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Progress in Robotic Hardware

Figure: Up: Da Vinci chirurgical robot. Left: Fanuc welding robot.
Right: Boston Dynamics’ Atlas robot (Images from Wikimedia)
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Progress in Machine Learning

Figure: Up: Alphago match. Left: Dota2 AI. Right: Atari AI
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Main Principles of Reinforcement Learning

Agent

Environment

atst

rt

Figure: Reinforcement Learning (RL) feedback loop of the
interactions between the agent and the environment.
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Some formalization

Markov Decision Process

A MDPM is a tuple (S ,A,r ,γ,p ,p0)

S : set of states

A: set of actions

r : S ×A→ R: reward

γ : discount factor

p : S ×A→ P (S): transition

p0 ∈ P (S): initial state

Policy

π : S →A or π : S → P (A)
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The RL problem

Trajectory

τ = (s0,a0,s1,a1,s2, . . . ,sa) is a trajectory overM using a policy π
if s0 ∼ p0, and for t ≥ 0, at ∼ π (· | st−1) and st+1 ∼ p (st ,at).
We denote TM,π the distribution of such trajectories.

Performance of a policy

J(π) = E

τ∼TM,π

 H∑
t=0

γ t r(st ,at)


π∗ = argmax

π
J(π)

.
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Solving the RL problem: Policy Gradient Method

Idea: parametrize a policy πθ and perform gradient ascent:

θt+1← θt +α∇J(θt)

REINFORCE
Actor-Critic
DPG

TRPO

PPO
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A Robotics Problem is a RL problem

S
A
p : S ×A→ P (S)

r : S ×A→ R
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Issues of RL when applied to robotics

Sampling efficiency

Random exploration

Real-time rollouts
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Simulation

Figure: A real PR2 robot and its simulated equivalent.
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Strategies to Cross the Reality Gap

Several learning phases

Assess live discrepancies

Dynamics randomization
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Dynamics Randomisation

Peng et al.1 introduced parametrization of the environment
using a vector φ.

Jφ(π) = E

τ∼TM,π,φ

H∑
t=0

γ t r(st ,at)

π∗ = argmax
π

E

φ∼ρ

[
Jφ(π)

]

1X.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. 2018
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Universal policy

Yu et al.2 introduced the parametrized policy πφ = π(· | φ).

π∗ = argmax
π

E

φ∼ρ

[
Jφ(πφ)

]

st−1
at−1
...

st−h
at−h

st

OSI

π

φ

at

Figure: Universal Policy with Online System Identification

2W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning
a universal policy with online system identification. 2017
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New Issues of those two Methods (DR and UP-OSI)

Sampling efficiency

Curse of dimensionality

Choice of relevant parameters
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Dimensionality Reduction

We want a mapping
Ψ : Φ→ Φ̃

π∗,Ψ ∗ = argmax
π,Ψ

E

φ∼ρ

[
Jφ(πΨ (φ))

]
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Autoencoders

x x̃z

Figure: Standard autoencoder representation
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Our architecture

πst

at

π : S × Φ̃ → A

φ

Ψ : Φ → Φ̃

Ψ

φ̃
∼
Ψ
(φ
)

Figure: The new architecture we proposed.
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Analysing the embedding
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Figure: Toy problem on the Hopper environment.
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Training the embedded OSI

st−1
at−1
...

st−h
at−h

st

OSI

π

φ̃

at

Figure: Embedded Universal Policy with Embedded Online System
Identification
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Results
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Figure: Effect of the embedding in terms of (Left) OSI prediction error
and (Right)
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Transferability
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Figure: Effect of the embedding for transfer in terms of (Left) OSI
prediction error and (Right) Average reward on the task.
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Conclusion

Promising direction and results

Better evaluation needs to be done
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