Some algorithms	Analysis of DD algorithm		Appendix

Group Testing Algorithms: Bounds and Simulations

Matthew Aldridge, Leonardo Baldassini, Oliver Johnson

Nemo Fournier

January 17, 2020

Some algorithms	Analysis of DD algorithm		Appendix

Outline

Setting and Framework

Some algorithms

Analysis of DD algorithm

More bounds

Simulations

Perspectives

Setting and Framework						
0000	000	00	0	000	0	000

The Framework

Setting and Framework						
0000	000	00	0	000	0	000

$$\mathbf{X} = \begin{bmatrix} x_{1,1} \\ x_{2,1} \\ \vdots \\ T_2 & T_3 & \cdots & T_T \\ x_{N-1,1} \\ x_{N,1} \end{bmatrix}$$

Setting and Framework						
0000	000	00	0	000	0	000

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & & \\ x_{2,1} & & \\ \vdots & T_2 & T_3 & \cdots & T_T \\ x_{N-1,1} & & & \\ x_{N,1} & & & \end{bmatrix} \mapsto \begin{bmatrix} y_1 & y_2 & \cdots & y_{T-1} & y_T \end{bmatrix} = \mathbf{y}$$

Setting and Framework						
0000	000	00	0	000	0	000

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & & & \\ x_{2,1} & & & \\ \vdots & T_2 & T_3 & \cdots & T_T \\ x_{N-1,1} & & & & \\ x_{N,1} & & & & & \end{bmatrix} \mapsto \begin{bmatrix} y_1 & y_2 & \cdots & y_{T-1} & y_T \end{bmatrix} = \mathbf{y}$$

Design stage: X

Setting and Framework						
0000	000	00	0	000	0	000

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & & \\ x_{2,1} & & \\ \vdots & T_2 & T_3 & \cdots & T_T \\ x_{N-1,1} & & & \\ x_{N,1} & & & & \end{bmatrix} \mapsto \begin{bmatrix} y_1 & y_2 & \cdots & y_{T-1} & y_T \end{bmatrix} = \mathbf{y}$$

Design stage: X Detection stage: $A(X,y) \mapsto \hat{\mathcal{K}}$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & & \\ x_{2,1} & & \\ \vdots & T_2 & T_3 & \cdots & T_T \\ x_{N-1,1} & & & \\ x_{N,1} & & & & \end{bmatrix} \mapsto \begin{bmatrix} y_1 & y_2 & \cdots & y_{T-1} & y_T \end{bmatrix} = \mathbf{y}$$

Design stage: X Detection stage: $A(X,y) \mapsto \hat{\mathcal{K}}$

$$\epsilon = \mathsf{P}_{\mathsf{X},\mathcal{K}} \left(\hat{\mathcal{K}} \neq \mathcal{K} \right)$$

$$r = \frac{\log_2\binom{N}{K}}{T}$$

Setting and Framework						
0000	000	00	0	000	0	000

Some assumptions

Random test matrix: $\mathbf{x}_{i,t} \sim \mathcal{B}(p)$

Density regime: $K \approx N^{1-\beta}$

If a positive test contains only one possibly defective item, then this item is **definitely defective**

If a positive test contains only one possibly defective item, then this item is **definitely defective**

If a positive test contains only one possibly defective item, then this item is **definitely defective**

If a positive test contains only one possibly defective item, then this item is **definitely defective**

If a positive test contains only one possibly defective item, then this item is **definitely defective**

If a positive test contains only one possibly defective item, then this item is **definitely defective**

 \rightarrow only false negatives

SCOMP and SSS algorithms

SCOMP: iterative DD algorithm

SSS: an ILP formulation

Analysis of DD algorithm (1)

- \blacksquare non defective $\mathcal{N}\mathcal{D}$
- possibly defective $\mathcal{PD} = \mathcal{ND}^{c} = \mathcal{K} \cup \mathcal{G}$
- say that $i \in \mathcal{PD}$ is **definitely defective** if there is a positive test where *i* is the only \mathcal{PD}

Setting and Framework
0000Some algorithms
000Analysis of DD algorithm
000More bounds
0Simulations
000Perspectives
000Appendix
000

Analysis of DD algorithm (1)

- \blacksquare non defective $\mathcal{N}\mathcal{D}$
- possibly defective $\mathcal{PD} = \mathcal{ND}^{c} = \mathcal{K} \cup \mathcal{G}$
- say that $i \in \mathcal{PD}$ is **definitely defective** if there is a positive test where *i* is the only \mathcal{PD}

Define, given X and \mathcal{K} :

 $L_0 = \#$ test with no defective items in it

 $L_i = \#$ test containing *i* and no other element of \mathcal{PD}

 $L_+ = \#$ other tests

$$\mathbf{P}\{\text{success}\} = \mathbf{P}\{L_1 \neq 0, \dots, L_K \neq 0\}$$

Analysis of DD algorithm (2)

\mathbf{P} { $L_1 \neq 0, \dots, L_K \neq 0$ }: hard to compute

Setting and FrameworkSome algorithmsAnalysis of DD algorithmMore boundsSimulationsPerspectivesAppendix000000000000000000

Analysis of DD algorithm (2)

 $P \{L_1 \neq 0, ..., L_K \neq 0\}$: hard to compute **Idea**: condition on l_0 and G:

$$\mathbf{P}\{L_1 \neq 0, \dots, L_K \neq 0\} = \sum_{l_0=0}^{T} \sum_{g=0}^{N-K} \mathbf{P}\{L_0 = l_0\} \mathbf{P}\{G = g \mid L_0 = l_0\}$$

$$\times \mathbf{P}\{L_1 \neq 0, \dots, L_K \neq 0 \mid L_0 = l_0, G = g\}$$

Setting and Framework Some algorithms OOO Some algorithm OO Some Appendix OD Some Appen

Analysis of DD algorithm (2)

 $P \{L_1 \neq 0, ..., L_K \neq 0\}$: hard to compute **Idea**: condition on l_0 and G:

$$P\{L_{1} \neq 0, ..., L_{K} \neq 0\} = \sum_{l_{0}=0}^{T} \sum_{g=0}^{N-K} P\{L_{0} = l_{0}\} P\{G = g \mid L_{0} = l_{0}\}$$
$$\times P\{L_{1} \neq 0, ..., L_{K} \neq 0 \mid L_{0} = l_{0}, G = g\}$$
$$\bullet L_{0} \sim Bin(T, (1-p)^{K})$$

Setting and FrameworkSome algorithmsAnalysis of DD algorithmMore boundsSimulationsPerspectivesAppendix00000000000000000000000

Analysis of DD algorithm (2)

 $P \{L_1 \neq 0, ..., L_K \neq 0\}$: hard to compute **Idea**: condition on l_0 and G:

$$P\{L_{1} \neq 0, ..., L_{K} \neq 0\} = \sum_{l_{0}=0}^{T} \sum_{g=0}^{N-K} P\{L_{0} = l_{0}\} P\{G = g \mid L_{0} = l_{0}\}$$
$$\times P\{L_{1} \neq 0, ..., L_{K} \neq 0 \mid L_{0} = l_{0}, G = g\}$$
$$= L_{0} \sim Bin(T, (1-p)^{K})$$
$$= G|L_{0} \sim Bin(N-K, (1-p)^{L_{0}})$$

 Setting and Framework
 Some algorithms
 Analysis of DD algorithm
 More bounds
 Simulations
 Perspectives
 Appendix

 000
 00
 0
 00
 0
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Analysis of DD algorithm (2)

 $P\{L_1 \neq 0, ..., L_K \neq 0\}$: hard to compute **Idea**: condition on l_0 and G:

$$P\{L_1 \neq 0, \dots, L_K \neq 0\} = \sum_{l_0=0}^{T} \sum_{g=0}^{N-K} P\{L_0 = l_0\} P\{G = g \mid L_0 = l_0\}$$
$$\times P\{L_1 \neq 0, \dots, L_K \neq 0 \mid L_0 = l_0, G = g\}$$

■
$$L_0 \sim Bin(T, (1-p)^K)$$

■ $G|L_0 \sim Bin(N - K, (1-p)^{L_0})$
■ $(L_i)_{1 \le i \le K}|L_0, G$: harder, but essentially multinomial

 Setting and Framework
 Some algorithms
 Analysis of DD algorithm
 More bounds
 Simulations
 Perspectives
 Appendix

 000
 000
 0
 000
 0
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Analysis of DD algorithm (2)

 $P\{L_1 \neq 0, ..., L_K \neq 0\}$: hard to compute **Idea**: condition on l_0 and G:

$$P\{L_1 \neq 0, \dots, L_K \neq 0\} = \sum_{l_0=0}^{T} \sum_{g=0}^{N-K} P\{L_0 = l_0\} P\{G = g \mid L_0 = l_0\}$$
$$\times P\{L_1 \neq 0, \dots, L_K \neq 0 \mid L_0 = l_0, G = g\}$$

■
$$L_0 \sim Bin(T, (1-p)^K)$$

■ $G|L_0 \sim Bin(N - K, (1-p)^{L_0})$
■ $(L_i)_{1 \le i \le K}|L_0, G$: harder, but essentially multinomial

$$\mathbf{P}\{\text{success}\} = \sum_{l_0=0}^{T} \sum_{g=0}^{N-K} b(l_0, T, (1-p)^K) b(g, N-K, (1-p)^{l_0}) \Phi_K(g, l_0)$$

0000 000 00 00 00 000 000		Some algorithms	Analysis of DD algorithm	More bounds			Appendix
	0000	000	00	•	000	0	000

Rate bounds

Comparisons of the Algorithms

Figure: N = 500, K = 10, p = 1/10

				Simulations		
0000	000	00	0	000	0	000

Simulation vs Bounds

Figure: *N* = 500, *K* = 10, *p* = 1/10

				Simulations		
0000	000	00	0	000	0	000

Sparsity and Density

Figure: N = 500, left:K = 4, p = 1/4, right:K = 25, p = 1/25

Why do we care?

- Many problems can be seen as group testing (Biology (DNA, diseases), Communication (Anomaly discovery in networks, MAC channels, cognitive radios), Information Technology (data compression, cybersecurity), Data science in general (from counterfeit coins to graph problems), Theoretical Computer Science (graph problems, complexity theory)
- This paper proposes a precise framework and works out a part of the capacity spectrum
- Still a limited case: noiseless, perfect recovery, non-adaptative

			Appendix
			● 00

$$\begin{aligned} R^*_{COMP} &\geq \frac{\beta}{e \ln 2} \approx 0.53\beta \\ R^*_{DD} &\geq \frac{1}{e \ln 2} \min\left\{1, \frac{\beta}{1-\beta}\right\} \approx 0.53 \min\left\{1, \frac{\beta}{1-\beta}\right\} \\ R^*_{SSS} &\leq \frac{1}{e \ln 2} \frac{\beta}{1-\beta} \end{aligned}$$

Conjecture
$$R^*_{SCOMP}$$

$$\begin{cases} = \frac{1}{e \ln 2} \frac{\beta}{1-\beta} & \text{for } \beta \le 1/2 \\ \ge \frac{1}{e \ln 2} & \text{for } \beta > 1/2 \end{cases}$$

	Some algorithms	Analysis of DD algorithm				Appendix
0000	000	00	0	000	0	000

- use DD algorithm $\rightarrow \hat{\mathcal{K}}$
- while $\hat{\mathcal{K}}$ is not satisfying: find *i* in \mathcal{PD} which appears in the largest number of tests unexplained by $\hat{\mathcal{K}}$ and do $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{i\}$

	Some algorithms	Analysis of DD algorithm				Appendix
0000	000	00	0	000	0	000

SSS algorithm

minimize
$$1^{\intercal} z$$

subject to $x_t = 0 \cdot z$ for t with $y_t = 0$
 $x_t \cdot z \le 1$ for t with $y_t = 1$
 $z \in \{0, 1\}^N$