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ABSTRACT

This work aims at proposing a new reconstruction procedure for
structured illumination microscopy. The proposed method is based
on some recent development in non-smooth convex optimization that
allows to deal with Poisson negative log-likelihood as datafidelity
term and with regularization terms allowing to extract sharp fea-
tures. The performances of the proposed method are comparedto
the state-of-the-art of SIM reconstruction techniques.

Index Terms— Structured illumination microscopy, image
restoration, deconvolution, Poisson noise, proximal algorithms.

1. INTRODUCTION

Improving the resolution of optical microscopy beyond the limits de-
fined by Abbe remains an important challenge. To achieve thisgoal,
several techniques have been developed to explore living samples at
higher resolutions [1]. Among these techniques,structured illumina-
tion microscopy(SIM) plays a specific role, with its ability to double
the spatial resolution with no specific constraints on tagging. If re-
cent advances in deconvolution show that deconvolution microscopy
might offer resolution close to SIM for a lower complexity [2], one
may combine deconvolution techniques and SIM, as suggestedin
[3]. This paper deals with such a combination.

The direct model involved in SIM generates a set of noisy low-
resolution images, denoted byz = (zℓ)1≤ℓ≤L and belonging toRN ,
from a high-resolution imagex ∈ R

N (the 2D images are repre-
sented as vectors). The linear operator involved during theacquisi-
tion process can be modeled by the combination of amplitude mod-
ulation, expressed with the diagonal matrixMℓ ∈ R

N×N , and a
convolution by the point spread function (PSF) of the optical system,
which is denotedA ∈ R

N×N in the following. The photon-counting
process involved in the image formation and the thermal noise in the
electronics of the sensor can be modeled by a combination of Pois-
son and Gaussian noise. However, for the sake of simplicity,we will
consider that the gain of the sensor is1 and that the dark current
noise can be factorized as a single Poisson random variable corre-
sponding to the number of generated photo-electrons. Finally, the
degradation model can be summarized as follows:

zℓ = P(AMℓx + b), (1)

whereb ∈ R+ denotes a dark current level that is supposed to be
known in this study andP models for the Poisson noise. Note that
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whenL = 1 andM1 denotes the identity matrix, the direct model (1)
reduces to the one involved in usualwide-field microscopy(WF).

The reconstruction procedure aims at estimating a high resolu-
tion imagex̂ close to the unknown original datax from the obser-
vations(zℓ)1≤ℓ≤L. It can be noticed that very few reconstruction
techniques for SIM have been proposed in the literature so far. The
standard reconstruction method performs a sequence of demodula-
tion and recombination, as originally proposed in [3]. Morerecently,
another approach based on a variational procedure has been investi-
gated in [4]. This method aims at restoring the acquired databy min-
imizing a smooth criterion involving a quadratic data fidelity term
and a Tikhonov regularization. Moreover, a Bayesian procedure has
been proposed, in order to estimate the involved regularization pa-
rameter. Dealing with a quadratic criterion such as in [4] allows the
authors to use efficient iterative procedures, like gradient based al-
gorithms. However, this kind of criterion does not allow to model
accurately the degradation model, e.g. Poisson noise degradation,
or to extract some specific features (Tikhonov regularization being
adapted for smooth features rather than sharp ones).

Based on recent advances in non-smooth convex optimization
[5], the present work aims at proposing an algorithm allowing to
deal with a large class of data fidelity terms and regularization terms,
such as Poisson negative log-likelihood or regularizationpromoting
sparsity. In the experimental part, we evaluate on simulated data the
impact of dealing with such a criterion compare to usual quadratic
data fidelity term and regularization term.

Section 2 is dedicated to the description of the criterion we
propose to minimize. Section 3 aims at describing the proposed
primal-dual algorithm. In Section 4 we describe the numerical ex-
periments and the impact of a criterion involvingKullback-Leibler
(KL) divergence andtotal variation(TV) for the SIM reconstruction.

Notations Then-th coordinate of a vectorx ∈ R
N is denoted by

x(n). The notation·[i] stands for thei-th iteration in the iterative
procedure. The notation·ℓ denotes theℓ-th component involved in
the SIM process. LetC denote a non-empty closed convex subset of
R
N , the indicator functionιC is such thatιC(x) = 0 if x ∈ C and

+∞ otherwise. Letf be a convex function fromRN to ]−∞,+∞].
Argmin f = {x ∈ R

N |(∀y ∈ R
N ) f(x) ≤ f(y)} denotes a set of

minimizers whileargmin is employed when the set of minimizers
is reduced to a singleton.

2. INVERSE PROBLEM FORMULATION

We aim at finding a high resolution imagêx fitting the observations
(zℓ)1≤ℓ≤L through the degradation model described in (1). This im-



plies to look for the solution that minimizes a distance/divergence
between the two quantitiesx andz. This can be modelled through
the function

∑L

ℓ=1

∑N

n=1 ψn((AMℓx)
(n) + b, z

(n)
ℓ ) where, for ev-

ery modulationℓ ∈ {1, . . . , L} and every pixeln ∈ {1, . . . , N},
ψn(·+b, z(n)ℓ ) denotes a convex, lower semi-continuous, and proper
function fromR to ]−∞,+∞]. These assumptions are usual in the
convex optimization literature and they allow to deal with quadratic
data fidelity term as well as Kullback-Leibler divergence (KL) i.e.
for everyu ∈ R,

ψn(u, z
(n)
ℓ ) =






−z(n)ℓ log u+ u if z(n)ℓ > 0 andu > 0

u if z(n)ℓ = 0 andu ≥ 0

+∞ otherwise.

(2)

The Kullback-Leibler divergence models the Poisson negative log-
likelihood [6]. Consequently, according to a Maximum A Posteriori
interpretation, the Kullback-Leibler divergence should be an appro-
priate data fidelity term for SIM reconstruction.

Moreover, in order to impose some regularity on the solution,
we consider a penalization termφ(Hx) whereH ∈ R

K×N andφ
denotes a convex, lower semi-continuous, proper function fromR

K

to ]−∞,+∞]. For instance, this model allows to constrain the solu-
tion to have a minimal total variation considering

φ(H·) =
N∑

n=1

‖(H·)(n)‖2,1 =

N∑

n=1

√
|(H1·)(n)|2 + |(H2·)(n)|2 (3)

where the matricesH1 andH2 belongs toRN×N and model the
horizontal and vertical finite differences. In this formulation H =
[H∗

1 , H
∗
2]

∗ andK = 2N .
In order to constrain the data dynamic of the data, a convex con-

straintC ⊂ R
N is usually used for image reconstruction. It may

model a positivity constraint as well as a dynamic range constraint.
To summarize, the criterion we have to deal with is

x̂ ∈ Argmin
x∈C

L∑

ℓ=1

N∑

n=1

ψn((AMℓx)
(n) + b, z

(n)
ℓ ) + λφ(Hx) (4)

whereλ > 0 denotes the regularization parameter. This criterion is
convex but non-necessarily differentiable (due to the regularization
term and the constraintC) and the data fidelity term may not be
differentiable with a Lipschitz gradient (e.g. KL). For these reasons,
we cannot deal with usual gradient based algorithms and we have to
deal with recent proximal techniques [5].

3. PROPOSED ALGORITHM

Over the last decade, following the increasing interest forsparsity,
several optimization procedures with convergence guarantees have
been proposed in order to minimize non-smooth convex criteria in-
volving linear operators and non-finite functions (see [5] and the ref-
erences therein) , i.e., problems formulated as follows

x̂ ∈ Argmin
x∈RN

Q∑

q=1

fq(Tqx) (5)

where, for everyq ∈ {1, . . . , Q}, Tq ∈ R
Nq×N andfq denotes

a convex, lower semi-continuous, and proper function fromR
Nq to

]−∞,+∞].
In order to deal with non-smoothness, the usual gradient descent

is replaced with subgradient based iterations involving the compu-
tation of the proximity operators of(fq)1≤q≤Q; that is, for every
q ∈ {1, . . . , Q},

(∀y ∈ R
Nq ) proxfq y = arg min

x∈RN
‖x− y‖2 + fq(x).

Problem (4) is a particular case of (5) withQ = 3, N1 = NL,
N2 = K, N3 = N , T1 = [M∗

1A
∗, · · · ,M∗

LA
∗]∗, T2 = H, T3 =

Id , f2 = λφ, f3 = ιC , and

f1 : u = (uℓ)1≤ℓ≤L ∈ R
NL 7→

L∑

ℓ=1

N∑

n=1

ψn
(
u
(n)
ℓ + b, z

(n)
ℓ

)
.

Consequently, we have to compute the proximity operator associ-
ated toιC , ψn, andφ. The proximity operator ofιC reduces to
the projection onto the convex setC, denotedPC . The computa-
tion of proxψn

andproxλφ have closed form expressions [5] when
ψn andφ are expressed by (2) and (3). More precisely, for every
u = (u1,u2) ∈ R

N × R
N,

proxλφ u =
(
proxλ‖·‖2,1

(
u
(n)
1 ,u

(n)
2

))

1≤n≤N

where, for every(η1, η2) ∈ R× R,

proxλ‖·‖2,1(η1, η2) =

{
1− λ

(η1,η2)√
η21+η

2
2

if
√
η21 + η22 ≤ λ

(0, 0) otherwise

and, for everyη ∈ R,

prox
ψn(·+b,z

(n)
ℓ

)
η =

1

2

(
η+b−1+

√
|η + b− 1|2 +

4

σ
z
(n)
ℓ

)
−b.

In order to efficiently deal with the linear operators(Tq)1≤q≤Q,
the large panel of algorithms designed for non-smooth convex
optimization can be split in two classes: primal algorithms[7]
that require to invert large size linear operator

(
i.e., compute

(
∑Q

q=1 T
∗
q Tq)

−1
)

and primal-dual algorithms [8, 9] for which the

inversion stands in for the computation of the operator
(
e.g.Tq

)
and

its adjoint
(
e.g. T ∗

q

)
. In order to avoid large size matrix inversion

that does not have a closed form in SIM, we derive iterations from
a revisited and extended version of Chambolle-Pock algorithm [10]
proposed in [9].1 The iterations resulting from [9] and allowing to
find a minimizer of (4) are presented in Figure 1. Conditionally to
the existence of̂x, the sequence

(
x[i]

)
i∈N

generated by Algorithm 1
converges tôx, the solution of (4).

4. RESULTS
We consider a synthetic512 × 512 2-D test image (see Fig. 3(a)).
This image contains different types of structures typically observed
in life cells such as filaments (actin and microtubules), spots (sin-
gle molecules or vesicles), and a complex background produced by
a fractional Brownian motion providing a wide range of frequen-
cies. The operatorA is approximated by a Gaussian function with
a limited frequency support corresponding to the Abbe limit. The
modulation operatorM is built so that the modulation frequency is
near the cut-off frequency ofA and containsL = 15 modulations
corresponding to3 angles and5 phases. In order to simulate pho-
ton noise typical of optical imaging, we simulate a Poisson random
variable whose intensity is given by the simulated image. Finally, in
order to be able to fairly compare the WF deconvolution approach
with SIM reconstruction, we consider that the intensity of WF simu-
lated test image is 15 times higher corresponding to a 15 times longer
exposure time (see Fig. 3 (c) and (d)).

1Note that we also derived the iterations resulting from algorithms such as
M+LFBF [8] or even the iterations for a primal algorithm PPXA+ [7]. How-
ever, for the SIM purpose the extended version of Chambolle-Pock algorithm
appears to converge faster than the other methods. For this reason, we have
decided to only describe the iterations resulting from the extended version of
Chambolle-Pock algorithm proposed in [9].



STEP 0 –Initialization
Setβ = ‖

∑L
ℓ=1 M

∗
ℓ
A∗AMℓ +H∗H‖

Initialize x[0] ∈ R
N

Initialize
(

v
[0]
1,ℓ

)

1≤ℓ≤L
∈ R

NL andv[0]2 ∈ R
K

Setτ > 0 andσ = 1
τβ

Seti = 0
STEP 1 –Steps involving the linear operators

Setρi ∈ [0, 2[

y[i+1] = PC
(

x[i] − τ
∑L
ℓ=1 M

∗
ℓ
A∗v

[i]
1,ℓ − τH∗v

[i]
2 )

x[i+1] = ρiy
[i+1] + (1− ρi)x

[i]

For ℓ = {1, . . . , L}
⌊

u
[i]
1,ℓ = v

[i]
1,ℓ + σAMℓ(2y

[i+1] − x[i])

u
[i]
2 = v

[i]
2 + σH(2y[i+1] − x[i])

STEP 2 –Proximal operator computation
For ℓ = {1, . . . , L}
⌊

p
[i+1]
1,ℓ = u

[i]
1,ℓ − σ

(

prox 1
σ
ψn(·+b,z

(n)
ℓ

)

(

u
(n)[i]
1,ℓ /σ

))

1≤n≤N

p
[i+1]
2 = u

[i]
2 − σ proxλ

σ
φ

(

u
[i]
2
σ

)

STEP 3 –Update
For ℓ = {1, . . . , L}
⌊

v
[i+1]
1,ℓ = ρip

[i+1]
1,ℓ + (1 − ρi)v

[i]
1,ℓ

v
[i+1]
2 = ρip

[i+1]
2 + (1− ρi)v

[i]
2

STEP 4 – Incrementi = i+1 and return to STEP 1 until convergence.

Fig. 1. Proposed algorithm

Figure 4 presents the results corresponding to the WF Mi-
croscopy deconvolution and Figure 5 is dedicated to the SIM recon-
struction. We compare the reconstruction results in term ofSNR and
SSIM [11] (the closest from 1 the value is the best is the reconstruc-
tion) for two data terms and two regularization terms corresponding
respectively toψn andφ(H ·). “KL” stands for the Kullback-Leibler
data fidelity term expressed in (2). “Quadratic” models the quadratic
fidelity term that isψn(·, z(n)ℓ ) =

(
· −z(n)ℓ

)2
. “Tikhonov” regu-

larization stands forh = ‖ · ‖2, H modelling a Laplacian operator,
andK = N . “TV” corresponds to the regularization term described
in (3). One can note that the SIM results associated with “L2 +
Tikhonov” leads to the results obtained by Orieux et al. [4],which
appears to be the state-of-the-art in term of SIM reconstruction. For
this specific smooth criterion the proposed algorithm wouldproba-
bly under-perform gradient-based algorithms which incorporate the
Lipschitz differentiability assumption of the criterion.

Algorithm 1 can be fitted for dealing with WF deconvolution. It
requires to setL = 1,M1 = Id , andz1 =

∑L

ℓ=1 zℓ.
For each test,2000 iterations are used,τ = 10, ρi ≡ 1, and

the regularization parameterλ∗ is chosen as the one maximizing the
SNR in a range of[10−5, 105]. The first row in Figure 4 (resp. 5)
presents the evolution of the SNR w.r.tλ. For each optimal estimate,
we computed a radially averaged power spectrum as show on Fig. 2.

In Figs. 4 and 5, the comparison in terms of SNR and SSIM be-
tween WF deconvolution and SIM reconstruction leads to the con-
clusion that, indeed, SIM provides a much higher resolution. In
Fig. 2 we can clearly notice that high frequencies are betterpreserved
using a SIM formalism and an adapted criterion (cf. dashed red and
green plots in Fig. 2). On the other hand, Figure 5 (g) illustrates the
performances of a SIM reconstruction based on a KL-TV criterion.
Such a criterion outperforms usual “L2 + Tikhonov” criterion.

5. CONCLUSION

In this paper, we proposed a proximal algorithm in order to test sev-
eral criteria for the restoration of SIM images. It clearly appears that
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Fig. 2. Radially averaged power spectrum of the estimates obtained
for the described methods.

considering suited functionals (such as TV that models sharp fea-
tures or the Kullback-Leibler divergence, which aims to better deal
with Poisson noise) improves the SIM restoration results. In the fu-
ture, we plan to extend this approach to 3D microscopy and to real
images. Finally, other type of functionals could also be explored in
this context.
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(a) Ground truth (b) Ground truth (zoom) (c) Simulated WF (d)SimulatedSIM
imageℓ = 1

Fig. 3. Data
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(a) Quadratic + Tikhonov (b) Quadratic + TV (c) KL + Tikhonov (d) KL + TV
Signal-to-noise ratio w.r.t different values ofλ (log scale)
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Fig. 4. Wild Field results
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Fig. 5. SIM results


