Géométrie des signatures de HFO dans les EEG

Nemo Fournier Sous l'encadrement de Paulo Gonçalves et de Patrick Flandrin

4 septembre 2018

Plan

High Frequency Oscillations (HFO)

Approche temps-fréquence

Détection de HFO

Enjeux contemporains de l'analyse des EEG

- Électroencéphalographie intracranienne
- Résolution spatiale
- Résolution fréquentielle

Description des *High Frequency Oscillations* (HFO)

Figure: Épisode avec une HFO observable sur un électroencéphalogramme

Diversité des épisodes des HFO

Figure: Gauche : *ripple* (R) et pic ; milieu : *ripple* et *fast-ripple* (FR) ; droite : R, FR et pic

Approche temps-fréquence

Détection de HFO

Phénomène de Gibbs, insuffisance du filtrage

Figure: Illustration du phénomène de Gibbs : filtrage d'un artefact et d'une HFO dans la bande des *ripples*

L'analyse spectrale et ses limitations

Figure: Signaux consistant en un enchaînement d'oscillations à 25Hz et 60Hz, et l'amplitude de leur transformée de Fourier

Décomposition dans le plan temps-fréquence

$$\hat{s}(\nu) = \int_{-\infty}^{+\infty} s(t) e^{-2i\pi\nu t} \mathrm{d}t$$

Décomposition dans le plan temps-fréquence

$$\hat{s}(\nu) = \int_{-\infty}^{+\infty} s(t) e^{-2i\pi\nu t} dt \qquad S(\tau,\nu) = \int_{-\infty}^{+\infty} s(t) \overline{w(t-\tau)} e^{-2i\pi\nu t} dt$$

Spectrogramme, exemple d'un chirp

Figure: Gauche : *chirp* linéaire $(cos(2\pi(f_0t)t))$ avec à droite : son spectrogramme

Forme d'îlot

Figure: Gauche : spectrogramme de deux HFO simultanées, à droite : spectrogramme d'un artefact

Approches énergétiques déjà utilisées pour la validation de HFO

- Formaliser la notion d'îlot en utilisant les valeurs de l'énergie autour des points d'intérêt
- Divers critères utilisés sur les courbes d'«énergie instantanée» obtenues à partir du spectrogramme
- Souvent des a priori sur la répartition de l'énergie

Quelques résultats sur la structure du spectrogramme

Résultats énoncés dans *Time-frequency filtering based on spectrogram zeros* par Patrick Flandrin, 2015

- Les zéros du spectrogramme caractérisent totalement le spectrogramme
- Le champ des zéros du spectrogramme d'un bruit blanc est homogène

Détection de HFO 000000000

Homogénéité des zéros et perturbation par le signal

Homogénéité des zéros et perturbation par le signal

Une nouvelle description du spectrogramme : tessélation des zéros

Une nouvelle description du spectrogramme : tessélation des zéros

Un algorithme d'extraction de caractéristiques

Algorithme 1 Sélection d'Eol et extraction de caractéristiques

- 1: sélectionner les évènements (t_i) candidats par filtrage
- 2: pour $\tau \in (t_i)$
- 3: calculer le spectrogramme de s autour de au
- 4: sélectionner les zéros
- 5: calculer la triangulation de Delaunay des zéros
- 6: garder les triangles ayant un côté parmi les 1% les plus longs
- 7: calculer les composantes d'adjacence de tels triangles
- 8: conserver les composantes traversant le temps $t = \tau$

Quelques résultats de l'algorithme

Statistiques sur la description géométrique des épisodes

Figure: Histogramme des aires de composantes correspondant à des HFO

Exemple de faux positifs rejetté sur le critère de l'aire

Perspectives

- Description des HFO intuitive et facile à manipuler
- Restent à établir les bons critères
- Peut-être combiner avec d'autres types de détecteurs
- Pertinence de la première étape ?