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ABSTRACT e Donoho and Huo [5] with the concept of coherence for a ma-
trix A. This allows us to characteriZe /¢y-equivalence and

This paper investigates the problem of designing a detéstiin thus leads t@ — 7.

system matrix, that is measurement matrix, for sparse ezgov
An efficient greedy algorithm is proposed in order to extriue
class of sparse signal/image which cannot be reconstrimte-
minimization for a fixed system matrix. Based on the polytope
theory, the algorithm provides a geometric interpretatibthe re-
covery condition considering the seminal work by Donoho.e Th
paper presents an additional condition, extending the $fliobpp
results, in order to deal with noisy measurements. Sirmaniatare
conducted for tomography-like imaging system in which tkesign

of the system matrix is a difficult task consisting of the st of ~ Note that these sufficient conditions can include robusti@soise.
the number of views according to the sparsity degree. On the other hand, Donoho gives a necessary and sufficiedt-con

tion based on polytope theory [9] to prove that= Z. Its dual

|r_1dex Terms— Compressed sampling, polytope theory, greeolyinterpretation is known as the null space property.
algorithm, tomography.

e Candes et al. [6] through the restricted isometry property
(RIP) ontoA to establish that = z,

e Fuchs [7] and Tropp [8] using first order necessary condition
and then the subdifferential of tile norm in order to prove
thatz = 7.

Apart from the coherence property proposed in [5], these the
oretical results require NP-hard computations to test tvedidity.
Normalized random system matrices have been largely studie

The main goal of compressed sensing is to design a systerixmatrthe compressed sensing literature in order to simplify deovery
A€ RM*N with M < N for which everys-sparse signaig € R conditions. Indeed, such an assumption onto the systenixneaitr

i or - ables to control the associated eigenvalue distributiahthos to
can be recovered from the observatigns Az. The sparsity degree : o ; .
. . abtain an explicit relation between the observation numyerthe
s denotes the number of nonzero components in the signal. Thg

. . " . ignal/image sizeV, and the sparsity degree However, such a
considered prqblem may |ncEJde an additive pg\e/lrturbatlapléqu relation does not exist for deterministic matrices sucls¢hencoun-
to an observation vecter = A% + n wheren € R™. The objective

of designing a system matrix involves to specify the smatiamber tered in tomography applications. Until now, in order toigaghe

M of required observations we need as well as the way to ac ui%ystem matrix for a specific sparsity degree, it seems that aithe
q ; ; y q xisting works dealing with a deterministic context havieaduced
them (e.g. random sampling or regular sampling). Moreower,

. - . : some randomness in their formulation in order to justify go®d
have Fo recall that this deS|.gn WI||. be obviously dependanttte results obtained frorf -minimization [10, 11, 12].
sparsity degree and of the signal sizéV.

1. INTRODUCTION

The classical approach to look for some sufficiently spante s In this work we propose a greedy algorithm based on Donoho
tion consists to solve: results [9] in order to extract the class of sparse signaisiwtan-
not be reconstructed bdt-minimization for a fixed system matrix.
Z € Argmin ||z|1 subjectto |y — Az|2 <, (1) A consequence will be to extract an approximation of thedsrg
z€RN sparsity degree allowing us to recover every-sparse vectors by

. ) /1-minimization based on a given deterministic matfix
wheree > 0 and thel;-norm is formally defined as, for every = ! 9

(z)1<i<n € RY, ||z|li = XN, |2:|. Numerous algorithms have The paper is organized as follows. Section 2 details a greedy
been proposed to solve problem (1) or its Lagrangian fortiuria ~ @lgorithm designed by Dossal et al. [13] which initially stfers
[1, 2, 3, 4]. By making use of th& /¢;-equivalence guarantees, the n(_alghborly condition of a polytope a_ssomate_d with a rgndnm
latest non-smooth convex optimization techniques propageecific ~ {rix. Section 3 presents the adaptation of this greedy #fgarin
framework to exacﬂy recover sparse signalgbyninimization. order to deal W|th a detel’mlnIS.tIC matrix and details howxtraect

The main theoretical results about sparse recovery/py the approximation of the sparsity degrethat allows us to recover

minimization are briefly recalled below. On the one handfisient ~ €verys-sparse signal by,-minimization. The way to integrate ro-
conditions were proposed by: bustness to noise in the sparsity extraction is also predefinally,

Section 4 illustrates the performance of the algorithm iomtext of
This work was supported by grant from TOTAL SA. tomography.




2. POLYTOPE THEORY FOR SPARSE RECOVERY

2.1. Theoretical results

In [9], Donoho describes thg /¢o-equivalence by considering ideas
from the convex polytope theory. In this work, Donoho intiodd a
necessary and sufficient condition based on the neighboolyepty
of a polytope.

Definition 2.1 For everyi € {1,..., N}, leta; denote the-th col-
umn of A. The quotient polytope associateAads formed by taking
the convex hull of theN points (£a;) in R*. A polytope P is

called (s-1)-neighborly if every subset of elements(+;,a:,)7—1

are the vertices of a face &f.

An illustration of a polytopeP is provided in Figure 1(a) for
N =3 andM = 2. In this example, it appears th&thas2N = 6
vertices and i®-neighborly but nofi-neighborly (e.g. 41, as) does
not span a face aP).

Theorem 2.2 [9, Theorem 1] Let Abea M x N matrixwith M <
N. These two properties of A are equivalent:

(i) The quotient polytope P has 2N verticesand is (s-1)-neighborly;
(ii) Whenever y = Ax has a solution Z having at most s nonzeros,
T isthe unique optimal solution of the £ -minimization problem.

2.2. Greedy algorithm to extract vectors inside the polytop for
random matrices

The geometric interpretation of Donoho was considered bgsBio
et al. [13], in a context of normalized random matrices, idevrto
extract noné; -identifiable vectors.

Regarding Theorem 2.2, a ndp-identifiable vector denotes a
vectorz € RY with a support for which the image of thé; -ball
associated to the suppaftis inside the polytope. In other words,

lead to the maximunfjd(xz+o0A;)||2 (resp. theQ vectors which lead
to the maximum|d(z)||2).

Algorithm 1 [13] - Extract sparse vectors with the larfs.
Set the pruning rat€ and the extension ratg,
Set the sparsity degreg
Sethﬁ;x = {Al, Ceey AN},
Fork=2,...,8
Smax = 0,
For everyz € S0
arg max!

(i7 O) =
i¢I(x);0e{—1,+1}
Forj e {1,...,R}
L imax = imax U {l’ + OJAiJ}
Set =0, = argmax(?||d(x)|2
TE€Tmax

[d(z + 0Ai)|[2

Proposition 2.3 Theiteration complexity of Algorithm 1is
O(2Q(N — k+1)(N(k+ 1) + k%)) < O(CY).

Regarding Proposition 2.3, it appears that the computaitimrst
of each iteration is too high to be used in real experimentsvéver,
it is possible to write [13, Proposition 4]:

I1d@)|13 = lld(2)]13 + I[as]13| (d(2), ai) — of @)

wherez denotes &-sparse vector with the suppdrto € {—1, +1},

Z denotes aK+1)-sparse vector with the suppaftU {:¢}, and
a; € Span (a;,j € I U{i}) such that(a;,a;) = 1, and, for every

j € I, (a;,a;) = 0. Note that(-, -) denotes the scalar product. An
illustration of a; is given in Figure 1(c). An accelerated version of
Algorithm 1 for random matrices was proposed in [13] by mgkin
the assumption thalfa; || is close to 1. In the next section, we refer
to this accelerated version by Algorithm 1bis.

non+1-identifiable vectors have a small distance from the center

of the polytope to the hyperplar®. (hyperplane going through
{sign(z;)a;}icr wherel C {1,..., N}). This distance [13, Propo-
sition 1], illustrated in Figure 1(b), is/D, where

D, = |ld(z)]> with {d(x) = Ar(AjAD ™ sign(x1),

Ar = (ai)iel-
In Figure 1(b), we can notice th&t1, —a2) does not span a face of
P and has a larg®,, while (a1, a2) spans a face aP and has a
smaller value oD,

It results that looking for nor -identifiable vectors leads to
search vectors with the largest measurP,. Consequently, Dos-
sal et al. [13] have proposed an algorithm allowing to extsparse
vectors with the largesb,,..

The greedy algorithm proposed by Dossal et al. [13] is redall
in Algorithm 1 and the associated complexity is evaluateBrnopo-
sition 2.3.

Algorithm 1 constructs a set gfsparse vectors with the largest
D, values. At each iteration, the new set of non-identifigbiparse
vectorse (), is built from the previous vector D (e.g. setof
vectors with a sparsity degrée— 1). It results that each step looks
for the k-sparse vectors such thatt = = + oA; wherex denotes
a (k-1)-sparse vector from¥n, o € {-1,+1} andA; is a Dirac
vector at the locationi. In Algorithm 1, the notatiorarg max!*!
(resp.arg max[®!) involves to keep thé& indexes and signum which

3. EVALUATE SPARSITY IN A DETERMINISTIC
CONTEXT

In some real applications such as tomographic imagingntrexsion
problem issue does not involve a random system matrix. Tanis-
teresting question is how to get such an efficient algoritbms@er-

ing a deterministic matrix. Moreover, it can be noticed thatpoly-
tope theory proposed by Donoho is not adapted to the nois. cas
Another natural question is how to introduce robustnes®isen In
this section, an adaptation of Algorithm 1 in a determigistintext

is proposed and the noisy case is handled via the derivatiamew
criterion based on Fuchs/Tropp theorems [7, 8] .

3.1. Adaptation of Algorithm 1 to deterministic matrices

For deterministic matrices, the accelerated version obAfgm 1
can no longer be used due to the fact fiaf|» cannot be discarded.
However, in order to reduce the computational cost of Attponi 1
(stated in Proposition 2.3), we consider Equation (2) ane ¢fie
closed form of||a;||2.

Proposition 3.1 Let a; € Span(a;,j € I U {i}) and such that

(@ai,a;) = 1and (a;,a;) =0, for every j € I. It resultsthat
a; — A[(A?A[)_IA;G,Z'

<CL¢, a; — A[(A?A[)flA}CLZ') ’

a; =

@)
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Fig. 1. lllustration relative to the polytope formed by taking ttenvex hull of the2 N points(+a;) in R™.

The computation ofi(Z) can thus be expressed as a functionperformance are better than the accelerated version esimsidAl-
of d(z) anda;. For each sparsity degréein Algorithm 1, this  gorithm 1bis. However, note that in a random context (toprégy
expression leads to the computation(@fmatrix inversions of size the proposed approach leads to smaller improvements. Taugyum
(k—1) x (k—1) rather tharQ x (N — k) matrix inversions of size these results illustrate the relevance of the proposeditiigoin or-

k x k. The proposed algorithm is detailled in Algorithm 2 and the der to easily handle deterministic matrices with higheretisional-
associated computational cost is specified in Propositian 3 ity.

Algorithm 2 Accelerated version of Algorithm 1 for deterministic 3.2. Extract sparsity with Algorithm 2
matrices.
Set the pruning rat€ and the extension rate,
Set the sparsity degree

Setzﬁrﬂx = {Al, .. .,AN},

Considering the tomography-like experiment detailed abowve

present in Figure 3 the reconstruction results obtained/{fy
minimization for vectors with larg®,, considering different spar-
Fork — 2. s sity degrees (i.e. vectors mﬁfgx). We also present the obtained
= L reconstruction vectors with smalp, that require to compute the
(k)

Ymax = 07 . . . .
Foraeveryx e nt-1) “minimum version of Algorithm 2” (i.e. vectors choose ;)
max

o P ; In these experiments th@ -minimization algorithm is FISTA [3]
Cjorgpuie the mat[rgf mc\l/ersn:;n |nv~olv2ed (Iin 3) 9 and the stopping criterion takes in consideration the e¢iaiwof the
(1,0) = arg max™ ||d(z) |2 + [[a:]|2] (d(2), a:) — ol relative error betweel andZ (< 107'°) as well as the iteration

i¢I(x);

oe{~1,41} number & 10°).
Forj e {1,...,R}
| Tmax = Bmax U {z + O;A fj} Algorithm 2 allows us to extradt-sparse vectors with the largest
Set o). = arg max!?||d(z)]|2 value ofD,. It results that if the vectar € ©¥), having the largest
L € max D, value cannot be recovered By-minimization,a good approxi-
mation of the sparsity degrees for which every s-sparse vectors
can be reconstructed by/;-minimization from z = Az is the
Proposition 3.2 Theiteration complexity of Algorithm2 is largest s < k.

OQIN(k=1)+ (k= 1)°) +2Q(N = (k= 1))(N(k+4))) 33 Noisy case

3
< O(2Q(N —k+DIN(E+1) +k )) We have mentionned in the introduction that Fuchs [7] and als
In Figure 2, we compare the original algorithm (Algorithm 1) Tropp [8] proposed a sufficient condition in order to recosparse

the accelerated version of this algorithm designed foreanchatri- ~ Vectors by/i-minimization. Contrary to Theorem 2.2, this condi-

ces (Algorithm 1bis), and the proposed accelerated vedsented 10N is not a necessary condition but it has the nice proptéwy it
to the deterministic matrices (Algorithm 2). The evaluatiaf the ~ €@n be extended in order to take into account the robustnggs w

proposed algorithm is presented both in a context of randammixn ~ NOiSe. Here, we propose a new result inspired by Fuchs/Thept
and of tomography, i.e.A denotes either a Radon transform (this which allows us to easily control the reconstruction erndhie noisy
matrix is obtained with the MATLAB implementation of the Rad ~ Case.

transform) wheréV = 20 x 20 and M = 198 (that corresponds to

4 angles) or a random matrix of the same size. We compare the§yoposition 3.3 Let I C {1,..., N} denote a set of index such that
algorithms in terms of computation time and of maximum estedl || = sandlet J = {1,...,N}\ I . Let

D, values. The pruning ratg and the extension rat® are fixed . 1

toQ = N andR = 1. It appears that in a deterministic con- ERC(I) = 1;133<|\(A1A1) Alaj|r. 4

text (bottom figures), the extraction performances (i.ed fparse
vectors with largeD,) of Algorithm 2 are similar to those of Al- e assume that:
gorithm 1 with a much better convergence rate while the etitm 1) ERC(I) < 1,



max;c g [lajllzllnll2

2) v > 1-ERC(I)  °
Then, it results that the support of the solution z of

arg min

1 2
in o fly — Azlz + vzl
zeR

®)

In a future work, a parallel implementation will be done iler
to extract the sparsity degree for real tomography matritésre-
over, we should notice that this approach can be consideredhf-
ious contexts in inverse problems such as restoration @intipg,
and also in the case whefemodels the product of the system matrix

with a frame transform.

isincluded in the support of 7 and

& —Zll2 [1]
] Imasses llagl s
< min A*A ! A* | J J .
4. EXPERIMENTAL RESULTS 3]

We consider a problem of few angle tomography for sparse. data
It appears that some industrial materials which requirdsetstud- [4]
ied through a tomographic process exhibit sparsity pragertThe
goal of this experiment is to design the system matrix (i.ed the
adapted number of views) according to a given sparsity éegre

The system matrixA is associated to a Radon tranform. The
MATLAB implementation makes it possible to select the numbe [6]
and the location of the polar angles (betw&8rand 180°). In this
experiment we fix the angle between two views. The experignent
have been held for images of si2é = 32 x 32. Algorithm 2 is
successively employed with a system matrix associated te\8 v
angles (1 = 294), 9 view angles i/ = 441), and 12 view angles
(M = 588). Moreover, due to the positivity of the data—= +1 in
Algorithm 2.

In Table 1, we evaluate the sparsity degree allowing us wEc g
every sparse vectors. The first row details the state-ehtheesults
related to the coherence [7] such that:

(5]

[7]
(8]

[10]
1 1 < ai,a; >
—(14+ ——=) wher A) = max — 52—
o< g (1 agy) where w(4) = max
[11]
The second row presents the approximated value of the gpdesi
gree extracted by considering the proposed approach Hedcin
Section 3.2.

In Table 2, we evaluate the sparsity degree allowing us tvesc [12]
every sparse vectors in the noisy case. We have filled in tite ta
considering Proposition 3.3 whefedenotes the support of the vec-
torz € E,(,f;x, extracted with Algorithm 2, with the large®t,. The [13]

values of||A7n||2 and||n||. are obtained by a Monte-Carlo process
with 100 realizations of a vectar ~ A(0,5%). The robustness
to noise expressed by Proposition 3.3 requires to insuredheer-
gence inside the support. This is a strong condition andplaéxs
why the extracted sparsity is small compare to the resuéisqmted
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in Table 1.

5. CONCLUSION

We propose an efficient method to upper bound the sparsity de-
grees for which everys-sparse vectors can be reconstructed by

6 views 9 views 12 views
(M =294) | (M =441) | (M = 588)
Sparsity
(Coherence) 2 3 5
Sparsity
(Proposed method) 39 120 144

minimization according to a specific system matrix. Suchlae/és
important to know in a context where we want to be sure that
minimization leads to the exact true sparse solution orr@sence
of noise, to a solution for which we control the error.

Note that the proposed method does not directly give a oelati
between the sparsity and the size of the matrix but one mig c
struct it by considering system matricdswith different sizes.

Table 1. Sparsitys allowing us to recover every-sparse vectors
by £:-minimization in the absence of noise consideration. Tle se
ond row presents the approximation of the sparsity obtaiittthe
proposed approach. Results for three different configumatof the
tomography-like matrix4.
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Fig. 2. Algorihm 1 (solid black), Algorithm 1bis (dash-dotted b)u Algorithm 2 (dash-dotted red). The bottom figures pretemresults
obtained with a tomography-like matrix while the top figuilasstrate the results for a normalized random matrix.
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Fig. 3. Reconstruction results from= Az for sparse vectors with = 5, s = 10, ands = 50 extracted with Algorithm 2 (1-3 columns) or
with the “minimum version of Algorithm 2" (4-6 columns).

6 views

9 views 12 views
(M =294) | (M =441) | (M = 588)
Error =0
0?2 =0 11 12 12
Error< 10°
o =10"* 8 10 10
Error< 107!
02 =10"? 8 10 10

Table 2. Sparsitys allowing us to recover everysparse vectors b§;-minimization with noise consideration and thus Fuchggproriterion.
Results for three different configurations of the tomoggsajike matrix A.



