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ABSTRACT whenL = 1 andM; denotes the identity matrix, the direct model (1)
This work aims at proposing a new reconstruction procedare f "educes to the one involved in uswetle-field microscopywF).
structured illumination microscopy. The proposed mettobdsed The reconstruction procedure aims at estimating a highueso

on some recent development in non-smooth convex optiroizétiat ~ tion imagex close to the unknown original datafrom the obser-
allows to deal with Poisson negative log-likelihood as dtality ~ Vations(z¢)i<e<z. It can be noticed that very few reconstruction
term and with regularization terms allowing to extract ghéga-  techniques for SIM have been proposed in the literaturersdrfe
tures. The performances of the proposed method are compmred Standard reconstruction method performs a sequence ofdigaso

the state-of-the-art of SIM reconstruction techniques. tion and recombination, as originally proposed in [3]. Maeeently,
another approach based on a variational procedure has et

Index Terms— Structured illumination microscopy, image gated in [4]. This method aims at restoring the acquired biatain-

restoration, deconvolution, Poisson noise, proximal rilgms. imizing a smooth criterion involving a quadratic data fitielierm
and a Tikhonov regularization. Moreover, a Bayesian praocetias
1. INTRODUCTION been proposed, in order to estimate the involved reguliizpa-

rameter. Dealing with a quadratic criterion such as in [#ves the
Improving the resolution of optical microscopy beyond thnets de-  authors to use efficient iterative procedures, like gradiased al-
fined by Abbe remains an important challenge. To achievegttes,  gorithms. However, this kind of criterion does not allow todel
several techniques have been developed to explore livingles at  accurately the degradation model, e.g. Poisson noise dizipa,
higher resolutions [1]. Among these techniqus,ctured illumina-  or to extract some specific features (Tikhonov regulamratieing
tion microscopy(SIM) plays a specific role, with its ability to double adapted for smooth features rather than sharp ones).
the spatial resolution with no specific constraints on taggilf re- Based on recent advances in non-smooth convex optimization
cent advances in deconvolution show that deconvolutiomasaopy  [5], the present work aims at proposing an algorithm allgnvia
might offer resolution close to SIM for a lower complexity][2ne  deal with a large class of data fidelity terms and regulddnaerms,
may combine deconvolution techniques and SIM, as suggésted such as Poisson negative log-likelihood or regularizagimmoting

[3]. This paper deals with such a combination. sparsity. In the experimental part, we evaluate on simdldégta the
The direct model involved in SIM generates a set of noisy low-impact of dealing with such a criterion compare to usual gaticl

resolution images, denoted by= (z;)1<¢< and belonging t®R"™,  data fidelity term and regularization term.

from a high-resolution image € R” (the 2D images are repre- Section 2 is dedicated to the description of the criterion we

sented as vectors). The linear operator involved durin@tugisi-  propose to minimize. Section 3 aims at describing the preghos
tion process can be modeled by the combination of amplituolg-m primal-dual algorithm. In Section 4 we describe the nunarix-
ulation, expressed with the diagonal mati% € R™*", and a  periments and the impact of a criterion involvikgliback-Leibler
convolution by the point spread function (PSF) of the optigatem,  (KL) divergence andotal variation(TV) for the SIM reconstruction.
which is denoteds € RY*¥ in the following. The photon-counting
process involved in the image formation and the thermaknioishe  Notations The n-th coordinate of a vectax € RN is denoted by
electronics of the sensor can be modeled by a combinatiowief P (") The notation? stands for the-th iteration in the iterative
son and Gaussian noise. However, for the sake of simplieétywill  procedure. The notation denotes thé-th component involved in
consider that the gain of the sensorli@nd that the dark current the SIM process. Lef' denote a non-empty closed convex subset of
noise can be factorized as a single Poisson random variable-c R the indicator functionc is such thatc(x) = 0if x € C and
sponding to the number of generated photo-electrons. lizinhe +o00 otherwise. Letf be a convex function fro”™ to]—o0, +o0].
degradation model can be summarized as follows: Argmin f = {z € RY|(Vy € RY) f(z) < f(y)} denotes a set of
— minimizers whilearg min is employed when the set of minimizers
2 = P(AM/X +b), 1) isreducedto a singleton.
whereb € R4 denotes a dark current level that is supposed to be
known in this study and models for the Poisson noise. Note that 2. INVERSE PROBLEM FORMULATION

*This work was supported by the grant PEPS PROMIS funded by the ) o ) L .
French agencies CNRS, INSERM and INRIA. The authors gremtipowl- ~ We aim at finding a high resolution imaggfitting the observations
edge the Nikon Imaging Centre at Institut Curie—CNRS. (z¢)1<e<1 through the degradation model described in (1). This im-



plies to look for the solution that minimizes a distancegdgence
between the two quantitiesandz. This can be modelled through
the functiony ), -V, wn((Asz)(") +b, 2" where, for ev-
ery modulation? € {1,...,L} and every pixelr € {1,..., N},

Yn(-+b, 2™ denotes a convex, lower semi-continuous, and proper fi:u= (u)i<e<z € RV = Z Z P (u
function fromR to |—oo, +00]. These assumptions are usual in the

convex optimization literature and they allow to deal witladratic
data fidelity term as well as Kullback-Leibler divergence_fK.e.
for everyu € R,

fz[ )logu+u if 2" >0andu>0
U (u, zé )) m if én) =0andu>0 (2)
+00 otherwise

The Kullback-Leibler divergence models the Poisson negdtg-
likelihood [6]. Consequently, according to a Maximum A Roiiri
interpretation, the Kullback-Leibler divergence shouédan appro-
priate data fidelity term for SIM reconstruction.

Moreover, in order to impose some regularity on the solytion
we consider a penalization teré(Hx) whereH ¢ R**Y and ¢
denotes a convex, lower semi-continuous, proper functiom R

to]—o0, +0o0]. For instance, this model allows to constrain the solu-

tion to have a minimal total variation considering

Zn )™ = Z%I Hi )2 4 |(Ha )2 (3)

where the matrlceﬁl and belongs toRM*Y and model the
horizontal and vertical finite differences. In this formiida H =
[Hi, H3]" andK = 2N.

In order to constrain the data dynamic of the data, a convex co
straintC ¢ R" is usually used for image reconstruction. It may
model a positivity constraint as well as a dynamic range ttaims.

To summarize, the crlterlon we have to deal with is

g€ Argmln Z Z Y (AMx)™ + b, 20") + A\p(Hx) (4)

=1 n=1

Problem (4) is a particular case of (5) with = 3, N1 = NL,
Ny = K,N3 = N, Ty = [M{A*,--- ,M;A*]*, To = H, T3 =
Id, f2 = )\d), f3 = Lc, and

L N

(m 4y, (M),
{=1n=1

Consequently, we have to compute the proximity operatoociss

ated tocc, ¥n, and¢. The proximity operator oic reduces to

the projection onto the convex s€t denotedP-. The computa-

tion of prox,, andprox,, have closed form expressions [5] when

¥, and ¢ are expressed by (2) and (3). More precisely, for every

u = (ur,uz) € RN x RN
))1§n§N

— (n)
prox,g u = ( proxyy ., , (u1 , Uy

where, for everyni,n2) € R x R,
— \nm2) (771,772)

ni+n3
(0,0)

if \/n7 4+n3 <A

ProXy i, , (M, 712) = .
otherwise

and, for every) € R,

=) ~b.

In order to efficiently deal with the linear operatdf, )1 <4<,

the large panel of algorithms designed for non-smooth conve
optimization can be split in two classes: primal algorithfid@$
that require to invert large size linear operat(ire., compute
(Z L\ T;T,)~") and primal-dual algorithms [8, 9] for which the
inversion stands in for the computation of the operémg T ) and

its adjoint (e.g. T, ) In order to avoid large size matrix inversion
that does not have a closed form in SIM, we derive iteratioosf

a revisited and extended version of Chambolle-Pock alyoritl0]
proposed in [9]. The iterations resulting from [9] and allowing to

proan(.+b,zé"))n 2(77+b 1+\/|77+b71|2

where\ > 0 denotes the regularization parameter. This criterion igfind a minimizer of (4) are presented in Figure 1. Conditigned

convex but non-necessarily differentiable (due to the lsg@ation
term and the constraint’) and the data fidelity term may not be
differentiable with a Lipschitz gradient (e.g. KL). For #eereasons,
we cannot deal with usual gradient based algorithms and wetoa
deal with recent proximal techniques [5].

3. PROPOSED ALGORITHM

Over the last decade, following the increasing interessfmarsity,
several optimization procedures with convergence gueesnhave
been proposed in order to minimize non-smooth convex @itar

volving linear operators and non-finite functions (see ] the ref-
erences therein) , i.e., problems formulated as follows

Q
X € Argmin Z fa(Tgx)

xRN q=1

where, for everyy € {1,...,Q}, T, € RY*Y and f, denotes
a convex, lower semi-continuous, and proper function fidffr to
]—o0, +0o0].

In order to deal with non-smoothness, the usual gradieruees
is replaced with subgradient based iterations involvirgycbmpu-
tation of the proximity operators dff,):1<q<q; that is, for every

ge{1,...,Q},
(Vy € RN

(©)

)

— 3 . 2
prox;, y = arg min [lx = yII” + fa(x).

the existence af, the sequencéz!’) <y generated by Algorithm 1
converges ta@, the solution of (4).

4. RESULTS

We consider a synthetigl2 x 512 2-D test image (see Fig. 3(a)).
This image contains different types of structures typicalbserved
in life cells such as filaments (actin and microtubules),tsgsin-
gle molecules or vesicles), and a complex background pemtiby

a fractional Brownian motion providing a wide range of frequ
cies. The operatoA is approximated by a Gaussian function with
a limited frequency support corresponding to the Abbe linfihe
modulation operatoM is built so that the modulation frequency is
near the cut-off frequency of and containd. = 15 modulations
corresponding t@ angles and phases. In order to simulate pho-
ton noise typical of optical imaging, we simulate a Poissamlom
variable whose intensity is given by the simulated imageakly, in
order to be able to fairly compare the WF deconvolution apgino
with SIM reconstruction, we consider that the intensity df 8imu-
lated testimage is 15 times higher corresponding to a 15stiomger
exposure time (see Fig. 3 (c) and (d)).

INote that we also derived the iterations resulting from dlgms such as
M+LFBF [8] or even the iterations for a primal algorithm PPX47]. How-
ever, for the SIM purpose the extended version of Chamiilek algorithm
appears to converge faster than the other methods. Foretdssm, we have
decided to only describe the iterations resulting from titeraded version of
Chambolle-Pock algorithm proposed in [9].



STEP 0 —Initialization 0

10
Set = || Sk | MyA*AM, + H*H]|| ——orgnal
Initialize X[O] c RN —— WF (Quadratic + Tikhonov)
- —— WF (Quadratic + TV)
Initialize (V[lo]e) 1<e<rL € RNL andv[;] c RKX 10" ——— WF (KL + Tikhonov)
wILnEs —— WF (KL+TV)
Setr > 0ando = % 5 - - - SIM (Quadratic + Tikhonov)
Seti — 0 T 1072k - - - SIM (Quadratic + TV)
= - = = SIM (KL + Tikhonov)
STEP 1 —Stepsinvolving the linear operators I - - =SIM(KL+TV)
Setp; € [0,2] EImT——
ylit1] — PC(X[i] _TZszlMZA*V[f,]e —TH*V[;]) o 3 :-..‘ ..... ceseoc]
xli+1] = piy[l”rl] +(1— pi)x[i] 107 \_~ > |
Fort={1,...,L}
ugi,]e = V[li,]f + o AM, 2yl — xi) 10° T, £ PR
u[;] = V[Qi] + oH(2yl 1 — x[d) TR
STEP 2 —Proximal operator computation 10°E 3
Fore={1,...,L} 0 50 100 150 200 250

{ P[f;l] = ugi,]z - U(Proxiwn(.ﬂyzém) (“gnz)m /0)>1<n<N Fig. 2. Radially averaged power spectrum of the estimates olataine
TR ’ ol T for the described methods.

P2 = u, 7<7p1r0x%¢S (T)
STEP 3 —Update

For¢={1,...,L} considering suited functionals (such as TV that modelspsifea-

{ Gl i (- ,)Vm tures or the Kullback-Leibler divergence, which aims tadetieal
[%1] P ﬁfu pi é]’f with Poisson noise) improves the SIM restoration resutighé fu-
v =pipy  + (1= pi)vy ture, we plan to extend this approach to 3D microscopy anddb r

2 .
STEP 4 —Increment: = ¢+ 1 and return to STEP 1 until convergence. images. Finally, other type of functionals could also belesg in

this context.

Fig. 1. Proposed algorithm

Figure 4 presents the results corresponding to the WF Mi-
croscopy deconvolution and Figure 5 is dedicated to the &iddm-
struction. We compare the reconstruction results in ter8NR and
SSIM [11] (the closest from 1 the value is the best is the rstan-
tion) for two data terms and two regularization terms cgoesling
respectively ta), andg(H-). “KL” stands for the Kullback-Leibler
data fidelity term expressed in (2). “Quadratic” models thadyatic
fidelity term that isgn (-, 28") = (- —2{")?. “Tikhonov" regu-
larization stands foh = || - ||*, H modelling a Laplacian operator,
andK = N. “TV” corresponds to the regularization term described
in (3). One can note that the SIM results associated with “L2 +
Tikhonov” leads to the results obtained by Orieux et al. {hjch
appears to be the state-of-the-art in term of SIM reconstmicFor
this specific smooth criterion the proposed algorithm waqarioba-
bly under-perform gradient-based algorithms which inooage the
Lipschitz differentiability assumption of the criterion.

Algorithm 1 can be fitted for dealing with WF deconvolution. |
requires to sel = 1, M; = Id, andz; = 3", 7.

For each test2000 iterations are used; = 10, p; = 1, and
the regularization parametgf is chosen as the one maximizing the [6]
SNR in a range of107°,10°]. The first row in Figure 4 (resp. 5)
presents the evolution of the SNR wx.tFor each optimal estimate,
we computed a radially averaged power spectrum as show o&.Fig

In Figs. 4 and 5, the comparison in terms of SNR and SSIM be-[7]
tween WF deconvolution and SIM reconstruction leads to tire ¢

(1]

(2]

(3]

(4]

(5]

clusion that, indeed, SIM provides a much higher resolutidm (8]
Fig. 2 we can clearly notice that high frequencies are bptserved
using a SIM formalism and an adapted criterion (cf. dashddrel
green plots in Fig. 2). On the other hand, Figure 5 (g) illtsts the (%]
performances of a SIM reconstruction based on a KL-TV ddter
Such a criterion outperforms usual “L2 + Tikhonov” criterio [10]
5. CONCLUSION
[11]

In this paper, we proposed a proximal algorithm in order &b $ev-
eral criteria for the restoration of SIM images. It clearppaars that

6. REFERENCES

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guid super-
resolution fluorescence microscopi;he Journal of Cell Biologyvol.
190, no. 2, pp. 165-175, July 2010, PMID: 20643879.

F. Soulez, L. Denis, Y. Tourneur, and E. Thiebaut, “Blidelconvolu-
tion of 3D data in wide field fluorescence microscopy,” 20612 9th
IEEE International Symposium on Biomedical Imaging (ISB012,
pp. 1735-1738.

M. G. Gustafsson, “Surpassing the lateral resolutionitlby a factor of
two using structured illumination microscopyjournal of microscopy
vol. 198, no. Pt 2, pp. 82-87, May 2000, PMID: 10810003.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, andCJ Olivo-
Marin, “Bayesian estimation for optimized structuredntlination mi-
croscopy,” IEEE Trans. Image Processvol. 21, no. 2, pp. 601-614,
Feb. 2012.

P. L. Combettes and J.-C. Pesquet, “Proximal splittirgghnds in sig-
nal processing,” ifrixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineerindd. H. Bauschke, R. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds., pp. 185-212.i1gyer-
Verlag, New York, 2010.

N. Dey, L. Blanc-Féraud, C. Zimmer, Z. Kam, P. Roux, J@ivo-
Marin, and J. Zerubia, “Richardson-Lucy algorithm withetotariation
regularization for 3D confocal microscope deconvolutiadjcroscopy
Research Techniqueol. 69, pp. 260-266, 2006.

J.-C. Pesquet and N. Pustelnik, “A parallel inertialxgnoal optimiza-
tion method,”Pac. J. Optim.vol. 8, no. 2, pp. 273-305, Apr. 2012.

P. L. Combettes and J.-C. Pesquet, “Primal-dual smjt@algorithm
for solving inclusions with mixtures of composite, Lipsiién, and
parallel-sum type monotone operatorSgt-Valued Var. Angl2011.

L. Condat, “A primal-dual splitting method for convex tipization
involving Lipschitzian, proximable and linear composgens,”J. Op-
tim. Theory Appl.vol. 158, no. 2, pp. 460-479, 2013.

A. Chambolle and T. Pock, “A first-order primal-dual atghm for
convex problems with applications to imagingJ. Math. Imag. Vis.
vol. 40, no. 1, pp. 120-145, 2011.

Z. Wang and A. C. Bovik, “Mean squared error: love it cave it?,”
IEEE Signal Process. Magvol. 26, no. 1, pp. 98-117, Jan. 2009.



(a) Ground truth (b) Ground truth (zoom) (c) Simuléted WF SdhulatedSIM
image/ =1

Fig. 3. Data
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Fig. 4. Wild Field results
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Fig. 5. SIM results



