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ABSTRACT phases ). Regarding the first step, an efficient decompo-

This paper presents a 2D transposition of the Hilbert-HuBnags- sition procedure known as .Emplrlcal_ Mode Decomposmon
form (HHT), an empirical data analysis method designedtiays ~ (EMD) has been proposed in [1]. It aims at sequentially ex-
ing instantaneous amplitudes and phases of non-statidasmy The ~ tracting the IMFd*) from a temporary trend*~") (such
principle is to adaptively decompose an image into osaipparts ~ that al® = z and, for everyk € {1,...,K}, a*~1 =
called Intrinsic Mode Functions (IMFs) using an Empiricabtie  a(®) 4+-d(®)) through a sifting process that is based on the com-
Decomposition method (EMD), and then to perform Hilbertcs#  putation of a mean envelope@f—!) (mean of the upper and
analysis on the IMFs in order to recover local amplitudesgrases.  |ower envelopes obtained by interpolating the maxima,.resp
For the decomposition step, we propose a new 2D mode decompogninima, ofa(v—1)).
_tlon method based on non-sm(_)oth convex optimization, vﬂ_nrlehe The aim of this work is to propose the counterpart of the
Instantaneous S.peCtral analysis, we use a 2D tranSpoemw.oert Hilbert-Huang transform for image analysis in order to de-
spectral analysis called monogenic analysis, based orz Rizss- ; .
form and allowing to extract instantaneous amplitudessesaand compose an image into _elementary compone_nts ar_ld extract
orientations. The resulting 2D-HHT is validated on simethtiata. their Instan_taneous_ amplltudes, phases, and orientafimie
. . that potential applications of this 2D-HHT may be encoun-
Ind(_a>_< Terms— H|Ib.ert_-Hu_ang Traqsfolrml, emﬁlrlgaQOde de- tered in ocean wave characterization, fingerprint anglpsis
fc;n;}pc::g:}c;r;;r(])izvae:a?)?;?|zat|on, proximal algorithmsesz trans- o+ e c|assification.
' After a short review of related works in Section 2, we de-
1. INTRODUCTION tail the proposed 2D-HHT method in Section 3. In Section 4,

The 1D Hilbert-Huang Transform (1D-HHT), introduced we illustrate the efficiency of the proposed method compared

b : . to the state-of-the art techniques on simulated data.
y Huanget al. [1], is an empirical method for data analy- i d - RN1X N2
sis. Compared to usual time-frequency/time-scale method%otatlon_sWe €NOY = (Ynm)1<n<Ni 1<m<N, €
such as wavelet analysis or Wigner-Ville distribution, afi the matrix expression of an image whose S'Zé\rlf,x Na,
aim at analysing non-linear and non-stationary signais, th the n-th row of the ”26‘.995’ is denotedy., . < R™, and
method favours adaptivity.This method has been used in ¥ ~ (yn)1<n<y € RT is the vector expression of, such
various applications like geophysical studies [2], medéuy- that V= Ny x Na.
ical data [3], or seismic data [4]. See [2] for a review of the 2. RELATED WORKS
methods and further references.

Formally, the objective of 1D-HHT is to extract the instan- 1€ Riesz-Laplace transform proposed in [5], which cossist
taneous amplitudegn(®)); << and phasege®) < N2 multiresolution 2D spectral analysis method, refettsiéo

from a signal: € RN built as a sum of elementary functions method w_ith the closegt_goal to 2D—_HHT. More precisely, this
(d(k)>1<k<K oscillating around zero, called Intrinsic Mode method aims at combining a two-dimensional wavelet trans-

Functions (IMFs), and a trend™) € RV i.e., form with a monogenic analysis [6], which is based on Riesz
K analysis and stands for a 2D extension of the Hilbert trans-
z=a® 4 Z a® cose®) form. The counterpart of using a wavelet framework is the

lack of adaptivity and consequently this method is lessesuit

) ) o for analysing non-stationary signals such as AM-FM signals
To achieve this goal, the 1D-HHT consists in a two-steprg puijld a genuine 2D-HHT method, a solution is to com-

procedure combining (i) a decomposition step, whose objegsine Felsberg and Sommer monogenic analysis [6] with a ro-

tive is to extract the IMF$d(*))1 << from the datar, with  pyst 2D-EMD.Such a 2D-HHT method, combining a multi-

(i) a Hilbert spectral analysis of each extracted IME)  gimensional extension of EMD based on local means [7] with

in order to estimate the instantaneous amplitud&s and monogenic analysis has been proposed by [8], however the
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k=1 d(e)




the robustness of the existing EMD methods in order to high¢cf. [18] for the construction o\ that is similar due to
light the necessity to propose a new robust 2D mode deconthe fact that a rovd,, » behaves like a 1D signal). Consider-
position procedure. On the one hand, existing 2D-EMD mething the entire image, the constraint can be writfgt{*)d||;
ods are based on the sifting procedure whose main drawbagihere R(") — diag R\, ..., R%?) is a block diagonal ma-

is the lack of a rigorous mather_natlcal definition, and consegiy in RV*N which is highly sparse. We apply the same type
quently of convergence properties [9, 10, 11, 12, 13, 14, 15k constraint to the columng€(®), the diagonalsp™®)), and
On the other hand, efﬂment. 1!3 mpde decomposition proceme anti-diagonals{ (") of the image, leading to the penal-
dures t_)ased on convex optimization havg been recently pr%’ation Ue(d) = 24:1 )\(k)||Mgk)d|‘l whereMl(k) — R,
posed in order to get stronger mathematical guarantees [1M(k) _o® M(k)z - 5(1@ JVZ[(’“) _ A0 g .

17, 18]. For instance, [18] proposed a mathematical formal='2 = &~ Mg = = 27, [y = denote matrices
ism for EMD based on a multicomponent proximal algorithmIn R N AS proposedk|n1[18], the couplmg tlerr? is chosen
that combines the principle of texture-geometry decomposﬂuadrat'c’ "e_"'ok(a’ d;al* ))_ = ||a_+_ d— a_( Y. _

tion [19, 20, 21] with some specific features of EMD: con- _ 1he solution of the resulting minimization problem is ob-
straints on extrema in order to extract IMFs oscillatinge ~ t&ined with Condat-Vii primal-dual splitting algorithm2p
zero, sequential aspect of EMD, or IMFs quasi-orthogopalit that allows to.deal Wlth linear operators and npn—smootbifun
This methods appears to have better performance (in terms Bpnals. The iterations are specified in Algorithm 1. Forfur
extraction or convergence guarantees) than the other gonvier details on the algorithmic solution and proximal tools
optimization procedures as discussed in [16, 17]. For gdsr ©One may refer to [23].

son, we propose to extend this method to a 2D mode decom-
position formalism and thus to combine it with a monogenic®-
analysis in order to build a complete 2D-HHT.

2. Monogenic analysis of the extracted IMFs

Given a real-valued 1D signgl the associated analytic sig-

3. PROPOSED 2D-HHT nal ya(t), which by definition involves the signal itself and

its Hilbert transform, can also be written under a polar form
involving instantaneous phase and amplitude respectilely

As discussed previously, the mode decomposition aims &totedé anda such asya = y + jH(y) = ae’/s. These two
splitting up the trendu(*~1) into a component having IMF formulations allow to easily compute the instantaneous am-
properties (i.ed®)), and a residual component, denoiétl.  plitude and the instantaneous phase as the absolute value of

To obtain such a decomposition we propose to solve, fofhe analytic signal and its argument.

3.1. 2D proximal mode decomposition

everyk € {1,..., K}, The Riesz transform is the natural 2D extension of the
(@®,d®) e Argmin éx(a) + vi(d) + op(a, d; a1y Hilbert transform [6]. The Riesz transform of a 2D sigyal
7 a€RN deRN o can be expressed gg = (y"),y®) = (b xy, h(?) 5 y),

whereg;, andy, denote convex, lower semi-continuous, andhere the filters((")),<;<» are characterized by their 2D
proper functions fronR ™Y to]—oco, +oc] thatimpose the trend  transfer functionng) = —jw;/|lwll with w = (w1, w2).

and IMF behaviour to the component$) andd*) respec- On the other hand, the counterpart of the analytic signal in
tively, while (-, -;a*~1)) denotes a convex, lower semi- 2D is called the monogenic signal. It consists in the three-
continuous, proper function fro”" x RY to] — oo, +00] component signal defined by, = (y,y™"),y®) [6]. Ina
that aims to model that*—1) is close toa®) + d®). The similar way to the analytic signal, the monogenic signal en-
smoothness of thé-order trend is obtained by imposing a ables to compute easily the local amplitude, phase, and-orie

constraint on its total variation, i.e., tation at each pixel through the relations, for eveiym) <
N1 Na {1,...,N1}X{1,...,NQ},

¢k(a) :n(k)z Z\/|an71,m - an,m|2+|an,mfl - an,m|2
n=tm=l _ 2 o \2((2) )2

with a regularization parametgf®) > 0. Cnm = \/(y"vm) + (ynm) "+ (ynm) @)

The tricky step in order to propose a 2D extension of the \/( (1) )2 iy (y(z) )2

1D proximal decomposition procedure [18] lies in the defini- ¢, , = arctan e e )

tion of the zero mean envelope constraint through the func- ’ Yn,m

tion ¢,.. Here we propose a “Pseudo 2D” approach, where 0,, = arctan(y(z) /y(l) ). 3)

lines, columns, and diagonals extrema are separately con-

strained (see [9] for a comparison between the "Pseudo” andqyever, the estimation of the orientation proposed in (3)
“Genuine” approaches in the usual EMD procedure). For inacks of robustness because it does not take into account the
stance, the extrema-basz%d constraint can Ee written fér eagientation of neighbouring pixels. Unset al. [5] derived
rown € {1,...,Ni}, [|[ Ry dne1, whereR,” € RN2*N2 oy hroved estimation based on a minimization procedure

denotes the linear combination of some elemenid,of al-  jyclyding a smoothness neighbourhood constraint. In our ex
lowing to impose a zero mean envelope of the compodiéht periments, this robust technique is used.



3.3. 2D-HHT Algorithm variation constraint as defined in 3.1. Gilles-Osher is arait

: tive algorithm designed for solving Meyers-norm texture-
We now summarize the proposed 2D-HHT. In order tocartoon decomposition model (we dengt€) the texture

lighten the notations, we rewrite the total variation penal regularization parameter and®) the cartoon regularization

izati — plk) . i — K H]
'éag?]ré ?/S%ken;tg th!Lo ll,Qrg{o\;\;ltZsj?s oaaggj ‘t/o]th\ghhec:ﬁzo rEarameter). We use the following optimal regularization pa
b rameters for our 2D-HHT ) = 0.3, A{Y = 0.3,7y® =1,

tal and vertical finite differences. We denoteg(®) = @ 1 h
diag(Ml(k),MQ(k),Mék),Mik)). Parameterss and - are ;= 0.1. For Total Variation decomposition method, we
chosen so as to ensure the convergence of the algorithimse :7") = 70 andy(") = 100. For Gilles-Osher method,

see [22] for details. The 2D-HHT method is summed up inWe setu(”) = 10%, AN = 10% 4 =10, andA® = 10.
Algorithm 1. Results are shown on Figs 2 and 3.

- . First of all, our method provides a good separation of the
Algorithm 1_ _2_D HHT Algorithm different components. It has the expected behaviour of a 2D-
STEP 1 -nitialization

Seta®) — x, HHT: the locally fastest oscillating components are exgdc
Choose the number of IMFK to be extracted, at each step of the decomposition, even if their frequencies
Setk = 1. are non stationary. Our proposed 2D-EMD method proved to

STEP 2 -2D prox. mode decomp. extracta*) andd(*) froma(*~1).
Compute(Mi(k))lgi§4 from a(k—1),
Computeg = 1 + ||[M )2,

perform better than previous 2D-EMD methods. For instance,
the IEMD does not manage to separate at all the components

Seto > 0 and letr = 0.9/(c8 + 2), x1 andxs. In comparison with other approache§ !ike wavelet

Initialize [ andd(® in R, decomposition and texture-cartoon decomposition, the 2D-

Initialize y){! in R2N andy!”) € RN fori =1,--- ,4. EMD approach provides more adaptivity and a better man-

For¢=0,1,--- agement of non-stationary signals. The Total Variatioretdas

| altt1] = alfl — 27 (ol 4 dlf] — alk=1)) — 7 L*yl)) approach does not give a good separation of the three dscilla

| i) = alf) — 27 (alf + dl) — o1y — 7 o (M) ing components. Gilles-Osher solution is not suited for-non

| vy = PFOX(,<,,<k>H.HL2)*(y([f] +oL(2alT1 — alf)) stationary signals: some of the slower part of the frequency

| Fori=1,--- .4 modulated component; is on the 2nd IMF, while its faster

| Wi =prox oL@+ om P 2al 0 —al)) part are localized on the first IMF. Finally, the Riesz-Lala

| Setd®) =limy_, o, A1 anda® = limy_, o alfl. solution provides good results but this method is not adapti

STEP 3 -Monogenic Analysis and less suited for non-stationary signals. For instanee, w

Compute monogenic signal df®) : d{%) = (d(®), a1 dk:2))
Compute local amplitudex(®), phaset (%) and orientatiorg ()
using Egs (1), (2), (3).4'*) can also be computed using Unser’s

can observe that some area of the same component but with
differentfrequencies end up on different wavelet scaleseh

| improved method). the faster part ok is on the first scale, while the rest is on
While k < K, setk < k + 1 and return to STEP 2. the second and third scale.
To estimate the computational time of each method, we
4. EXPERIMENTS set a stopping criterion based on the norm of the difference

The image to be analyzed (Figure 1) consists in a sum of Between two successive iterateslto ®. The complete de-
trend and two localized texture componenfd) andx(?).  composition into two IMFs needs 10 minutes with TV de-
The trend is formed with one rectangular patch and one elcomposition, around 3 minutes with Gilles-Osher deconposi
lipsoidal patch. The componert?) (resp. x(?)) models a tion, and less than 15 minutes with P2D EMD. The proposed
modulated signal of central frequengy = 120/512 (resp. P2D-EMD takes a few more time than other state-of-the-art
f2 = 60/512). methods, but it is compensated with the better separation.
We apply the proposed 2D-HHT method to extract the
two resulting IMFs and their local orientation estimates

(K = 2). In order to fairly compare with the statt_a—of—the-_art-|-hiS paper proposes a complete 2D-HTT to extract local am-
methods, we propose to replace the STEP 2 in Algorithmyiydes, phases, and orientations of non-stationary émag

1 with other decomposition methods such that Image Emypis method is based on a 2D variational mode decomposi-
pirical Mode Decomposition [10], a natural 2D extensionjqn combined with a monogenic analysis using Riesz trans-
of 1D EMD based on 2D interpolation of extrema using¢qrm_ This method has been tested on simulated data. In term
thin-plate splines, and two texture-cartoon decompasitio ¢ 5c4| orientation analysis, the proposed method prowed t
methods that are total variation and Gilles-Osher texturega more efficient than existing 2D EMD methods and more

geometry decomposition [20]. On the other hand we comgqaniive than other decomposition approaches. In a future
pare the extracted orientation with the results obtainechfr work, we will focus on the study of instantaneous frequen-

the Riesz-Laplace analysis proposed in [S]. Total vamatio gjes considering the derivation of the local phase along the
decomposition consists in solving the optimization prable yirection provided by the orientation.

Argmin,cpx[la — a®* V(|2 + ¢5.(a), whereg, is the total

5. CONCLUSION
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Fig. 1. Simulated data and its components : texture componehtsx(?) and their local orientations.
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Fig. 2. Decomposition and local orientation of the simulated gaésented in Fig. 1 obtained with different methods. 1st row
proposed solution, 2nd row: Image Empirical Mode Decompmsi 3rd row: Total Variation based decomposition, and 4th
row: Gilles-Osher based decomposition. From the left taitjiet the columns presert!), 6V, d®, 8®, anda®.
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‘ .

Fig. 3. Orientations estimated on 3 scales with Riesz-Laplacelgatransform.
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