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ABSTRACT

This paper presents a 2D transposition of the Hilbert-HuangTrans-
form (HHT), an empirical data analysis method designed for study-
ing instantaneous amplitudes and phases of non-stationarydata. The
principle is to adaptively decompose an image into oscillating parts
called Intrinsic Mode Functions (IMFs) using an Empirical Mode
Decomposition method (EMD), and then to perform Hilbert spectral
analysis on the IMFs in order to recover local amplitudes andphases.
For the decomposition step, we propose a new 2D mode decomposi-
tion method based on non-smooth convex optimization, whilefor the
instantaneous spectral analysis, we use a 2D transpositionof Hilbert
spectral analysis called monogenic analysis, based on Riesz trans-
form and allowing to extract instantaneous amplitudes, phases, and
orientations. The resulting 2D-HHT is validated on simulated data.

Index Terms— Hilbert-Huang Transform, empirical mode de-
composition, convex optimization, proximal algorithms, Riesz trans-
form, monogenic analysis

1. INTRODUCTION

The 1D Hilbert-Huang Transform (1D-HHT), introduced
by Huanget al. [1], is an empirical method for data analy-
sis. Compared to usual time-frequency/time-scale methods
such as wavelet analysis or Wigner-Ville distribution, which
aim at analysing non-linear and non-stationary signals, this
method favours adaptivity.This method has been used in
various applications like geophysical studies [2], meteorolog-
ical data [3], or seismic data [4]. See [2] for a review of the
methods and further references.

Formally, the objective of 1D-HHT is to extract the instan-
taneous amplitudes(α(k))1≤k≤K and phases(ξ(k))1≤k≤K

from a signalx ∈ R
N built as a sum of elementary functions

(d(k))1≤k≤K oscillating around zero, called Intrinsic Mode
Functions (IMFs), and a trenda(K) ∈ R

N , i.e.,

x = a(K) +
K∑

k=1

α(k) cos ξ(k)
︸ ︷︷ ︸

d(k)

.

To achieve this goal, the 1D-HHT consists in a two-step
procedure combining (i) a decomposition step, whose objec-
tive is to extract the IMFs(d(k))1≤k≤K from the datax, with
(ii) a Hilbert spectral analysis of each extracted IMFd(k)

in order to estimate the instantaneous amplitudesα(k) and
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phasesξ(k). Regarding the first step, an efficient decompo-
sition procedure known as Empirical Mode Decomposition
(EMD) has been proposed in [1]. It aims at sequentially ex-
tracting the IMFd(k) from a temporary trenda(k−1) (such
that a(0) = x and, for everyk ∈ {1, . . . ,K}, a(k−1) =
a(k)+d(k)) through a sifting process that is based on the com-
putation of a mean envelope ofa(k−1) (mean of the upper and
lower envelopes obtained by interpolating the maxima, resp.
minima, ofa(k−1)).

The aim of this work is to propose the counterpart of the
Hilbert-Huang transform for image analysis in order to de-
compose an image into elementary components and extract
their instantaneous amplitudes, phases, and orientations. Note
that potential applications of this 2D-HHT may be encoun-
tered in ocean wave characterization, fingerprint analysis, or
texture classification.

After a short review of related works in Section 2, we de-
tail the proposed 2D-HHT method in Section 3. In Section 4,
we illustrate the efficiency of the proposed method compared
to the state-of-the art techniques on simulated data.
NotationsWe denotey = (yn,m)1≤n≤N1,1≤m≤N2 ∈ R

N1×N2

the matrix expression of an image whose size isN1 × N2,
the n-th row of the imagey is denotedyn,• ∈ R

N2 , and
y = (yn)1≤n≤N ∈ R

N is the vector expression ofy, such
thatN = N1 ×N2.

2. RELATED WORKS

The Riesz-Laplace transform proposed in [5], which consists
in a multiresolution 2D spectral analysis method, refers tothe
method with the closest goal to 2D-HHT. More precisely, this
method aims at combining a two-dimensional wavelet trans-
form with a monogenic analysis [6], which is based on Riesz
analysis and stands for a 2D extension of the Hilbert trans-
form. The counterpart of using a wavelet framework is the
lack of adaptivity and consequently this method is less suited
for analysing non-stationary signals such as AM-FM signals.
To build a genuine 2D-HHT method, a solution is to com-
bine Felsberg and Sommer monogenic analysis [6] with a ro-
bust 2D-EMD.Such a 2D-HHT method, combining a multi-
dimensional extension of EMD based on local means [7] with
monogenic analysis has been proposed by [8], however the
EMD step lacks of robustness as we will discuss further.

Before detailing the proposed 2D-HHT, we will discuss



the robustness of the existing EMD methods in order to high-
light the necessity to propose a new robust 2D mode decom-
position procedure. On the one hand, existing 2D-EMD meth-
ods are based on the sifting procedure whose main drawback
is the lack of a rigorous mathematical definition, and conse-
quently of convergence properties [9, 10, 11, 12, 13, 14, 15].
On the other hand, efficient 1D mode decomposition proce-
dures based on convex optimization have been recently pro-
posed in order to get stronger mathematical guarantees [16,
17, 18]. For instance, [18] proposed a mathematical formal-
ism for EMD based on a multicomponent proximal algorithm
that combines the principle of texture-geometry decomposi-
tion [19, 20, 21] with some specific features of EMD: con-
straints on extrema in order to extract IMFs oscillating around
zero, sequential aspect of EMD, or IMFs quasi-orthogonality.
This methods appears to have better performance (in terms of
extraction or convergence guarantees) than the other convex
optimization procedures as discussed in [16, 17]. For this rea-
son, we propose to extend this method to a 2D mode decom-
position formalism and thus to combine it with a monogenic
analysis in order to build a complete 2D-HHT.

3. PROPOSED 2D-HHT

3.1. 2D proximal mode decomposition

As discussed previously, the mode decomposition aims at
splitting up the trenda(k−1) into a component having IMF
properties (i.e.d(k)), and a residual component, denoteda(k).
To obtain such a decomposition we propose to solve, for
everyk ∈ {1, . . . ,K},

(a(k), d(k)) ∈ Argmin
a∈RN ,d∈RN

φk(a) + ψk(d) + ϕk(a, d; a
(k−1))

whereφk andψk denote convex, lower semi-continuous, and
proper functions fromRN to ]−∞,+∞] that impose the trend
and IMF behaviour to the componentsa(k) andd(k) respec-
tively, while ϕk(·, ·; a

(k−1)) denotes a convex, lower semi-
continuous, proper function fromRN × R

N to ] − ∞,+∞]
that aims to model thata(k−1) is close toa(k) + d(k). The
smoothness of thek-order trend is obtained by imposing a
constraint on its total variation, i.e.,

φk(a)=η
(k)

N1∑

n=1

N2∑

m=1

√

|an−1,m − an,m|2+|an,m−1 − an,m|2

with a regularization parameterη(k) > 0.
The tricky step in order to propose a 2D extension of the

1D proximal decomposition procedure [18] lies in the defini-
tion of the zero mean envelope constraint through the func-
tion ψk. Here we propose a “Pseudo 2D” approach, where
lines, columns, and diagonals extrema are separately con-
strained (see [9] for a comparison between the “Pseudo” and
“Genuine” approaches in the usual EMD procedure). For in-
stance, the extrema-based constraint can be written for each
row n ∈ {1, . . . , N1}, ‖R(k)

n dn,•‖1, whereR(k)
n ∈ R

N2×N2

denotes the linear combination of some elements ofdn,• al-
lowing to impose a zero mean envelope of the componentd(k)

(cf. [18] for the construction ofR(k)
n that is similar due to

the fact that a rowdn,• behaves like a 1D signal). Consider-
ing the entire image, the constraint can be written‖R(k)d‖1

whereR(k) = diag(R(k)
1 , . . . , R

(k)
N1

) is a block diagonal ma-
trix in R

N×N , which is highly sparse. We apply the same type
of constraint to the columns (C(k)), the diagonals (D(k)), and
the anti-diagonals (A(k)) of the image, leading to the penal-
izationψk(d) =

∑4
i=1 λ

(k)
i ‖M

(k)
i d‖1 whereM (k)

1 = R(k),

M
(k)
2 = C(k), M (k)

3 = D(k), M (k)
4 = A(k) denote matrices

in R
N×N . As proposed in [18], the coupling term is chosen

quadratic, i.e.,ϕk(a, d; a
(k−1)) = ‖a+ d− a(k−1)‖2.

The solution of the resulting minimization problem is ob-
tained with Condat-Vũ primal-dual splitting algorithm [22]
that allows to deal with linear operators and non-smooth func-
tionals. The iterations are specified in Algorithm 1. For fur-
ther details on the algorithmic solution and proximal tools,
one may refer to [23].

3.2. Monogenic analysis of the extracted IMFs

Given a real-valued 1D signaly, the associated analytic sig-
nal ya(t), which by definition involves the signal itself and
its Hilbert transform, can also be written under a polar form
involving instantaneous phase and amplitude respectivelyde-
notedξ andα such as:ya = y + jH(y) = αejξ. These two
formulations allow to easily compute the instantaneous am-
plitude and the instantaneous phase as the absolute value of
the analytic signal and its argument.

The Riesz transform is the natural 2D extension of the
Hilbert transform [6]. The Riesz transform of a 2D signaly

can be expressed asyR = (y(1),y(2)) = (h(1) ∗ y, h(2) ∗ y),
where the filters(h(i))1≤i≤2 are characterized by their 2D

transfer functionsH(i)
ω = −jωi/‖ω‖ with ω = (ω1, ω2).

On the other hand, the counterpart of the analytic signal in
2D is called the monogenic signal. It consists in the three-
component signal defined byym = (y,y(1),y(2)) [6]. In a
similar way to the analytic signal, the monogenic signal en-
ables to compute easily the local amplitude, phase, and orien-
tation at each pixel through the relations, for every(n,m) ∈
{1, . . . , N1} × {1, . . . , N2},

αn,m =

√
(
yn,m

)2
+
(
y
(1)
n,m

)2
+
(
y
(2)
n,m

)2
(1)

ξn,m = arctan

(
√
(
y
(1)
n,m

)2
+
(
y
(2)
n,m

)2

yn,m

)

(2)

θn,m = arctan(y(2)
n,m/y

(1)
n,m). (3)

However, the estimation of the orientation proposed in (3)
lacks of robustness because it does not take into account the
orientation of neighbouring pixels. Unseret al. [5] derived
an improved estimation based on a minimization procedure
including a smoothness neighbourhood constraint. In our ex-
periments, this robust technique is used.



3.3. 2D-HHT Algorithm

We now summarize the proposed 2D-HHT. In order to
lighten the notations, we rewrite the total variation penal-
ization asφk = η(k)‖L · ‖2,1, with L = [H∗V ∗]∗ where
H and V denote the operators associated to the horizon-
tal and vertical finite differences. We denoteM (k) =
diag(M (k)

1 ,M
(k)
2 ,M

(k)
3 ,M

(k)
4 ). Parametersσ and τ are

chosen so as to ensure the convergence of the algorithm,
see [22] for details. The 2D-HHT method is summed up in
Algorithm 1.

Algorithm 1 2D-HHT Algorithm
STEP 1 –Initialization








Seta(0) = x,
Choose the number of IMFsK to be extracted,
Setk = 1.

STEP 2 –2D prox. mode decomp.: extracta(k) andd(k) froma
(k−1).





















































Compute(M (k)
i

)1≤i≤4 from a(k−1),
Computeβ = 1 + ‖M (k)‖2,
Setσ > 0 and letτ = 0.9/(σβ + 2),
Initialize a[0] andd[0] in R

N ,

Initialize y
[ℓ]
0 in R

2N andy[ℓ]i ∈ R
N for i = 1, · · · , 4.

For ℓ = 0, 1, · · ·
∣

∣ a[ℓ+1] = a[ℓ] − 2τ(a[ℓ] + d[ℓ] − a(k−1)) − τL∗y
[ℓ]
0

∣

∣ d[ℓ+1] = d[ℓ] − 2τ(a[ℓ] + d[ℓ] − a(k−1))− τ
∑4

i=1(M
(k)
i )∗y

[ℓ]
i

∣

∣ y
[ℓ+1]
0 = prox

σ(η(k)‖·‖1,2)∗
(y

[ℓ]
0 + σL(2a[ℓ+1] − a[ℓ]))

∣

∣ For i = 1, · · · , 4
⌊

⌊y
[ℓ+1]
i = prox

σ(λ
(k)
i

‖·‖1)∗
(y

[ℓ]
i + σM

(k)
i (2a[ℓ+1] − a[ℓ]))

Setd(k) = limℓ→∞ d[ℓ] anda(k) = limℓ→∞ a[ℓ].
STEP 3 –Monogenic Analysis












Compute monogenic signal ofd(k) : d(k)
m = (d(k),d(k,1),d(k,2))

Compute local amplitudeα(k), phaseξ(k) and orientationθ(k)

using Eqs (1), (2), (3). (θ(k) can also be computed using Unser’s
improved method).

While k < K, setk ← k + 1 and return to STEP 2.

4. EXPERIMENTS

The image to be analyzed (Figure 1) consists in a sum of a
trend and two localized texture componentsx(1) andx(2).
The trend is formed with one rectangular patch and one el-
lipsoidal patch. The componentx(1) (resp. x(2)) models a
modulated signal of central frequencyf1 = 120/512 (resp.
f2 = 60/512).

We apply the proposed 2D-HHT method to extract the
two resulting IMFs and their local orientation estimates
(K = 2). In order to fairly compare with the state-of-the-art
methods, we propose to replace the STEP 2 in Algorithm
1 with other decomposition methods such that Image Em-
pirical Mode Decomposition [10], a natural 2D extension
of 1D EMD based on 2D interpolation of extrema using
thin-plate splines, and two texture-cartoon decomposition
methods that are total variation and Gilles-Osher texture-
geometry decomposition [20]. On the other hand we com-
pare the extracted orientation with the results obtained from
the Riesz-Laplace analysis proposed in [5]. Total variation
decomposition consists in solving the optimization problem
Argmina∈RN ‖a − a(k−1)‖22 + φk(a), whereφk is the total

variation constraint as defined in 3.1. Gilles-Osher is an itera-
tive algorithm designed for solving Meyer’sG-norm texture-
cartoon decomposition model (we denoteµ(k) the texture
regularization parameter andλ(k) the cartoon regularization
parameter). We use the following optimal regularization pa-
rameters for our 2D-HHT :η(1) = 0.3, λ(1)i ≡ 0.3, η(2) = 1,

λ
(2)
i ≡ 0.1. For Total Variation decomposition method, we

use : η(1) = 70 andη(1) = 100. For Gilles-Osher method,
we setµ(1) = 104, λ(1) = 103, µ(2) = 10, andλ(2) = 10.
Results are shown on Figs 2 and 3.

First of all, our method provides a good separation of the
different components. It has the expected behaviour of a 2D-
HHT: the locally fastest oscillating components are extracted
at each step of the decomposition, even if their frequencies
are non stationary. Our proposed 2D-EMD method proved to
perform better than previous 2D-EMD methods. For instance,
the IEMD does not manage to separate at all the components
x1 andx2. In comparison with other approaches like wavelet
decomposition and texture-cartoon decomposition, the 2D-
EMD approach provides more adaptivity and a better man-
agement of non-stationary signals. The Total Variation based
approach does not give a good separation of the three oscillat-
ing components. Gilles-Osher solution is not suited for non-
stationary signals: some of the slower part of the frequency
modulated componentx2 is on the 2nd IMF, while its faster
part are localized on the first IMF. Finally, the Riesz-Laplace
solution provides good results but this method is not adaptive
and less suited for non-stationary signals. For instance, we
can observe that some area of the same component but with
different frequencies end up on different wavelet scales : here,
the faster part ofx2 is on the first scale, while the rest is on
the second and third scale.

To estimate the computational time of each method, we
set a stopping criterion based on the norm of the difference
between two successive iterates to10−6. The complete de-
composition into two IMFs needs 10 minutes with TV de-
composition, around 3 minutes with Gilles-Osher decomposi-
tion, and less than 15 minutes with P2D EMD. The proposed
P2D-EMD takes a few more time than other state-of-the-art
methods, but it is compensated with the better separation.

5. CONCLUSION

This paper proposes a complete 2D-HTT to extract local am-
plitudes, phases, and orientations of non-stationary images.
This method is based on a 2D variational mode decomposi-
tion combined with a monogenic analysis using Riesz trans-
form. This method has been tested on simulated data. In term
of local orientation analysis, the proposed method proved to
be more efficient than existing 2D EMD methods and more
adaptive than other decomposition approaches. In a future
work, we will focus on the study of instantaneous frequen-
cies considering the derivation of the local phase along the
direction provided by the orientation.
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Fig. 1. Simulated data and its components : texture componentsx(1), x(2) and their local orientations.

1st IMF:d(1) 1st IMF orientation:θ(1) 2nd IMF:d(2) 2nd IMF orientation:θ(2) Residuala(2)

Fig. 2. Decomposition and local orientation of the simulated datapresented in Fig. 1 obtained with different methods. 1st row:
proposed solution, 2nd row: Image Empirical Mode Decomposition, 3rd row: Total Variation based decomposition, and 4th
row: Gilles-Osher based decomposition. From the left to theright the columns presentd(1), θ(1), d(2), θ(2), anda(2).

1st scale orientation 2nd scale orientation 3rd scale orientation

Fig. 3. Orientations estimated on 3 scales with Riesz-Laplace wavelet transform.
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