supportI ∪ {i}, and
ãi ∈ Span (aj , j ∈ I ∪ {i}) such that〈ãi, ai〉 = 1, and, for every
j ∈ I , 〈ãi, aj〉 = 0. Note that〈·, ·〉 denotes the scalar product. An
illustration of ãi is given in Figure 1(c). An accelerated version of
Algorithm 1 for random matrices was proposed in [13] by making
the assumption that‖ãi‖2 is close to 1. In the next section, we refer
to this accelerated version by Algorithm 1bis.

3. EVALUATE SPARSITY IN A DETERMINISTIC
CONTEXT

In some real applications such as tomographic imaging, the inversion
problem issue does not involve a random system matrix. Thus,an in-
teresting question is how to get such an efficient algorithm consider-
ing a deterministic matrix. Moreover, it can be noticed thatthe poly-
tope theory proposed by Donoho is not adapted to the noisy case.
Another natural question is how to introduce robustness to noise. In
this section, an adaptation of Algorithm 1 in a deterministic context
is proposed and the noisy case is handled via the derivation of a new
criterion based on Fuchs/Tropp theorems [7, 8] .

3.1. Adaptation of Algorithm 1 to deterministic matrices

For deterministic matrices, the accelerated version of Algorithm 1
can no longer be used due to the fact that‖ãi‖2 cannot be discarded.
However, in order to reduce the computational cost of Algorithm 1
(stated in Proposition 2.3), we consider Equation (2) and give the
closed form of‖ãi‖2.

Proposition 3.1 Let ãi ∈ Span (aj , j ∈ I ∪ {i}) and such that
〈ãi, ai〉 = 1 and 〈ãi, aj〉 = 0, for every j ∈ I . It results that

ãi =
ai − AI(A

∗
IAI)

−1A∗
Iai

〈ai, ai − AI(A∗
IAI)−1A∗

Iai〉
. (3)
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Fig. 1. Illustration relative to the polytope formed by taking theconvex hull of the2N points(±ai) in R
M .

The computation ofd(x̃) can thus be expressed as a function
of d(x) and ãi. For each sparsity degreek in Algorithm 1, this
expression leads to the computation ofQ matrix inversions of size
(k− 1)× (k− 1) rather thanQ× (N − k) matrix inversions of size
k × k. The proposed algorithm is detailled in Algorithm 2 and the
associated computational cost is specified in Proposition 3.2.

Algorithm 2 Accelerated version of Algorithm 1 for deterministic
matrices.

Set the pruning rateQ and the extension rateR,
Set the sparsity degrees,
SetΣ(1)

max = {∆1, . . . ,∆N},
Fork = 2, . . . , s

Σmax = ∅,

For everyx ∈ Σ
(k−1)
max

Compute the matrix inversion involved in (3)
(Î, Ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖
2
2| 〈d(x), ai〉 − o|2

For j ∈ {1, . . . , R}

⌊ Σmax = Σmax ∪ {x+ Ôj∆Îj
}

Set Σ
(k)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 3.2 The iteration complexity of Algorithm 2 is

O
(
Q(N(k − 1) + (k − 1)3) + 2Q(N − (k − 1))(N(k + 4))

)

≪ O
(
2Q(N − k + 1)(N(k + 1) + k3)

)

In Figure 2, we compare the original algorithm (Algorithm 1),
the accelerated version of this algorithm designed for random matri-
ces (Algorithm 1bis), and the proposed accelerated versiondevoted
to the deterministic matrices (Algorithm 2). The evaluation of the
proposed algorithm is presented both in a context of random matrix
and of tomography, i.e.A denotes either a Radon transform (this
matrix is obtained with the MATLAB implementation of the Radon
transform) whereN = 20 × 20 andM = 198 (that corresponds to
4 angles) or a random matrix of the same size. We compare these
algorithms in terms of computation time and of maximum extracted
Dx values. The pruning rateQ and the extension rateR are fixed
to Q = N andR = 1. It appears that in a deterministic con-
text (bottom figures), the extraction performances (i.e. find sparse
vectors with largeDx) of Algorithm 2 are similar to those of Al-
gorithm 1 with a much better convergence rate while the extraction

performance are better than the accelerated version considering Al-
gorithm 1bis. However, note that in a random context (top figures),
the proposed approach leads to smaller improvements. To sumup,
these results illustrate the relevance of the proposed algorithm in or-
der to easily handle deterministic matrices with higher dimensional-
ity.

3.2. Extract sparsity with Algorithm 2

Considering the tomography-like experiment detailed above, we
present in Figure 3 the reconstruction results obtained byℓ1-
minimization for vectors with largeDx considering different spar-
sity degrees (i.e. vectors inΣ(k)

max). We also present the obtained
reconstruction vectors with smallDx that require to compute the
“minimum version of Algorithm 2” (i.e. vectors choose inΣ(k)

min).
In these experiments theℓ1-minimization algorithm is FISTA [3]
and the stopping criterion takes in consideration the evolution of the
relative error betweenx and x̂ (< 10−10) as well as the iteration
number (< 106).

Algorithm 2 allows us to extractk-sparse vectors with the largest
value ofDx. It results that if the vectorx ∈ Σ

(k)
max having the largest

Dx value cannot be recovered byℓ1-minimization,a good approxi-
mation of the sparsity degrees for which every s-sparse vectors
can be reconstructed byℓ1-minimization from z = Ax is the
largests < k.

3.3. Noisy case

We have mentionned in the introduction that Fuchs [7] and also
Tropp [8] proposed a sufficient condition in order to recoversparse
vectors byℓ1-minimization. Contrary to Theorem 2.2, this condi-
tion is not a necessary condition but it has the nice propertythat it
can be extended in order to take into account the robustness w.r.t
noise. Here, we propose a new result inspired by Fuchs/Troppresult
which allows us to easily control the reconstruction error in the noisy
case.

Proposition 3.3 Let I ⊂ {1, . . . , N} denote a set of index such that
|I | = s and let J = {1, . . . , N} \ I . Let

ERC(I) = max
j∈J

‖(A∗
IAI)

−1A∗
Iaj‖1. (4)

We assume that:
1) ERC(I) < 1,



2) γ >
maxj∈J ‖aj‖2‖n‖2

1−ERC(I)
.

Then, it results that the support of the solution x̂ of

argmin
x∈RN

1

2
‖y − Ax‖22 + γ‖x‖1, (5)

is included in the support of x and

‖x̂− x‖2

≤
(
λmin(A

∗
IAI)

)−1

(
‖A∗

In‖2 +

√
|I |maxj∈J ‖aj‖2‖n‖2

1− ERC(I)

)
.

4. EXPERIMENTAL RESULTS

We consider a problem of few angle tomography for sparse data.
It appears that some industrial materials which requires tobe stud-
ied through a tomographic process exhibit sparsity properties. The
goal of this experiment is to design the system matrix (i.e. find the
adapted number of views) according to a given sparsity degree.

The system matrixA is associated to a Radon tranform. The
MATLAB implementation makes it possible to select the number
and the location of the polar angles (between0o and180o). In this
experiment we fix the angle between two views. The experiments
have been held for images of sizeN = 32 × 32. Algorithm 2 is
successively employed with a system matrix associated to 6 view
angles (M = 294), 9 view angles (M = 441), and 12 view angles
(M = 588). Moreover, due to the positivity of the data,o = +1 in
Algorithm 2.

In Table 1, we evaluate the sparsity degree allowing us to recover
every sparse vectors. The first row details the state-of-the-art results
related to the coherence [7] such that:

s <
1

2

(
1 +

1

µ(A)

)
where µ(A) = max

< ai, aj >

‖ai‖22‖aj‖22
.

The second row presents the approximated value of the sparsity de-
gree extracted by considering the proposed approach described in
Section 3.2.

In Table 2, we evaluate the sparsity degree allowing us to recover
every sparse vectors in the noisy case. We have filled in the table in
considering Proposition 3.3 whereI denotes the support of the vec-
tor x ∈ Σ

(s)
max, extracted with Algorithm 2, with the largestDx. The

values of‖A∗
In‖2 and‖n‖2 are obtained by a Monte-Carlo process

with 100 realizations of a vectorn ∼ N (0, σ2). The robustness
to noise expressed by Proposition 3.3 requires to insure theconver-
gence inside the support. This is a strong condition and it explains
why the extracted sparsity is small compare to the results presented
in Table 1.

5. CONCLUSION

We propose an efficient method to upper bound the sparsity de-
grees for which everys-sparse vectors can be reconstructed byℓ1-
minimization according to a specific system matrix. Such a value is
important to know in a context where we want to be sure thatℓ1-
minimization leads to the exact true sparse solution or, in presence
of noise, to a solution for which we control the error.

Note that the proposed method does not directly give a relation
between the sparsity and the size of the matrix but one might con-
struct it by considering system matricesA with different sizes.

In a future work, a parallel implementation will be done in order
to extract the sparsity degree for real tomography matrices. More-
over, we should notice that this approach can be considered for var-
ious contexts in inverse problems such as restoration or inpainting,
and also in the case whereAmodels the product of the system matrix
with a frame transform.
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6 views 9 views 12 views
(M = 294) (M = 441) (M = 588)

Sparsity
(Coherence) 2 3 5

Sparsity
(Proposed method) 39 120 144

Table 1. Sparsitys allowing us to recover everys-sparse vectors
by ℓ1-minimization in the absence of noise consideration. The sec-
ond row presents the approximation of the sparsity obtainedwith the
proposed approach. Results for three different configurations of the
tomography-like matrixA.
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Fig. 2. Algorihm 1 (solid black), Algorithm 1bis (dash-dotted blue), Algorithm 2 (dash-dotted red). The bottom figures present the results
obtained with a tomography-like matrix while the top figuresillustrate the results for a normalized random matrix.
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Fig. 3. Reconstruction results fromz = Ax for sparse vectors withs = 5, s = 10, ands = 50 extracted with Algorithm 2 (1-3 columns) or
with the “minimum version of Algorithm 2” (4-6 columns).

6 views 9 views 12 views
(M = 294) (M = 441) (M = 588)

Error =0
σ2 = 0 11 12 12

Error≤ 10−5

σ2 = 10−4 8 10 10
Error≤ 10−1

σ2 = 10−2 8 10 10

Table 2. Sparsitys allowing us to recover everys-sparse vectors byℓ1-minimization with noise consideration and thus Fuchs/Tropp criterion.
Results for three different configurations of the tomography-like matrixA.


