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Abstract The paper deals with the estimation of the
maximal sparsity degree for which a given measurement

matrix allows sparse reconstruction through ℓ1-mini-

mization. This problem is a key issue in different appli-

cations featuring particular types of measurement ma-

trices, as for instance in the framework of tomography
with low number of views. In this framework, while the

exact bound is NP hard to compute, most classical cri-

teria guarantee lower bounds that are numerically too

pessimistic. In order to achieve an accurate estimation,
we propose an efficient greedy algorithm that provides
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an upper bound for this maximal sparsity. Based on
polytope theory, the algorithm consists in finding sparse

vectors that cannot be recovered by ℓ1-minimization.

Moreover, in order to deal with noisy measurements,

theoretical conditions leading to a more restrictive but

reasonable bounds are investigated. Numerical results
are presented for discrete versions of tomography mea-

surement matrices, which are stacked Radon transforms

corresponding to different tomograph views.
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matrix · sparsity · greedy algorithm

1 Introduction

The main goal of compressed sensing is the design of

sensing matrices A ∈ R
M×N with M ≪ N for which

every s-sparse signal x ∈ R
N can be recovered from

the observations y = Ax + n where n ∈ R
M denotes

an additive perturbation [14]. The design consists in
specifying a number M of observations as few as possi-

ble to ensure the reconstruction of all (or most of) the

s-sparse signals.

Most results in the literature provide sufficient con-
ditions for the correct reconstruction of signals up to

some theoretically guaranteed sparsity, in terms of quan-

tifiable properties of a matrix A, such as the coherence

[14] or the RIP constants [8]. Since such conditions

are not necessary, this guaranteed sparsity is in gen-
eral lower than the actual maximal sparsity achievable

for A (this latter is NP-hard to compute for an arbi-

trary matrix). The gap between the guaranteed spar-

sity and the actual sparsity is a challenging issue in
practical applications. While it seems to be less signif-

icant for some particular classes of matrices, like those

having random normalized columns [7,25], it might get
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prohibitively large for other types of matrices, such as

those issued from tomography applications [27]. In such

cases, though the aforementioned criteria give very pes-

simistic sparsity estimates, correct reconstruction can

still be achieved for signals that are significantly less
sparse than predicted.

In the paper we tackle this problem through an al-

ternative approach that rather provides upper sparsity

bounds instead of lower bounds. More precisely, we pro-
pose an algorithm that performs, in the case of an ar-

bitrary matrix A, a (relatively) fast search for sparse

vectors for which the reconstruction fails. The proposed

algorithm is an efficient extension for arbitrary matri-

ces of a greedy algorithm that was given by Dossal et
al in [16] in the case of matrices with random normal-

ized columns. The new version of the algorithm is used

to numerically study discrete models of tomography

sensing matrices, in comparison with standard meth-
ods that provide quite pessimistic sparsity bounds. Re-

constructing vectors with positive elements is also dis-

cussed, as being of interest in the tomography analy-

sis of certain industrial materials having an inherent

sparse structure. We also adress the problem of spar-
sity bounds relatively to the robustness to noise in the

reconstruction.

Let us recall the standard framework in compressive

sensing. In the noiseless case (n = 0), the fact that any
s-sparse vector x can be recovered from the measure-

ment y = Ax amounts to saying that A is one-to-one

when restricted to the set of the s-sparse vectors. The

latter set can be viewed as the closed ball B0(s) of ra-

dius s in R
N under the pseudo-norm

‖x‖0 = #{i : xi 6= 0} x = (xi)1≤i≤N ∈ R
N .

This one-to-one behaviour of A means that any x in

B0(s) is the unique solution of the problem

Argmin
x∈RN

‖x‖0 subject to y = Ax. (1)

In the noisy case n 6= 0, the optimization problem is
defined as:

Argmin
x∈RN

‖x‖0 subject to ‖y −Ax‖2 ≤ ǫ, (2)

for suitably chosen ǫ > 0. Due to the non-convexity

of the problems (1) and (2), solving them by conven-

tional optimization techniques does not guarantee, in

general, the convergence to the global minimizer (see

a contrario [4]). Moreover, a straightforward approach
using combinatorial techniques yields a NP-hard prob-

lem. The standard workaround is to convexify (2) by

minimizing an ℓ1-norm instead of the ℓ0-pseudo-norm,

i.e. by considering the optimization problem

Argmin
x∈RN

‖x‖1 subject to ‖y −Ax‖2 ≤ ǫ. (3)

Unlike ℓ0-minimization, many tractable algorithms have

been proposed to solve problem (3) or its Lagrangian

formulation (see [9,2] and references therein), i.e.

Argmin
x∈RN

1

2
‖y −Ax‖22 + γ‖x‖1, (4)

for suitably chosen γ > 0. Since the problems (2) and
(3) are not equivalent, a key question is when a sparse

vector x is the unique solution of the ℓ1-minimization

problem. If this happens, we state that x is ℓ1- identifi-

able. In particular, if the ℓ1 and ℓ0 problems both have

the unique solution x for any x in B0(s), the matrix A

is said to verify the ℓ1/ℓ0 - equivalence up to the spar-

sity s. These properties stand at the core of compressive

sensing and the literature offers various techniques to

handle this problem [14,21,13,19,8,33,11]:

– A general characterization of the ℓ1/ℓ0 equivalence
in the noiseless case is given by Donoho [13] via

the notion of neighbourliness from polytope theory;

Its dual interpretation is known as the Null Space

Property [21,22].
– Sufficient conditions for ℓ1/ℓ0 equivalence are for-

mulated by Donoho and Huo in terms of matrix co-

herence [14], and, alternatively, by Candès et al. [8]

via the Restricted Isometry Property (RIP);

– Sufficient conditions for ℓ1-identifiability are given
by Fuchs [19] and Tropp [33] using first order neces-

sary conditions and properties of the sub-differential

of the ℓ1 norm.

Such criteria may include robustness to noise [18,8,33].

Unfortunately, for a given arbitrary matrix A, the main
downside is that their numerically evaluation is NP-

hard. This is why most results in the literature rather

focus on emphasizing classes of matrices that theoret-

ically match such criteria. Typical and widely studied

examples are classes of matrices with random normal-
ized columns, which are shown to match RIP-based

criteria with high probability, due to their particular

eigenvalue distribution [8]. Other examples and inter-

esting proposal can be found in [6], [12], [5], [23], or
[24].

Nevertheless, various applications may naturally con-

fine the sensing design to particular classes of matrices

that do not fit into these frameworks. This happens for

instance in tomography applications, where the sensing
matrices consist, within discrete models, in vertically

stacked discrete Radon transforms, taken for different

polar angles. The design itself is reduced in this con-

text to choosing a suitable set of polar angles. Numer-
ical results suggest that these tomography-related ma-

trices tend to be neither RIP- nor coherence-friendly,

in the sense these criteria yield sparsity lower-bounds
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that are too pessimistic. An alternative approach con-

sists in finding upper-bounds instead, which amounts,

for a given matrix A, to search for unidentifiable vec-

tors as sparse as possible. This strategy was used in

the work of Dossal et al [16] in the case of random ma-
trices with normalized columns. The proposed greedy

algorithm is related to Donoho’s characterization on

the ℓ1/ℓ0-equivalence in terms of polytope neighbourli-

ness [13].

In the paper we extend this greedy algorithm in [16]

to the case of a general matrix A, without a significant
complexity increase. We do this in order to numerically

study tomography-issued sensing matrices. Since this

algorithm covers only the noiseless case, we also pro-

pose a way to estimate an approximation of the sparsity

degree ensuring ℓ1-recovery of sparse signals in presence
of noise. This latter approach is related to the works of

Fuchs [18] and Tropp [33] based on the notion of exact

recovery coefficient (ERC).

Notations: Throughout the paper, vectors are denoted

by bold lower case letters and matrices by upper case
ones. We denote (ei)1≤i≤N the canonical base in R

N .

The i-th coordinate of a vector x ∈ R
N is denoted

by xi and the i-th column of a matrix A ∈ R
M×N is

denoted by ai. We denote by AI ∈ R
M×|I| the matrix

formed by taking the columns of A indexed by I ⊂
{1, . . . , N} and by xI = (xi)i∈I ∈ R

|I|. We define for

p ≥ 1 the ℓp-norm of a vector x ∈ R
N as ‖x‖p =(∑N

i=1 |xi|p
)1/p

. Finally, the notation A+ stands for

the Moore-Penrose inverse of A, and PA := AA+ will
denote the orthogonal projector onto the range of A.

2 Fast searching non-identifiable vectors for

arbitrary matrices.

In [16], Dossal et al. proposed a greedy algorithm al-

lowing a fast search of ℓ1-unidentifiable vectors for a
sensing matrix A having normalized random columns.

In this section an efficient extension of this algorithm

is given for an arbitrary sensing matrix A. This gives

in particular an upper bound for the maximal sparsity

for which A still has the ℓ1/ℓ0 - equivalence property.

Let us first recall Donoho’s characterization in [13]

and the related greedy algorithm in [16]. We denote B1

the closed unit ball of R
N relatively to the ℓ1-norm.

The ball B1 is a polytope having the signed multiples

of the canonical base as vertices, and in which any face

is a simplex. Let P ⊂ R
M be the image of B1 under the

operatorA, also called the quotient polytope. Obviously

P is the convex hull of the 2N points (±ai)1≤i≤N in

R
M , which are the images through A of the vertices of

B1. In general, these points might not be all vertices of

P , and, similarly, A might not carry faces of B1 onto

faces of P . If however this happens up to an affine di-

mension say s, the polytope P is called s−neighbourly.

Donoho shows that the s-neighbourliness of P is in fact
equivalent to the ℓ1/ℓ0 equivalence property of A up to

the sparsity s.

For a given matrix A, the least integer s for which

either of the statements above fails is called by Donoho

the ℓ1/ℓ0 - equivalence breakdown point (EPB) of A. As
one can see above, an exact computation of the EBP of

an arbitrary matrix is NP-hard, because it involves to

examine the images through A of all the faces of B1 up

to some affine dimension s.

However, searching for upper bounds of the EBP is
more feasible. According to the above characterization,

all one needs to do is find, by whatever means, faces of

B1, of affine dimension as low as possible, that are not

sent by A onto faces of P , but rather into its convex
interior. In order to find such face images, although not

rigorously, it is natural to look for them as “inwards”

into the polytope P as possible, meaning as close to the

origin (the center of P ) as possible.

This is the principle on which the greedy algorithm

in [16] is based, and which will be discussed in the fol-
lowing. Let k ≥ 1 and fix a (k− 1) face of B1. This can

be done by fixing a sign vector σ whose support has

cardinal k and defining the (k − 1)-face of B1 denoted

Fσ = Conv{σiei : i ∈ Supp(σ)},

which is carried by A onto the subset of P :

AFσ = Conv{σiai : i ∈ Supp(σ)}.

In order to precise the distance between such a set and

the origin in R
M let us consider the following definition.

For any x in R
N with support say I, let

d(x) = (A+
I )

T sign(xI), Dx = ‖d(x)‖2. (5)

Then the distance from the origin to AFσ is 1/Dσ.

Moreover, the orthogonal affine projection of the origin

onto AFσ is the vector d(σ)/D2
σ. Note also that, for a

given x in R
N , both d(x) and the ℓ1-identifiability of x

depend only on the sign of x. This distance is illustrated

in Figure 1.

According to these facts, the greedy algorithm pro-

posed by Dossal et al. [16] looks for sign vectors x that

are not ℓ1-identifiable among those with the largest pos-
sible values of Dx, i.e. corresponding to faces of P as

close to the origin as possible. This algorithm is recalled

in Algorithm 1.
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Fig. 1 Illustration of 1
‖d(x)‖2

: Distance from the cen-

ter of the polytope to the hyperplane Hx going through
{sign(xi)ai}i∈I where I ⊂ {1, . . . , N}).

More specifically, each iteration (i.e. for s = 1, 2, . . . )

constructs a set, denoted Σ
(s)
max, of s-sparse vectors with

the largest Dx values, which are candidates to uniden-

tifiability. At each iteration, the new candidate set of
s-sparse vectors Σ

(s)
max is built from the previous vector

set Σ
(s−1)
max (e.g. set of vectors with a sparsity degree

s − 1). It results that each step looks for the s-sparse

vectors x̃ such that x̃ = x + oei where x denotes a
(s-1)-sparse vector from Σ

(s−1)
max , o ∈ {−1,+1} and ei

is a Dirac vector at the location i. In Algorithm 1, the

notation argmax[R] (resp. argmax[Q]) denotes the R

pairs (i, o) which correspond to the R largest values of

‖d(x + oei)‖2 (resp. the Q vectors x yielding the Q
largest values of ‖d(x)‖2).

Algorithm 1 [16] - Extract sparse vectors with large

Dx.
Set the pruning rate Q and the extension rate R,
Set the sparsity degree S,

Set Σ
(1)
max = {e1, . . . , eN},

For s = 2, . . . , S

Σmax = ∅,

For every x ∈ Σ
(s−1)
max

(Î, ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x + oei)‖2

For j ∈ {1, . . . , R}
⌊ Σmax = Σmax ∪ {x + ôjeÎj

}

Set Σ
(s)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

The complexity of Algorithm 1 is given in the fol-

lowing proposition.

Proposition 1 For every sparsity degree s > 2, the

complexity of the s step in Algorithm 1 is

O
(
2Q(N − s+ 1)(N(s+ 1) + s3)

)
≪ O(2sCN

s ).

Note that the majorant above represents the complexity

of the s step in the exact computation of EBP (A).

Proof. Let x belongs to the set Σ
(s−1)
max which denotes a

set of Q vectors of size s−1. The computation of ‖d(x+
oei)‖2 has a complexity of O(N+Ns+s3). Moreover, in
order to extract the R vectors with the largest Dx, the

computation of the norm has to be proceeded 2Q(N −
(s− 1)) times.

Albeit being polynomial, the computational cost of

each iteration stays too high to be used in realistic ex-

periments, mainly due to the fourth degree term inNs3.

However, it is showed in [16] that this can be much im-

proved under the assumption that the matrix A has
random normalized columns. Indeed, one can write [16,

Proposition 4]:

‖d(x̃)‖22 = ‖d(x)‖22 + ‖ãj‖22| 〈d(x),aj〉 − o|2 (6)

where x denotes a s-sparse vector with a support I ⊂
{1, . . . , N}, o ∈ {−1,+1}, x̃ denotes a (s+1)-sparse

vector with the support I∪{j} where j ∈ {1, . . . , N}\I,
and ãj ∈ Span (ai, i ∈ I ∪ {j}) such that 〈ãj ,aj〉 = 1,

and, for every i ∈ I, 〈ãj ,ai〉 = 0. Under the additional

assumption on the columns of A, the norms ‖ãi‖22 are

close to 1, so their computation in (6) can be avoided.

This leads to an accelerated version of Algorithm 1 for
random matrices with normalized columns, which will

be refereed as Algorithm 1-bis in the following.

The complexity of this accelerated version of Algo-
rithm 1 is given below.

Proposition 2 For every sparsity degree s > 2, the

complexity of Algorithm 1-bis is

O
(
Q(N(s− 1) + (s− 1)3) + 4QN(N − (s− 1))

)
.

Proof. Let x belongs to the set Σ
(s−1)
max which denotes

a set of Q vectors of size s − 1. The computation of

d(x) has a complexity of O(N(s − 1) + (s− 1)3). This

computation has to be realized Q times. Moreover, in

order to extract the R vectors with the largest Dx, the
computation of ‖d(x)‖22 + | 〈d(x),ai〉 − o|2, which has

a complexity of O(2N), has to be proceeded 2Q(N −
(s− 1)) times.

In the following we propose an efficient extension
of Algorithm 1 in the case of an arbitrary matrix A In

this general case, the accelerated version of Algorithm 1

can no longer be used due to the fact that the norms

‖ãi‖22 can no longer be discarded. However, in order to
reduce the computational cost of Algorithm 1 (stated

in Proposition 1), we consider Eq. (6) and derive the

closed form of ‖ãi‖22.

Proposition 3 Let j ∈ {1, . . . , N} \ I and ãj ∈ R
M

such that

1. ãj ∈ Span (ai, i ∈ I ∪ {j}),
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2. For every i ∈ I, 〈ãj ,ai〉 = 0,

3. 〈ãj ,aj〉 = 1,

then, ãj can be expressed as follows:

ãj =
aj − PAI

aj

〈aj ,aj − PAI
aj〉

. (7)

Proof. For every ãj ∈ R
M , it exists κ ∈ R and a ∈ R

M

such that ãj = κa. Assumptions (i) and (ii) yield to

a = aj − PAI
aj . (8)

From Assumption 3., we can write 〈κa,aj〉 = 1, and
then

κ =
1

〈a,aj〉
. (9)

The combination of (8) and (9) leads to (7).

The computation of d(x̃) can thus be expressed as

a function of d(x) and ãj . For each sparsity degree s in

Algorithm 1, this expression leads to the computation

of Qmatrix inversions of size (s−1)×(s−1) rather than

Q×(N−s) matrix inversions of size s×s. The proposed
algorithm is detailed in Algorithm 2 and the associated

computational cost is specified in Proposition 4.

Algorithm 2 Extract sparse vectors with large Dx for

deterministic matrices.
Set the pruning rate Q and the extension rate R,
Set the sparsity degree s,

Set Σ
(1)
max = {e1, . . . , eN},

For s = 2, . . . , S

Σmax = ∅,

For every x ∈ Σ
(s−1)
max

Compute the matrix inversion involved in (7)

(Î, ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖22| 〈d(x),ai〉 − o|2

For j ∈ {1, . . . , R}
⌊ Σmax = Σmax ∪ {x + ôjeÎj

}

Set Σ
(s)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 4 For every sparsity degree s > 2, the

complexity of the s-th step in Algorithm 2 is

O
(
Q(N(s−1)+(s−1)3)+2Q(N − (s−1))(N(s+4))

)
.

Proof. Let x belongs to the set Σ
(s−1)
max which denotes

a set of Q vectors of size k − 1. The complexity of

AI(A
∗
IAI)

−1 has a complexity of O(N(s−1)+(s−1)3).

This computation has to be done Q times. Moreover,

in order to extract the R vectors with the largest Dx,
the computation of ‖d(x)‖22+ ‖ãi‖22| 〈d(x),ai〉− o|2 re-

quires 2N + N(s + 2) operations which are proceeded

2Q(N − (s− 1)) times.

Note that this complexity is significantly lower than

in Algorithm 1, as it no longer has the fourth degree

term.

Remark 1 Note that the “minimum version of Algo-

rithm 2” is presented in Algorithm 3. This algorithm
makes it possible to extract sparse vectors with small

Dx, which leads to ℓ1-identifiable vectors. The complex-

ity of each iteration is similar to Algorithm 2.

Algorithm 3 Extract sparse vectors with small Dx for

deterministic matrices.
Set the pruning rate Q and the extension rate R,
Set the sparsity degree s,

Set Σ
(1)
max = {e1, . . . , eN},

For s = 2, . . . , S

Σmin = ∅,

For every x ∈ Σ
(s−1)
min

Compute the matrix inversion involved in (7)

(Î, ô) = argmin[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖22| 〈d(x),ai〉 − o|2

For j ∈ {1, . . . , R}
⌊ Σmin = Σmin ∪ {x+ ôjeÎj

}

Set Σ
(s)
min = argmin[Q]

x∈Σmin

‖d(x)‖2

Remark 2 In practice the inverse of A∗
IAI can be com-

puted in different ways, with time-computational cost

less than s3 as the sparsity s increases. To do so, one

could use for instance the Schur decomposition to com-
pute inverses at the s-th step from the inverse already

computed at the step s − 1. However, such a solution

would require to keep in memory Q matrices (A∗
IAI)

−1

of size s at each step s of the algorithm. Since such
trade-offs may or not be beneficial for various imple-

mentations, we evaluate, as a reference, the computa-

tional cost for Algorithms 1, 1-bis and 2 with the s3

term, corresponding to a standard (non-iterative) in-

version for each step s.

Remark 3 In Figure 2 we highlight the behaviour of the

complexity according to different sparsity regimes. The

complexity of Algorithm 1 is plotted in black, the com-

plexity for the accelerated version in the random case

in represented by the blue line and the red one denotes
the complexity of proposed algorithm i.e. Algorithm 2.

It clearly appears that for small regime of sparsity i.e.

s << N Algorithm 1 and 2 have a similar behaviour

while for s greater than
√
N Algorithm 2 outperforms

Algorithm 1. The same behaviour is observed for dif-

ferent values of N . In this figure N = 2500.

Algorithm 2 allows us to extract the s-sparse vec-

tors with the largest value of Dx. It results that if the
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Fig. 2 Graphical comparison of the complexities as a fonc-
tion of the sparsity when N = 2500. The complexity of Algo-
rithm 1 is plotted in black, the complexity for the accelerated
version in the random case in represented by the blue line and
the red one denotes the complexity of the proposed algorithm
i.e. Algorithm 2.

vector x ∈ Σ
(s)
max having the largest Dx value cannot be

recovered by ℓ1-minimization, a fair estimation of the

sparsity degree s for which every s-sparse vectors can

be reconstructed by ℓ1-minimization from y = Ax is

the largest s′ < s. The algorithm to extract this ap-
proximated sparsity is summed up by Algorithm 4.

Algorithm 4 Extract sparsity.
0- Set s = 2.
1- Extract Σ

(s)
max with Algorithm 2.

2- Test the recovery of the vector x ∈ Σ
(s)
max with the largest

Dx value: Run a ℓ1-minimization algorithm with y =
Ax in order to obtain x̂.

3- If x̂ = x, set s := s+ 1 and go to Step 1.
If x̂ 6= x, an good approximation of the sparsity degree
for which every s-sparse vectors can be recovered by ℓ1-
minimization is the largest s′ < s.

3 Noisy case

As mentioned in the introduction, using first order nec-

essary condition and the sub-differential of the ℓ1 norm,
Fuchs [19] and Tropp [33] derived sparse ℓ1-recovery

conditions in the noisy case. In this section we extend

their results in order to control the reconstruction error

in the noisy case. The first result provides guarantees

on the support of the solution while the second one
does not have this support guaranty, but it takes into

account the sign of the solution, which may allow to

relax the maximal sparsity upper bound.

The arguments in the proofs of these results are sim-
ilar to the ideas raised in [33], but since the context here

is slightly different we give the detailed proofs for sake

of completeness.

Proposition 5 Let I ⊂ {1, . . . , N}, |I| = s, such that

AI is full rank, and let y = Ax+n for some vector x

with support I. Denote J = {1, . . . , N} \ I,

ERC(I) = max
j∈J

‖(A∗
IAI)

−1A∗
Iaj‖1, (10)

and suppose that:

(i) ERC(I) < 1,

(ii) for every ε > 0 such that γ =
maxj∈J ‖aj‖2

1−ERC(I) ε and

‖n‖2 < ε.

Then the ℓ1 minimization problem (4) has a unique so-

lution x̂ with the following properties:

1. the support of x̂ is included in the support of x,
2. the error resulting from the noise verifies:

‖x̂− x‖2

≤
(
λmin(A

∗
IAI)

)−1

(
‖A∗

In‖2+
√
|I|maxj∈J ‖aj‖2
1− ERC(I)

ε

)
.

Proof. We first consider the problem:

û = argmin
u∈R|I|

1

2
‖y −AIu‖22 + γ‖u‖1, (11)

and let ũ ∈ R
K be the extension of the vector û in R

N

by adding zeros at the locations J = {1, . . . , N} \ I.
Considering assumptions (i) and (ii), we want to

prove that ũ = x̂. Let I0 ⊂ I denote the non-zero
components of ũ and J0 = {1, . . . , N} \ I0. According
to Eq. (11), we have

A∗
I0(y −AI û) = γ sign(ûI0), (12)

and

(∀i ∈ I ∩ J0), |a∗
i (y −AI û)| ≤ γ. (13)

The combination of Eqs. (12) and (13) leads to

A∗
I0(y −Aũ) = A∗

I0(y −AI û)

= γ sign(ûI0),

= γ sign(ũI0), (14)

and, for every i ∈ I ∩ J0,

|a∗
i (y −Aũ)| = |a∗

i (y −AI û)| ≤ γ. (15)

Let us also note that

|a∗
j (PAI

(y)−AI û)| ≤ γERC(I). (16)
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In fact, for any z in the range of AI one has

max
j /∈I

|a∗
jz| = max

j /∈I
|a∗

jAI(A
∗
IAI)

−1A∗
Iz|

≤ max
j /∈I

∥∥a∗
jAI(A

∗
IAI)

−1
∥∥
1

∥∥A∗
Iz
∥∥
∞

= ERC(I)
∥∥A∗

Iz
∥∥
∞

(17)

This immediately implies (16) by taking z = PAI
(y)−

AI û and using (14).

Now, for every j ∈ J ,

|a∗
j (y −Aũ)| = |a∗

j (y −AI û)|
= |a∗

j

(
PAI

(y) + PAI
(y)−AI û

)
|

≤ |a∗
jPAI (n)|+ |a∗

j

(
PAI (y)−AI û

)
|

≤ |a∗
jPAI

(n)|+ γERC(I)

≤ ‖aj‖2‖PAI
(n)‖2 + γERC(I)

≤ εmax
j∈J

‖aj‖2 + γERC(I) (18)

Eq. (18) and assumption (ii) yield, for every j ∈ J ,

|a∗
j (y −Aũ)| ≤ γ (19)

and from Eqs. (13), (14), (19), and AI injectivity, we
can conclude that ũ = x̂.

To check that ũ is unique, suppose ṽ is another

solution of the ℓ1-minimization minimization problem
(4). Then y = Aũ = Aṽ and, moreover, both ũ and

ṽ are supported on I. But there A coincides with AI ,

which is full rank, thus ũ and ṽ necessarily coincide.

The last part of this proof concerns the control of

the error in ℓ2-norm. Let ỹ denote the orthogonal pro-

jection of y onto the range of AI ,

ỹ = PAI
y, (20)

and let

x̃ = (A∗
IAI)

−1A∗
Iy

= xI + (A∗
IAI)

−1A∗
In. (21)

SinceAI is full rank, x̃ is the unique vector whose image

by AI is ỹ. Locally, the solution of the minimization

problem (11) is such that:

û = (A∗
IAI)

−1A∗
Iy − γ(A∗

IAI)
−1s, (22)

where s = (sign(ũi))i∈I . Regarding Eq. (22), we can

write

‖x̃− û‖2 ≤ γmax
s,I

‖(A∗
IAI))

−1s‖

≤ γ
√
|I|(λmin(A

∗
IAI))

−1. (23)

Finally,

‖x− x̂‖2 = ‖x− ũ‖2
= ‖xI − û‖2
≤ ‖xI − x̃‖2 + ‖x̃− û‖2
≤ ‖(A∗

IAI)
−1A∗

In‖2 + γ
√
|I|(λmin(A

∗
IAI))

−1

Considering assumption (ii) and taking into account

that

‖(A∗
IAI)

−1A∗
In‖2 ≤ (λmin(A

∗
IAI))

−1‖A∗
In‖2, (24)

the proof is complete.

The second result gives also a bound of the error
between the objective vector x and the solution of (2),

under a weaker assumption than ERC < 1.

Proposition 6 Let I ⊂ {1, . . . , N}, |I| = s, such that

AI is full rank, y = Ax + n for some x with support

I and let J = {1, . . . , N} \ I. If, for every j ∈ J ,

|a∗
jd(x)| < 1, with d(x) = AI(A

∗
IAI)

−1 sign(xI),

then, all the solution x̂ of the ℓ1-minimization prob-

lem (4) satisfy

‖x̂− x‖2 ≤
(
‖n‖2 +

γ

2
‖d(x)‖2

)(
2‖(A∗

IAI)
−1A∗

I‖2

+
1 + ‖(A∗

IAI)
−1A∗

I‖2‖AJ‖2
1−maxj∈J |a∗

jd(x)|
(‖n‖2

γ
+

‖d(x)‖2
2

))

Proof. It follows [20, Proposition 3.13] with the dual
certificate η = d(x), δ = ‖n‖2, and C = γ

‖n‖2
.

Let us remark that, in contrast to Proposition 5,

the sign of x appears in the hypothesis of the latter

proposition, which makes it a weaker requirement than

ERC < 1. This means that the maximal sparsity for
which the condition in Proposition 6 holds is higher

than the maximal sparsity required so that the exact re-

covery coefficient be less than 1. As such, whenever one

looks only for positive solutions x (as in tomography
applications where data are positive) the two proposi-

tions give similar sparsity bounds.

One can also remark that Proposition 6 does not

require an assumption on γ contrary to Proposition 5.

The consequence of this is twofold: first, the minimizer
in Proposition 6 is not unique, unlike Proposition 5,

and second, there is no guarantee on partial support

recovery in Proposition 6, while this is true for Propo-

sition 5.
Moreover, one can note that Proposition 6 gives a

bound on the distance of a point x to the set of mini-

mizers, which is non-empty.
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4 Experimental results for tomography-like

experiments

In this part, we evaluate the theoretical results we have

proposed in the tomography context. The goal consists

to reconstruct an image from its line integral measure-

ments i.e. views. One would like to reconstruct a high-

resolution image with a minimal set of measured data.
This question was already addressed in a seminal work

by Cormack: “In practice one can make only a finite

number of measurements with beams of finite width,

and the question which arises is how many observations
should be made, and how should they be related to each

other in order to reconstruct the object” [10]. Cormack

explored geometric arguments while further works used

two-dimensional sampling theory [26,29,17]. Here, we

address this question from a compressed sensing point
of view.

We denote θ = (cosϕ, sinϕ) the unit vector in R
2

with polar angle ϕ and θ⊥ = (cosϕ,− sinϕ). We as-

sume that the image to be reconstructed x ∈ C∞
0 (Ω),

i.e. x is infinitely differentiable and vanishes outside the
unit disk Ω of R2. The 2-D Radon transform maps a

density function x into its line integral such that:

Rx(ϕ, s) =

∫

R

x(sθ + tθ⊥)dt. (25)

The goal of X-ray tomography is to reconsruct an ap-

proximation of x from sampled values of Rx.

In the following, the sensing matrix A consists in
vertically stacked discrete Radon transforms with the

MATLAB c© implementation. The sizeN ofA is the size

of the discrete data measured. The number M of lines

of A is the product between the number of polar angles

(views) and the number of beams in the discrete Radon
transform, taken at about twice the data’s resolution.

As stated in the previous sections, we simplify the

real noise degradation model, which is multiplicative,

by an additive noise in y = Ax+n. From a variational

point of view, taking into account Poisson multiplica-
tive noise may lead to replace the quadratic data fidelity

term in (2)-(4) with a Kullback-Leibler divergence. This

can be explained through a MAP formulation where

the likelihood models Poisson distribution. However for
a low noise level (small value of σ), the improvement

obtained by considering the Poisson antilog-likelihood

rather than ℓ2 norm is not clear [31]. In our experiments

we focus on cases where the noise has a small variance.

Dealing with ℓ2-norm rather than Kullback-Leibler di-
vergence does not appear unrealistic.

The numerical results are organized as follows: (i)

we first compare the complexity of the proposed algo-

rithm to the state-of-the-art algorithms through sim-

ulated data, (ii) we compare the sparsity bound esti-

mated by the proposed algorithm to the sparsity lower

bounds given by classical methods, based on coherence

and ERC, (iii) we focus on the performances of a uni-

form sampling versus a random sampling for a tomog-
raphy measurement matrix, defined from a uniform or

random selection of the polar angles, and (iv) we finally

use the bound in Proposition 5 in order to estimate an

upper sparsity bound for ℓ1-recovery in the noisy case.

4.1 Evaluation of the greedy algorithms

First, the performance of the proposed greedy algo-

rithm in terms of computational complexity and of max-

imum extracted Dx values is evaluated.

We compare the original algorithm (Algorithm 1),

the accelerated version of previous one designed for ran-
dom matrices (Algorithm 1-bis), and the proposed fast

version devoted to the deterministic matrices (Algo-

rithm 2). The evaluation is carried out both in a con-

text of tomography and of random matrices, i.e. A de-

notes either a Radon transform where N = 20×20 and
M = 198 (that corresponds to 4 angles) or a random

matrix with the same size. The pruning rate Q and the

extension rate R are fixed to Q = N and R = 1. The

results are presented in Figure 3.

One can observe that in a deterministic context (top

figures), the extraction performance i.e. find sparse vec-
tors with large Dx (left figure) of Algorithm 2 are sim-

ilar to those of Algorithm 1 with a much better con-

vergence rate (right figure) while the extraction perfor-

mance is better than the accelerated version considering
Algorithm 1-bis. The saving computational time can be

counted up in minutes. However, note that in a random

context (bottom figures), the proposed approach leads

to smaller improvement. To sum up, the obtained re-

sults illustrate the relevance of the proposed algorithm
in order to easily handle deterministic matrices with

higher dimensionality.

4.2 Use Algorithm 2 in order to deal with noisy data

and positivity

It appears that some materials which requires to be

studied through a tomographic process exhibit sparse

properties, which means that the vector x is positive.

The goal of this experiment is to design the measure-

ment matrix A i.e. find the adapted number of views
according to a given sparsity degree. Due to the posi-

tivity of the data, we proceed Algorithm 2 with o = +1.

The experiments have been held for images of size

N = 32× 32. We evaluate the performance for different
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Fig. 3 Algorihm 1 (solid black), Algorithm 1-bis (dash-dotted blue), Algorithm 2 (dash-dotted red). The top figures present
the results obtained with a tomography-like matrix while the bottom figures illustrate the results for a normalized random
matrix. On the left, the figures give the performance in term of maximum extracted Dx values while the right figures present
the performance in term of computational time.

designs of the sensing matrix. For instance, we consider

the case where the angle between two views is fixed but

also when the angle are randomly selected. Moreover,
the case of 2 views (M = 98), 4 views (M = 196), and 6

views (M = 294) are studied. The pruning rate Q and

the extension rate R are fixed to Q = N and R = 1.

In these experiments the ℓ1-minimization algorithm

is FISTA [3] and the stopping criterion takes in con-

sideration the evolution of the relative error between x

and x̂ (< 10−3) as well as the iteration number (≤ 104).

Comparison with the state-of-the-art methods

In Table 1, we compare the sparsity degree extracted

with the proposed method i.e. Algorithm 4 and the

sparsity obtained with the state of the art methods (co-

herence and ERC) in the noiseless case.

The first row presents the sparsity obtained with

the coherence method [19], computed as in [21, Theo-
rem 1]. The second row gives the sparsity obtained in

order to have ERC(I) < 1 (cf. Proposition 5). Note

that ERC(I) is NP-hard to compute but here we con-

sider the support I associated to x ∈ Σ
(s)
max with the

largest Dx value, which is extracted with Algorithm 2.

The last row presents the sparsity degree extracted with

the proposed approach described in Algorithm 4. Note

that the results obtained with RIP are not presented

here because it leads to a sparsity smaller than 1.

The proposed method allows us to reach higher spar-

sity degree. From this table, it is possible to know the

best design of A according to a given sparsity degree.
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For instance, according to a sparsity of 15, the best

design for the tomographic matrix involves 4 views.

2 views 4 views 6 views
M = 98 M = 196 M = 294

Sparsity 1 1 2
(Coherence)

Sparsity 4 10 11
(ERC < 1)

Sparsity 10 32 50

(Proposed method)

Table 1 Sparsity s allowing us to recover every s-sparse
vectors by ℓ1-minimization in the absence of noise consid-
eration. The last row presents the sparsity extracted with
Algorithm 4. The results are given for three different config-
urations of the tomography-like matrix A.

Random versus uniform measurements

The randomness has been often addressed in the liter-
ature of compressed sensing for tomography [7,25,27].

Consequently we propose to evaluate the impact of the

tomography sampling, i.e. uniformly or randomly cho-

sen angles of view, on the sparsity extracted with Al-

gorithm 4.

In Table 2, the first row gives the sparsity in a con-

text of a uniform sampling. The tenth following rows

present the sparsity extracted with Algorithm 4 when
the angles are randomly selected. The last three rows

present the minimum, maximum, and mean sparsity

according to the random sampling results.

It appears that the difference in term of extracted
sparsity between a random selection of the polar an-

gles and a uniform one is not significant. According to

the work by Arias-Castro et al. [1], there exist natural

classes of sparse signals for which adaptivity would not

improve the bounds on non-adaptivity. This is the case
for the class of signals that has been considered in this

simulations (i.e signal without any structure). However,

one can think that for some specific class of signals,

adaptivity (i.e. a judicious choice in the polar angles)
could improve the performance on non-adaptivity (i.e.

a random angle selection).

2 views 4 views 6 views
M = 98 M = 196 M = 294

Uniform sampling 10 32 50

Random sampling no1 10 34 54

Random sampling no2 14 25 47

Random sampling no3 8 26 60

Random sampling no4 9 27 58

Random sampling no5 10 29 48

Random sampling no6 7 18 50

Random sampling no7 4 27 67

Random sampling no8 11 43 66

Random sampling no9 11 23 40

Random sampling no10 12 44 50

Random sampling 4 18 40
(Minimum)

Random sampling 9 29 54

(Mean)

Random sampling 14 44 67
(Maximum)

Table 2 Sparsity extracted with Algorithm 4 for a uniform
or a random sampling of the tomography matrix.

Limitations of the greedy algorithm

We point out the following two limitations in the pro-

posed approach:

1. Algorithm 2 (as well as Algorithm 1 or Algorithm 1-

bis) is not guaranteed to find the largestDx for small
values of R and Q. For some given sparsity degree

s, this may happen if F is the s-dimensional face of

the polytope that is the closest to the origin among

all other s-faces. Now it might happen that some
sub-faces of F , say F ′ of dimension s′ < s, are not

the closest to the origin among all the s′-dimensional

faces of the polytope. If this happens, since the algo-
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rithm retains only vectors with increasing support,

a suited minimal choice at one step s′ may induce a

wrong (non-minimal) choice at a later stage s. This

is one tradeoff for the complexity gain.

However, the impact of this trade-off seems of little
importance, as the algorithms clearly outperform a

random search. In order to analyse this fact, we gen-

erate 100 vectors from a randomly generated sup-

port I such that |I| = s with s = 10, s = 32,
and s = 50. In Table 3, we present the maximum

Dx value for vectors in Σ
(s)
max extracted with Algo-

rithm 2 and for the random sparse vectors. We can

clearly observe that for these tomography-like ex-

periments, Algorithm 2 provides vectors with the
largest Dx value.

2. It is not obvious that we have a uniform recovery for

a given A using ℓ1-minimization. Indeed, whether a

collection of vertices in the polytope forms a face

that does not solely depend on how far their convex

hull lies from the origin, one can easily define poly-
topes for which some faces are closer to the origin,

while convex hulls of some other vertices lie farther

but still remain inside the polytope.

Table 4 aims to illustrate the second limitation. This
table summarizes the reconstruction error obtained

by ℓ1-minimization for vectors in Σ
(s)
max (i.e. found

by the algorithm) and for vectors characterized by

a randomly generated support. We can remark that

for M = 98, even if Algorithm 2 allows to reach
vectors with the largest Dx value, we can randomly

generate non-ℓ1-identifiable vectors. This interesting

result illustrates the fact that, for some particular

shapes of the polytope P , the proposed method has
to be improved.

Noisy measurements

In Table 5, we evaluate the maximal sparsity degree for

exact recovery in the noisy case. For such a purpose we

computed the upper bound of ‖x̂−x‖2. This bound re-

quires the knowledge of the support I, on which quanti-
ties like ERC(I) or ‖A∗

In‖2 depend. The tested support

I corresponds to the vector x ∈ Σ
(s)
max with the largest

Dx, extracted with Algorithm 2. For this support and

for some fixed variance σ of the additive noise, we gen-

erate 100 random realizations of a vector n ∼ N (0, σ2).
For each realization we compute the mean support-

depending quantities involved in the upper bound and

then estimate an approximated value of the error. This

task is carried out for matrices of different size i.e. num-
ber of polar angle views, for supports I of different sizes

and for different values of the noise variance. The results

are gathered in Table 5. We can observe that the first

row leads to the same sparsity degree that the one ob-

tained in Table 1 when sparsity is extracted with ERC.

Moreover, it can be observed that in the presence of

noise (cf. rows 2 to 5 in Table 5) the sparsity degree

decreases in order to achieve a smallest error.

2 views 4 views 6 views
M = 98 M = 196 M = 294

Maximum Dx value (s = 10) (s = 32) (s = 50)

for x ∈ Σ
(s)
max 3.15 3.14 2.52

Maximum Dx

value for x (s = 10) (s = 32) (s = 50)
having a randomly 2.81 2.62 2.25

generated support

Table 3 Maximum Dx value when x is extracted with Al-
gorithm 2 or when x are generated randomly.

2 views 4 views 6 views
M = 98 M = 196 M = 294

Reconstruction error (s = 10) (s = 32) (s = 50)

for x ∈ Σ
(s)
max < 10−3 < 10−3 < 10−3

Reconstruction error (s = 10) (s = 32) (s = 50)
for x randomly < 1 < 10−3 < 10−3

generated

Table 4 Reconstruction error when x is extracted with Al-
gorithm 2 or when x are generated randomly.

2 views 4 views 6 views
(M = 98) (M = 196) (M = 294)

Error =0
σ2 = 0 4 10 11

Error ≤ 10−2

σ2 = 10−4 4 10 11

Error ≤ 10−3

σ2 = 10−4 1 4 5

Error ≤ 10−1

σ2 = 10−3 4 10 11

Error ≤ 10−2

σ2 = 10−3 1 4 5

Table 5 Sparsity s allowing us to recover every s-sparse vec-
tors by ℓ1-minimization with noise consideration. The results
are obtained from Proposition 5 where I denotes the support

of the vector x ∈ Σ
(s)
max with the largest Dx. Results for three

different configurations of the tomography-like matrix A.
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5 Conclusion

This work presents new theoretical results and algo-

rithms for ℓ1-recovery conditions in a deterministic con-

text in order to:

– improve the state-of-the-art methods in term of ex-

tracted sparsity degree,
– easily bound the reconstruction error.

More specifically, we propose an efficient method to

obtain an upper bound of the sparsity degree s for

which every s-sparse vector can be reconstructed by ℓ1-

minimization according to a specific measurement ma-
trix. An efficient greedy algorithm is proposed in order

to deal with deterministic matrices. Moreover, the ro-

bustness to noise is studied and numerical experiments

based on tomography-like sensing matrix illustrate the

theoretical results.
We should notice that this approach can be con-

sidered for other contexts in inverse problems such as

restoration or inpainting.
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