		Embedding	

Reinforcement Learning of Parameters in Complex Physical Systems

Nemo Fournier

September 4, 2019

		Embedding	

Outline

Introduction and Motivation

Reinforcement Learning

Robotics, RL and the Reality Gap

DR and UP

Embedding

Progress in Robotic Hardware

Figure: Up: Da Vinci chirurgical robot. Left: Fanuc welding robot. Right: Boston Dynamics' Atlas robot (Images from Wikimedia)

Progress in Machine Learning

Figure: Up: Alphago match. Left: Dota2 Al. Right: Atari Al

Main Principles of Reinforcement Learning

Figure: Reinforcement Learning (RL) feedback loop of the interactions between the agent and the environment.

Some formalization

Markov Decision Process

A MDP \mathcal{M} is a tuple $(\mathcal{S}, \mathcal{A}, r, \gamma, p, p_0)$

- S: set of states
- A: set of actions
- $r: S \times A \rightarrow R$: reward

- γ : discount factor
- $p: S \times A \rightarrow \mathcal{P}(S)$: transition
- $p_0 \in \mathcal{P}(\mathcal{S})$: initial state

Some formalization

Markov Decision Process

A MDP \mathcal{M} is a tuple $(\mathcal{S}, \mathcal{A}, r, \gamma, p, p_0)$

- S: set of states
- A: set of actions
- $r: S \times A \rightarrow R$: reward

- γ : discount factor
- $p: S \times A \rightarrow \mathcal{P}(S)$: transition

•
$$p_0 \in \mathcal{P}(\mathcal{S})$$
: initial state

Policy

$$\pi: S \to A \text{ or } \pi: S \to \mathcal{P}(A)$$

	Reinforcement Learning			Embedding	
00	0000	0000	000	0000000	0

The RL problem

Trajectory

 $\tau = (s_0, a_0, s_1, a_1, s_2, \dots, s_a)$ is a trajectory over \mathcal{M} using a policy π if $s_0 \sim p_0$, and for $t \ge 0$, $a_t \sim \pi(\cdot | s_{t-1})$ and $s_{t+1} \sim p(s_t, a_t)$. We denote $T_{\mathcal{M},\pi}$ the distribution of such trajectories.

	Reinforcement Learning			Embedding	
00	0000	0000	000	0000000	0

The RL problem

Trajectory

 $\tau = (s_0, a_0, s_1, a_1, s_2, \dots, s_a)$ is a trajectory over \mathcal{M} using a policy π if $s_0 \sim p_0$, and for $t \ge 0$, $a_t \sim \pi(\cdot | s_{t-1})$ and $s_{t+1} \sim p(s_t, a_t)$. We denote $T_{\mathcal{M},\pi}$ the distribution of such trajectories.

Performance of a policy

$$J(\pi) = \mathbb{E}_{\tau \sim T_{\mathcal{M},\pi}} \left[\sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}) \right]$$

The RL problem

Trajectory

 $\tau = (s_0, a_0, s_1, a_1, s_2, \dots, s_a)$ is a trajectory over \mathcal{M} using a policy π if $s_0 \sim p_0$, and for $t \ge 0$, $a_t \sim \pi(\cdot | s_{t-1})$ and $s_{t+1} \sim p(s_t, a_t)$. We denote $T_{\mathcal{M},\pi}$ the distribution of such trajectories.

Performance of a policy

$$J(\pi) = \mathop{\mathbb{E}}_{\tau \sim \mathrm{T}_{\mathcal{M},\pi}} \left[\sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}) \right]$$

$$\pi^* = rg\max_{\pi} J(\pi)$$

Solving the RL problem: Policy Gradient Method

Idea: parametrize a policy π_{θ} and perform gradient ascent:

$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla J(\theta_t)$$

Solving the RL problem: Policy Gradient Method

Idea: parametrize a policy π_{θ} and perform gradient ascent:

$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla J(\theta_t)$$

- REINFORCE TRPO
- Actor-Critic
- DPG PPO

A Robotics Problem is a RL problem

 $S = \mathcal{S}$ \mathcal{A} $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$

A Robotics Problem is a RL problem

 $S \\ A \\ p: S \times A \to \mathcal{P}(S)$

 $\bullet r: \mathcal{S} \times \mathcal{A} \to \mathbf{R}$

Issues of RL when applied to robotics

- Sampling efficiency
- Random exploration
- Real-time rollouts

		Robotics, RL and the Reality Gap		Embedding	
00	0000	0000	000	0000000	0

Simulation

Figure: A real PR2 robot and its simulated equivalent.

Strategies to Cross the Reality Gap

- Several learning phases
- Assess live discrepancies
- Dynamics randomization

Dynamics Randomisation

Peng et al.¹ introduced parametrization of the environment using a vector ϕ .

¹X.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. *Sim-to-real transfer of robotic control with dynamics randomization*. 2018

Dynamics Randomisation

Peng et al.¹ introduced parametrization of the environment using a vector ϕ .

$$J_{\phi}(\pi) = \mathop{\mathbb{E}}_{\tau \sim \mathrm{T}_{\mathcal{M},\pi,\phi}} \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t})$$

¹X.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. *Sim-to-real transfer of robotic control with dynamics randomization*. 2018

Dynamics Randomisation

Peng et al.¹ introduced parametrization of the environment using a vector ϕ .

$$J_{\phi}(\pi) = \mathop{\mathbb{E}}_{\tau \sim \mathrm{T}_{\mathcal{M},\pi,\phi}} \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t})$$
$$\pi^{*} = \arg \max_{\pi} \mathop{\mathbb{E}}_{\phi \sim \rho} \left[J_{\phi}(\pi) \right]$$

¹X.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. *Sim-to-real transfer of robotic control with dynamics randomization*. 2018

Universal policy

Yu et al.² introduced the parametrized policy $\pi_{\phi} = \pi(\cdot \mid \phi)$.

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\phi \sim \rho} \left[J_{\phi}(\pi_{\phi}) \right]$$

²W. Yu, J. Tan, C. K. Liu, and G. Turk. *Preparing for the unknown: Learning a universal policy with online system identification.* 2017

Universal policy

Yu et al.² introduced the parametrized policy $\pi_{\phi} = \pi(\cdot \mid \phi)$.

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\phi \sim \rho} \Big[J_{\phi}(\pi_{\phi}) \Big]$$

Figure: Universal Policy with Online System Identification

²W. Yu, J. Tan, C. K. Liu, and G. Turk. *Preparing for the unknown: Learning a universal policy with online system identification.* 2017

New Issues of those two Methods (DR and UP-OSI)

Sampling efficiency

New Issues of those two Methods (DR and UP-OSI)

- Sampling efficiency
- Curse of dimensionality

New Issues of those two Methods (DR and UP-OSI)

- Sampling efficiency
- Curse of dimensionality
- Choice of relevant parameters

Dimensionality Reduction

We want a mapping

$$\Psi: \Phi \to \widetilde{\Phi}$$

Dimensionality Reduction

We want a mapping

$$\Psi: \Phi \to \widetilde{\Phi}$$

$$\pi^*, \Psi^* = \operatorname*{arg\,max}_{\pi, \Psi} \mathop{\mathbb{E}}_{\phi \sim \rho} \left[J_{\phi}(\pi_{\Psi(\phi)}) \right]$$

				Embedding	
00	0000	0000	000	0000000	0

Autoencoders

Figure: Standard autoencoder representation

				Embedding	
00	0000	0000	000	0000000	0

Our architecture

Figure: The new architecture we proposed.

Analysing the embedding

Figure: Toy problem on the Hopper environment.

Training the embedded OSI

Figure: Embedded Universal Policy with Embedded Online System Identification

		Embedding	
		0000000	

Results

Figure: Effect of the embedding in terms of (Left) OSI prediction error and (Right)

				Embedding	
00	0000	0000	000	000000	0

Transferability

Figure: Effect of the embedding for transfer in terms of (Left) OSI prediction error and (Right) Average reward on the task.

				Embedding	Conclusion
00	0000	0000	000	0000000	•

Conclusion

- Promising direction and results
- Better evaluation needs to be done