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Introduction
An interesting measure of the complexity of a boolean function f : {0, 1}N → {0, 1} in computer
science is its query complexity, which corresponds to the minimum number D(f) such that for any input
x ∈ {0, 1}N , we can determine the value of f(x) knowing at most only D(f) well chosen bits of x.
In other words, if we have to compute f(x) for an unknown value of x ∈ {0, 1}N , and D(f, x) is the
minimum number of bits xi of x that we we have to query in order to do so, then D(f) is defined as the
maximum value that D(f, x) can take for x ∈ {0, 1}N . We call this model the black-box model, as we
can imagine that x his hidden in a black-box, to which we do our queries.

This model has been studied in many domains of computer science (communication, cryptography,
graph theory ...), and a lot of results have been proved since the 1960’s, especially when it comes to lower
bounding D(f). Black-box model have interesting declinations like randomised Black-box model, or
quantum Black-box model. As we can expect, we can achieve an advantage in terms of query complexity
when we work in quantum. A famous and historical example of this is the Grover algorithm [Gro96]
which finds a marked element in a list of N elements with O(

√
N) queries to the elements of the list. A

natural question is then: how large can gaps of complexities between quantum models and other models
be? We will see here how we can bound (asymptotically) those gaps in 1. In 1 and 2, some techniques
will be exposed, to find lower bounds of quantum query complexities. We then show one application
of them in 3.3 from [SYZ04] to estimate the asymptotic query complexity of some well-known class of
functions, and will see what they imply for the special case of graph properties.

Notations
We will use the following notations for the rest of the report:

• 2X : Power set of X.

• For a set X we denote by |X| its cardinality.

• For a bitstring or a binary tuple X = (x1, . . . , xN ) we denote by |X| the number of xi’s equal to 1.

•
(
X

k

)
: Set of finite subsets of X of cardinality k.

•
(
n

k

)
: Cardinality of

(
X

k

)
when |X| = n.

• SX : Set of permutations of the set X

• SN : Set of permutations of the set {1, ..., N}
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1 Nemo: Quantum Lower Bounds by Polynomials [BBC+98]

1.1 Context and Goals of the Article
This article is about query complexity of problems involving black-boxes and quantum networks. Pub-
lished in 1998, it follows the study of the Deutsch’s and Simon’s problem which led to the design of
quantum algorithms achieving an exponential quantum advantage ([DJ92] and [Sim97]). The authors
of the paper propose a general framework for such black-box problems, and prove that in the general
case of total functions, one cannot hope to achieve more than a polynomial quantum-advantage. This
article use the Polynomial Method, that had already proven useful to derive lower-bounds in classical
complexity theory.

In this review, I will introduce the framework used by the authors, explain the ideas that link
polynomials and query problems and provide the proof of a general bound on the query complexity
achieved using the polynomial method. I will then only state other general bounds without their proof
before dwelling on the link between query complexity and the block sensitivity, that allows to show that
the quantum speed-up is at most polynomial.

1.2 Black-box Model
Definition (Black-box ). A black-box is a N -tuple of Boolean variable X = (x0, x1, . . . , xN−1), such that
it outputs xi on input i.

We can notice that it is technically easy to encode a function X̃ : {0, 1}n → {0, 1}m as a black
box X = (x0, . . . , xN−1) where N = m2n: on input i ∈ {0, 1}n seen as an n-bits number, we output
xixi+1 . . . xi+m−1.

Definition (Property). A property is a function f : {0, 1}N → {0, 1}.

The idea is that we can ask whether a black-box X satisfies or not a given property, and try to answer
this question with as few queries to X as possible. For instance, we can consider the property “The xi’s
are all equal to 1 ”, which is encoded by the function AND(X) = x0 ∧ x1 ∧ · · · ∧ xN−1, or the property
“There is an odd number of xi’s equal to 1” using the PARITY function: PARITY(X) = (−1)|X|, where
|X| denotes the number of Boolean variables of the tuple X equal to 1.

Those functions (AND and PARITY) are said to be total, since they are defined for any tuple X. We
can also consider properties defined only on some subset of {0, 1}n, that we will call partial functions.
This is the case when we study a property under some promise on the black-box: that is we disregard
a whole class of Boolean tuples. For instance, formalizing the Deutsch’s problem in this formalism boils
down to stuying a property only defined for black-boxes that are either constant or balanced.

1.3 Decision Trees and Quantum Network
Definition (Decision Tree). A decision tree is a classical algorithm that computes a property f of some
black-box X by performing (adaptative) queries on X. We can represent such an algorithm as a tree
whose nodes are queries giving birth to two children (one for each possible outcome of the query) and
whose leaves answers whether f(X) = 0 of f(X) = 1. The cost of such an algorithm is the depth of the
associated decision tree. The decision-tree-complexity of f (denoted D(f)) is thus the cost of the best
decision tree computing f .

Definition (Quantum Oracle). A quantum oracle O on m qubits implementing the black-box X =
(x0, . . . , xN−1) is a unitary transformation that maps the basis states |i, b, z〉 to |i, b⊕ xi, z〉 for i ∈
{0, . . . , N − 1} seen as a bitstring of length dlogNe, b ∈ {0, 1} and z an arbitrary bitstring of length
m− dlogNe − 1.

Definition (Quantum Network). A quantum network is the quantum analog of a decision tree. A
quantum network performing T queries is represented as a sequence U0, O1, U1, . . . , UT−1, OT , UT , where
the Ui’s represent unitary transformations, and Oi’s represent queries to a quantum oracle implementing
X. A computation corresponds to applying successively those transformations from a fixed initial state
(e.g. |0〉⊗m). At the end of the computation, the final state is measured and its rightmost bit is considered
as the output (i.e. as the value of f(X)).
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A quantum network is said to compute f exactly if, for every X, it outputs f(X) with certainty,
and we denote QE(f) the minimum number of query for a quantum network computing f exactly. If
the output of the network is correct with probability at least 2/3 for every X, we say that the network
computes f with bounded error-probability, and denotes Q2(f) the minimum number of query of such a
network. We also introduce the zero-error setting where we allow the network to be inconclusive (this is
controlled by the second rightmost bit of the final measurement), but whenever it is conclusive (which
has to happen with probability at least 1/2 for every X) the answer (given by the rightmost bit of the
final measurement) should be correct.

1.4 Polynomial and Boolean Functions
The core of the proofs presented by the authors are based upon a correspondance that we can make
between Boolean functions and polynomials.

Definition (Representation and Approximation by Polynomials). Let f : {0, 1}n → {0, 1} be a Boolean
function. A N -variate polynomial p is said to represent f if for all X ∈ {0, 1}N , p(X) = f(X). A
N -variate polynomial p is said to approximate f if for all X ∈ {0, 1}N , |p(X)− f(X)| ≤ 1/3. We denote
by deg(f) the smallest degree of a polynomial representing f , and by d̃eg(f) the smallest degree of a
polynomial approximating f .

For instance p(X) = 1 − (1 − x0)(1 − x1) . . . (1 − xN−1) represents the function OR, while p(X) =
1
3x0 + 1

3x1 approximates the function AND for 2 variables. One can notice that since for any k > 0 and
x ∈ {0, 1} we have xk = x, we can restrict ourselves to multilinear p.

Definition (Symmetrization). The symmetrization psym of a polynomial p : Rn → R averages p over
all the permutations of its input. It is defined as

psym(X) =

∑
π∈SN p(π(X))

N !
where for π ∈ SN and X = (x0, . . . xN−1)

π(X) = (xπ(0), . . . , xπ(N−1))

One of the polynomial method’s strength is that the space of polynomials is a very well studied space,
and a quantity of powerful theorems have already been proved. We will now state some of the theorems
used by the authors in their paper.

Theorem 1.1 (Nisan, Szegedy [NS94]) If f is a Boolean function that depends on N variables (that is for
every i < N , there exists anX = (x0, . . . , xN−1) such that f(x0, . . . , xi, . . . , xN−1) 6= f(x0, . . . , xi, . . . , xN−1),
where xi denotes the binary negation of xi or, said differently, f depends on each of its variables), then

deg(f) ≥ logN −O(log logN)

Theorem 1.2 (Minsky, Papert [MP88]) If p : Rn → R is a multilinear polynomial of degree d, then
there exists a polynomial q : R→ R of degree at most d such that for all X ∈ {0, 1}n, psym(X) = q(|X|).

This last result is rather intuitive, and states that a symmetrized polynomial does not depend on the
arrangement of the input, but only on the weight of the input (as in the number of bits set to 1). This
notion can be extended to Boolean function as follows.

Definition (Symmetric Boolean function). We say that a Boolean function f : {0, 1}N → {0, 1} is
symmetric if it is invariant under permuation of its input X, and thus only depends on the weight |X|
of its input. For such an f , we denote fk the value of f(X) taken on an input X such that |X| = k.

We introduce the quantity Γ(f) = min {|2k −N + 1| : 0 ≤ k < N and fk 6= fk+1}. Intuitively this is
low if f “jumps” near the middle, i.e. around some k ≈ N/2.

Theorem 1.3 (Paturi [Pat92]) If f : {0, 1}n → {0, 1} is a non-constant symmetric Boolean function,
then

d̃eg(f) ∈ Θ
(√

N(N − Γ(f))
)
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1.5 A bound on the zero-error setting
I will present in this section a lower bound derived in the setting of zero-error, that will unveil how we
can link polynomial representation of Boolean functions with quantum query complexity.

Lemma 1.1 Let N be a quantum network on m qubits that makes T queries to a black-box X of size
N . Then there exist 2m complex-valued N -variate multilinear polynomials p0, . . . , p2m−1, each of degree
at most T , such that for any black-box X, the final state of the computation can be expressed as∑

k∈{0,1}m
pk(X) |k〉

Proof. This result can be proved by induction on the number of queries T .

B Suppose that a black box performs T = 0 queries. The network is thus only composed of a unitary
U0 acting on the initial state. The amplitudes of the final state thus depend only on U0 and on the
initial state, but not on X, and are thus polynomials of degree 0 in X.

B Suppose that the network performs T + 1 queries. It can be written as the successive application
of U0, O1, U1, . . . , UT−1, OT , UT , OT+1, UT+1. By the induction hypothesis, we know that the
state obtained after performing the first T queries on X and applying UT can be written as |φ〉 =∑
k∈{0,1}n pk(X) |k〉 with each pk of degree at most T . The final state is |ψ〉 = UT+1OT+1 |φ〉. Let

k ∈ {0, 1}m (i.e. such that |k〉 is a basis state). There are some bitstrings i, b, z of length respectively
dlogNe, 1, m − dlogNe − 1 such that |k〉 = |i, b, z〉. We denote k′ such that |k′〉 =

∣∣i, b, z〉. By
definition of a quantum oracle, the final query maps the basis state |i, b, z〉 to |i, b⊕ xi, z〉. Thus
the amplitude of |k〉 after this query is (1 − xi)pk′(X) + xipk(X) (if the value of xi is 1, |k〉 is
mapped to |k′〉, and remains the same otherwise), which is a polynomial in X of degree at most
T + 1 (since pk′ and pk are of degree at most T ). Hence the amplitude of each basis state after
the (T + 1)-th query is obtained as a polynomials in X of degree at most T + 1. Applying UT+1

only leads to linear combinations of the amplitudes, which thus remain polynomial in X of degree
at most T + 1. Finally, we can make all of those polynomials multilinear by replacing xki by xi.

�

Lemma 1.2 Let N be a quantum network that makes T queries to a black-box X and B be a set of
basis states. Then there exists a real-valued multilinear polynomial P : Rn → R of degree 2T , which
equals the probability that the final measurement of the computation yields a state from B.

Proof. This directly follows from the previous lemma: the polynomial that corresponds to this probability
is simply P (X) =

∑
k∈B |pk(X)|2, that we make multilinear by replacing xki by xi. �

Theorem 1.4 If f is a Boolean function, then QE(f) ≥ deg(f)/2.

Proof. In the zero-error setting, we know that the probability that the final measurement yields a state
with a righmost bit equal to 1 should be 1 when f(X) = 1, and 0 if f(X) = 0 (otherwise an error may
occur). Thus applying the previous lemma with the network achieving QE(f) queries and the set B of
the basis states having a rightmost bit equal to 1 yields a polynomial P of degree at most 2QE(f) that
represents f exactly. Hence deg(f) ≤ degP ≤ 2QE(f). �

Combining this with the aforementionned Nisan and Szegedy’s theorem gives the following theorem.

Theorem 1.5 If f is a Boolean function that depends on N variables, then

QE(f) ≥ (logN)/2−O(log logN)

1.6 Other bounds derived by the authors
The authors derive other bounds, some for the special case where f is a symmetric Boolean function as
well as some general bounds for the zero-error and bounded-error setting. I will only states those results
here.

Theorem 1.6 If f is a non-constant and symmetric Boolean function, then Q0(f) ≥ (N + 1)/4
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Theorem 1.7 If f is a non-constant and symmetric Boolean function, then QE(f) ≥ N/2−O(N0.548).
Moreover if N + 1 is prime, then QE(f) ≥ N/2.

Theorem 1.8 If f is a Boolean function, then Q2(f) ≥ d̃eg(f)/2.

Theorem 1.9 If f is a non-constant and symmetric Boolean function, thenQ2(f) ∈ Θ
(√

N(N − Γ(f))
)
.

Now that we have derived such lower bounds on the quantum-query complexity, we would like to
assess the speedup that quantum algorithm could provide. More precisely, using the notation that we
have introduced, we would like to compare D(f) and Q{E,0,2}(f).

Using some previous results from [NS94] and the previous bounds we could already conclude that
D(f) ∈ O(Q2(f)8), that is the speedup is at most polynomial, with an exponent of 8. But, introducing
the notion of block-sensitivity and of certificate-complexity, we will be able to show that we can lower
this exponent to 6.

1.7 Block sensitivity
Let f : {0, 1}N → {0, 1} be a function, X ∈ {0, 1}N a vector and B ⊆ {0, . . . , N − 1} a set of indices.
We will denote by XB the vector obtained by flipping the bits of X corresponding to indices in B. We
say that f is sensitive to B on X if f(X) 6= f(XB).

Definition (Block-sensitivity). The block-sensitivity bsX(f) of f on X is the maximum number t for
which there exist t disjoint sets of indices B1, . . . , Bt such that f is sensitive to each Bi on X. The
block-sensitivity bs(f) of f is defined as bs(f) = max

X∈{0,1}N
bsX(f).

For example bs(OR) = N (to see this take X = (0, . . . , 0) and Bi = {i} for i ∈ {0, . . . , N − 1}).
Having introduced this notion we can state and prove the following theorem, which explicits the relation
between block sensitivity and quantum query complexity.

Theorem 1.10 If f is a Boolean function, then QE(f) ≥
√
bs(f)/8 and Q2(f) ≥

√
bs(f)/16.

Proof. We will only detail the proof of the inequality involving Q2(f), the other one is analog and fairly
easier. During the proof, we will also need a theorem from [RC66], that states as follows

Theorem (Rivlin, Cheney [RC66]). If p : R → R is a polynomial such that there exists a, b
and c such that for every i ∈ {0, . . . , N}, a ≤ p(i) ≤ b and |p′(x)| ≥ c for some real number
x ∈ [0, N ], then deg(p) ≥

√
cN

c+b−a

Consider a network N that uses T = Q2(f) queries and computes f with error-probability ≤ 1/3.
From the second lemma we stated in section 1.5, their exists a polynomial P : RN → R of degree at
most 2T that equals the probability that the rightmost bit of the measured state is 1 (take B the set
of basis states with rightmost bit equal to 1). Since having the rightmost bit of the final measurement
equal to one means that we output 1, and that N computes f with error-probability ≤ 1/3, we have
that

• If f(X) = 1, then P (X) ≥ 2/3

• If f(X) = 0, then P (X) ≤ 1/3
Hence for all X ∈ {0, 1}N , |P (X) − f(X)| ≤ 1/3, that is P approximates f . Also observe that

P (X) ≤ 1 for any X ∈ {0, 1}N because P represents a probability on those inputs.
Let b = bs(f) and X and B0, . . . , Bb−1 be the input and subset of indices achieving the block-

sensitivity b for f . Let us consider a variable Y = (y0, . . . yb−1) ∈ Rb and define a variable Z =
(z0, . . . , zN−1) ∈ RN for some given Y (that we will set later on) as follows:

∀j ∈ {0, . . . , N − 1}, zj =

 yi if xj = 0 and ∃i ∈ {0, . . . , b− 1} : j ∈ Bi
1− yi if xj = 1 and ∃i ∈ {0, . . . , b− 1} : j ∈ Bi
xj if ∀i ∈ {0, . . . , b− 1}, j /∈ Bi

For the following, and without loss of generality, we assume that f(X) = 0.
Observe that Z is built such that if Y = (0, . . . , 0), then Z = X, and if Y is such that it has only

one non-null coordinate yi = 1, then Z = XBi , and thus, since f is sensitive to Bi on X, f(XBi) =
1− f(X) = 1. More generally, we can express Z as follows
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Z = XBY where BY =
⋃

i∈{0,...,b−1}
yi=1

Bi

Since Z only depends on Y for X given, we denote q : Rb → R the polynomial q(Y ) = P (Z). From
the definition of Z (involving only monomials of degree 1 in X and Y ) and the degree of P , we have that
deg q ≤ 2T . Moreover, from the previous observations, q satisfies the following properties:

• For all Y {0, 1}d, since P (and thus q) represents a probability, 0 ≤ q(Y ) ≤ 1.

• |q((0, . . . , 0))− 0| = |P (X)− f(X)| ≤ 1/3 hence 0 ≤ q((0, . . . , 0)) ≤ 1/3.

• For Y such that yi = 1 and for j 6= i, yj = 0, |q(Y ) − 1| =
∣∣P (XBi

)
− f

(
XBi

)∣∣ ≤ 1/3. Thus
2/3 ≤ q(Y ) ≤ 1 for |Y | = 1.

Let us now symmetrize q over {0, 1}b into a single-valuate polynomial r of degree ≤ 2T . Clearly, for
every integer i ∈ {0, . . . , b}, 0 ≤ r(i) ≤ 1. Moreover, from the previous properties, r(1) ≥ 2/3 and r(0) ≤
1/3. Hence, by the mean value theorem, there exist x ∈]0, 1[ such that r′(x) = r(1)−r(0)

1−0 ≥ 2/3−1/3
1−0 ≥ 1/3.

Thus applying Rivlin and Cheney’s theorem gives

deg(r) ≥

√
1/3× b
1/3 + 1

≥
√
b/4

Hence 2T ≥
√
b/4 and thus T ≥

√
b/16, which concludes, since T = Q2(f) and b = bs(f). �

1.8 Certificate-complexity
We introduce a new notion of complexity that will allow to link quantum query complexity to classical
query complexity.

Definition (Certificate). Let f be a function f : {0, 1}n → {0, 1}. A 1-certificate (resp. 0-certificate) is
an assignment C : S → {0, 1} of a subset S of the inputs of f such that whenever X is consistent with
C, f(X) = 1 (resp. f(X) = 0). The size of C is |S|.

Definition (Certificate-complexity). The certificate complexity CX(f) of f on X is the size of a smallest
f(X)-certificate that agrees with X, and the overall certificate complexity C(f) of f is the maximum of
CX(f) over X ∈ {0, 1}n. The 1-certificate complexity C(1)(f) of f is the maximum of CX(f) over the
X’s such that f(X) = 1.

For instance, with f being the OR function, we have C(1)(f) = 1, because an input X such that
OR(X) = 1 has at least one bit set to 1, and it is sufficient to set this force this one bit to 1 to have a
valid 1-certificate. But on the input X = (0, . . . , 0), f(X) = 0, and it is easy to see that a 0-certificate
for OR has to have a size of N .

Intuitively, this notion provides an insight as to “how many bits do we need to check in order to be
sure that the value of f is either 0 or 1”. The authors indeed prove the following theorems, that show
how this quantity can be related to other notions of complexity on boolean functions.

Theorem 1.11 C(1)(f) ≤ C(f) ≤ bs(f)2

Theorem 1.12 D(f) ≤ C(1)(f)bs(f)

Hence we deduce the main theorem of the article from those two theorems and from the fact from
section 1.7 stating that Q2(f) ≥

√
bs(f)/16, i.e. bs(f) ≤ 16Q2(f)2.

Theorem 1.13 D(f) ≤ 4096Q2(f)6, i.e. the quantum speedup is at most polynomial of degree 6.

The authors then indeed caracterize in the remaining of the article the query complexity for some
simple total functions, for which the quantum advantage is even smaller than a degree 6 order: for
f = AND or f = OR, Q2(f) = Θ(

√
N) (already known results), for f = PARITY, Q2(f) = N/2 (new

result) and for f = MAJORITY, Q2(f) = Θ(N) (new result).
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2 Jérémy: Quantum Lower Bounds by Quantum Arguments [Amb00]

2.1 Introduction
The main goal of the article is to prove some lower bounds on query algorithms using some quantum
arguments. In addition to prove some stronger bounds for some algorithms, the idea is to provide unified
proofs for several known lower bounds, which have previously been proven with many different classical
proofs, such as Grover’s algorithm, or inverting a permutation. To do so, the article introduces the
notion of "quantum adversary", which, instead of running the algorithm and slightly changing the input
while running, runs the algorithm with a superposition of inputs. The idea is to use an algorithm and an
oracle part, which are independant at the beginning, and that becomes entangled after some queries to
the oracle. Then we can obtain lower bound on quantums algorithms by bounding the number of queries
needed to entangle the alorithm and the oracle parts.

Here, I will first describe the new tools introduced in the article and the ideas behing it. I will then
provide some ideas for the proofs using those tools, and state the new bounds proven in the paper.

2.2 Model and Ideas
2.2.1 The model

We consider a Boolean function (or property) f : {0, 1}N → {0, 1}, an oracle O and a quantum network:

U0 → O → U1 → O → ...→ UT−1 → O → UT

where Ui’s are unitary transformations not depending on the input and O are oracle transformations
(queries).
We will denote Ox a oracle transformation corresponding to an input x. Also, we will use an alternative
definition of a quantum oracle

Definition (Quantum Oracle). Let x = (x1, ..., xN ), a quantum oracle Ox is a unitary transformation
mapping the basis states |i, b, z〉 to (−1)b·xi |i, b, z〉 for i ∈ {1, . . . , N}.

This defintion is known to be equivalent to the one given in the previous section, up to a constant
factor. We will use this one in the rest of this section for some technical convinience.

Definition (Error of a quantum network). We say that a quantum network computes f with bounded
error if, for every x = (x1, ...xN ), the probability that the rightmost bit of UTOUT−1...OU0 |0〉 equals
f(x1, ..., xN ) is at least 1− ε for some ε > 1

2 .

2.2.2 The idea

In this section we will describe more formally the idea behind the "quantum adversary".
Let S be a subset of {0, 1}N . We consider a bipartite system H = HA⊗HI where HA is the workspace of
the algorithm A, and HI is an "input space" spanned by basis vectors |x〉 corresponding to inputs x ∈ S.
We transform the sequence UTOUT−1...OU0 of transformations on the algorithm A into a sequence
U ′TO

′U ′T−1...O
′U ′0 of transformations on H, where U ′i = Ui ⊗ I and O′ is simply Ox on H⊗ |x〉. At the

beginning, the algorithm is in state |0〉, so the initial state of the system is

|ψstart〉 = |0〉 ⊗
∑
x∈S

αx |x〉

And the final state is
|ψend〉 =

∑
x∈S

αx |ψx〉 ⊗ |x〉

where |ψx〉 is the final state of UTOUT−1...OU0 |0〉 on input x.

Let m = |S|, note that if αx = 1√
m

for all x ∈ S, with bounded error, then the final state is

1√
m

∑
x∈S

((1− ε) |x〉 |ϕx〉+ |ψ′x〉)⊗ |x〉

8



where |ϕx〉 are the algorithm workbits.
We see that this is a highly entangled state. Notice also that if we have probability error ε = 0, then the
algorithm always gives the right answer, then the final state is

1√
m

∑
x∈S
|x〉 |ϕx〉 ⊗ |x〉

which is fully entangled.
Now, we want to bound the entanglement, we trace out HA from the states |ψstart〉 and |ψend〉 to

obtain mixed states over HI . We denote ρstart and ρend the density matrices associated to these states.
For the starting state

∑
x∈S

αx |x〉, (ρstart)xy = α∗xαy. For ρend, the following lemma states:

Lemma 2.1 Let A be an algorithm that computes f with probability at least 1 − ε. Let x, y be such
that f(x) 6= f(y). Then,

|(ρend)xy| ≤ 2
√
ε(1− ε)|αx||αy|

The proof of this lemma introduces the main idea of the paper and gives intuitions about how the
other proofs in the paper will work. I detail it here:

Proof. We denote |ψx〉 and |ψy〉 the final states of the algorithm A (over HA) on inputs x and y. We
consider the two parts of the algorithm over HA, the answer bits (where the answer is measured at the
end of the computation) and the workbits (used to compute the result but which are not considered in
the output). We consider a basis (|z〉 |v〉) of HA where (|z〉) is a basis for the answer part, and (|v〉) a
basis for the working part. We can now express the states |ψx〉 and |ψy〉 in this basis and get:

|ψx〉 =
∑
z,v

az,v |z〉 |v〉 and |ψy〉 =
∑
z,v

bz,v |z〉 |v〉

We have seen that the final state of the algorithm is

|ψend〉 =
∑
x∈S

αx |ψx〉 ⊗ |x〉

By tracing out HA from this state, we get in the |z〉 |v〉 basis:

(ρend)xy = αxαy
∑
z,v

a∗z,vbz,v

We now want to bound |
∑
z,v
a∗z,vbz,v| so we will be done. We have:

∣∣∣∣∣∑
z,v

a∗z,vbz,v

∣∣∣∣∣ ≤∑
z,v

|az,v||bz,v|

We now divide our sum in two parts, considering the cases z = f(x) and z 6= f(x) for our input x. We
get then: ∑

z,v:z=f(x)

|az,v||bz,v|+
∑

z,v:z 6=f(x)

|az,v||bz,v|

≤
√ ∑
z,v:z=f(x)

|az,v|2
√ ∑
z,v:z=f(x)

|bz,v|2 +

√ ∑
z,v:z 6=f(x)

|az,v|2
√ ∑
z,v:z 6=f(x)

|bz,v|2

Notice that the two quantities
∑

z,v:z 6=f(x)

|az,v|2 and
∑

z,v:z=f(x)

|bz,v|2 are respectively the probabilities that

makes an error on input x and on input y, hence they are both lower than ε. We will denote them ε1
and ε2. We now have a bound: √

(1− ε1)ε2 +
√
ε1(1− ε2)

which is maximized when ε1 = ε2 = ε, hence we can conclude:

|(ρend)xy| ≤ 2
√
ε(1− ε)|αx||αy|

�
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This lemma gives us an idea of how much the elements of ρstart must be changed to become the
corresponding element in ρend. Therefore, to lower bound the number of queries, we bound how much
one query changes ρxy. Then we combine this bound with the one given by the Lemma to get a lower
bound on the total number of queries needed to compute ρend from ρstart.

The next sections of the paper are theorems giving some lower bounds for different algorithm. There-
fore, the next parts of this section will be kind of a survey of the theorems presented. For each of them,
I will brievely decribe how to use the technique presented before to prove the statement.

2.3 Some lower bounds
In this section I give some lower bounds for different problems. For each case, I will give a short
description of the problem before the thorem, and provide an idea of proof.
But before doing so, we will prove a general lower bound theorem, which we will apply to all the next
problems. This theorem is the most important of the whole paper because it is the one which unifies
many lower bounds proofs.

2.3.1 The general lower bound

To prove the lower bound theorem, we will before proove a lower bound on unordered search. This is
because the proofs are similar but the proof of Theorem 2.1 is much simpler than the one of Theorem
2.2.

Problem Given N Boolean variables x1, ...xN ∈ 0, 1, we want to find i such that xi = 1

Theorem 2.1 Any quantum algorithm that finds i with probability 1− ε uses Ω(
√
N) queries.

Proof. We define S the set of inputs with one xi equal to 1 and the rest to 0. We have then that |S| = N
and HI is a N -dimensional space.
We denote ρk the density matrix of HI after k queries. Then we consider

Sk =
∑

x,y,x6=y

|(ρk)xy|

As the idea we described at the end of Section 2.2.2 we will show that :

1. S0 = N − 1

2. ST ≤ 2
√
ε(1− ε)(N − 1)

3. Sk−1 − Sk ≤ 2
√
N − 1 for all k ∈ {1, ..., T}.

with T the number of queries.
If we have those three points, then we can lower bound the number of queries T by (1−2

√
ε(1− ε))

√
N−1
2 .

The fisrt point comes from the fact that ρ0 = ρstart and that each non-diagonal entry of this N × N
density matrix is 1

N . And the second point come directly from Lemma 2.1. To show the third point,
first notice that

Sk−1 − Sk ≤
∑

x,y,x6=y

|(ρk−1)xy − (ρk)xy|

We now just need to bound
∑

x,y,x6=y
|(ρk−1)xy − (ρk)xy|. This can be done studying the behavior of the

(ρk) and of the states |ψk〉.
Finally we end with ∑

x,y,x6=y

|(ρk−1)xy − (ρk)xy| ≤ 2
√
N − 1

which completes the proof. �

Now here is the general lower bound theorem.

Theorem 2.2 Let f(x1, ..., xN ) be a function of n {0, 1}-valued variables and X,Y be two sets of inputs
such that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y be such that:
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1. For every x ∈ X there exist at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y there exist at least m′ different x ∈ X such that (x, y) ∈ R.

3. For every x ∈ X and i ∈ {1, ..., n} there are at most l different y ∈ Y such that (x, y) ∈ R and
xi 6= yi.

4. For every y ∈ Y and i ∈ {1, ..., n} there are at most l′ different x ∈ X such that (x, y) ∈ R and
xi 6= yi.

Then any algorithm computing f uses Ω
(√

mm′

ll′

)
Proof. The proof of this theorem is the same idea as the previous pne.
We define a set S = X ∪ Y of inputs, and we consider the superposition:

1√
2|X|

∑
x∈X
|x〉+

1√
2|Y |

∑
y∈Y
|y〉

over the sets of inputs. We define
Si =

∑
x,y,(x,y)∈R

|(ρk)xy|

and we show:

1. S0 − ST ≥ (1− 2
√
ε(1− ε)

√
mm′)

2. Sk−1 − Sk ≤
√
ll′

where T is the number of queries.
Again the first point follows directly from Lemma 2.1, and it remains to show the second point with
some manipulations over the states. �

2.3.2 Block sensitivity

Theorem 2.2 generalizes the block sensitivity bound described is Section 1.7. Indeed, the following
theorem:

Theorem 2.3 Let f be any Boolean function (or property). Then, any quantum algorithm computing
f uses Ω(

√
bs(f)) queries.

can be seen as a particular case of Theorem 2.2. Indeed, let x be the input on which f achieves bs(f),
and let X = {x}, Y = {x(S1),...,x

(Sbf(s))}. Finally let R = {(x, x(S1)), (x, x(S2)), ..., (x, x(Sbs(f)))}. We see
that the conditions of Theorem 2 are verified, indeed we have m = bs(f), m′ = 1, l = 1 and l′ = 1.
Apply the theorem and get the following lower bound:

Ω

(√
mm′

ll′

)
= Ω(

√
bs(f))

2.3.3 AND and OR’s

Let x1, ..., xN be N boolean variables, we consider a function AND and ORs:

f(x1, ..., xN ) = (x1ORx2...ORx√N )AND...AND(xN−
√
N+1OR...ORxN )

Theorem 2.4 Any quantum algorithm computing AND and ORs uses Ω(
√
N) queries.

Proof. Application of Theorem 2.2 �

This theorem gives us a better bound than the bound given by some polynomials because the block
sensitivity of f is Θ(

√
bs(f)) = Θ(

√
N). Hence this method gives a better bound than block-sensitivity

method.

11



2.3.4 Theorem of Nayak and Wu

Theorem 2 can also give a better bound than the block sensitivity method for the theorem of Nayak and
Wu, which statement is the following:

Theorem 2.5 Let f : {1, ..., n} → {0, 1} be a Boolean function that is equal to 1 eithet at exactly
n
2 ponts of the domain or at exactly (1 + ε)n2 points. Then, any quantum algorithm that determines
whether the number of points is n

2 or (1 + ε)n2 uses Ω( 1
ε ) queries.

2.3.5 More general result

Note that for some other problems, we would need a more general theorem than Theorem 2.2. For exam-
ple, we need this extention of the theorem to prove some bounds like the one of inverting a permutation.
Here is the statement of the most general theorem of the paper:

Theorem 2.6 Let f(x1, ..., xN ) be a function of n {0, 1}-valued variables and X,Y be two sets of inputs
such that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y be such that:

1. For every x ∈ X there exist at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y there exist at least m′ different x ∈ X such that (x, y) ∈ R.

• Let lx,i be the number of y ∈ Y such that (x, y) ∈ R and xi 6= yi

• Let ly,i be the number of x ∈ X such that (x, y) ∈ R and xi 6= yi

• Let lmax be the maximum of lx,ily, i over all (x, y) ∈ R and i ∈ {1, ..., N} such that xi 6= yi.

Then any algorithm computing f uses Ω
(√

mm′

lmax

)
Proof. The proof of this theorem is very similar to the proof of Theorem 2.2.
Indeed, we define a set S = X ∪ Y of inputs, and we consider the superposition:

1√
2|X|

∑
x∈X
|x〉+

1√
2|Y |

∑
y∈Y
|y〉

over the sets of inputs. We define
Si =

∑
x,y,(x,y)∈R

|(ρk)xy|

and we show:

1. S0 − ST ≥ (1− 2
√
ε(1− ε)

√
mm′)

2. Sk−1 − Sk ≤
√
lmax

�

We can easily see that this is a generalization of Theorem 2.2, because we just have

l = max
x∈X,i

li,x and l′ = max
y∈Y,i

li,y

and it is obvious that
max

(x,y)∈R,xi 6=yi,i
li,xli,y ≤ max

x∈X,i
li,x max

y∈Y,i
li,y

This paper gives a nice method to prove some lower bounds on quantum algorithm numer of queries.
All the bounds presented in the paper are shown in a very similar way. Moreover, this method have
permits to find some stronger bounds fro the AND and ORs and the inverting a permutation problems.
The authors conclude giving some open problems which could maybe also be proven with the same kind
of proof, as the collision problem or the binary search problem.

12



3 Ugo: Graph Properties and Query Complexity[SYZ04]

3.1 Some introductory words and context of the work
3.1.1 A general overview of the article

This article deals with (asymptotic) lower bounds on the quantum query complexity of some proper-
ties having special features; more precisely, the authors focused on boolean properties invariant under
transitive group actions. Upper bounds are given first for different properties of these types, namely the
ones corresponding to graph properties, directed graph properties, and functions invariants under cyclic
shifts. Then a lower bound is given which holds for all properties invariant under some transitive group
action. We will take time to explain this last bound, where results from 1 and 2 are used.
As this survey is only a conference article, and no detailed version was published, reasonnings are un-
complete, some arguments are missing, and sometimes even wrong or given in a wrong way. That is why
we won’t enter in details for the main part of the proofs, and sometimes only give general main ideas
without any detail.
Before presenting this article, we will first give some introductory words about properties invariant under
transitive group actions, and more precisely about graph properties. The motivation of working on such
objects is that in the deterministic model, the evasiveness conjecture (also called Karp conjecture) is
open since 1973. This conjecture states that for monotone graph properties f , D(f) is maximal. This is
why it is interesting to be able to see if in the quantum model, query complexity of such functions are
still “high”.

3.1.2 Invariance and graph properties

We keep here notations used in 1. As we just stated, we will now focus on some specific class of properties,
invariants under some group actions:

Definition (Invariance). Let f : {0, 1}N → {0, 1} be a property, and Γ a subgroup of SN . We say
that f is invariant under the action of Γ iff :

∀ (x1, ..., xN ) ∈ {0, 1}N , ∀ σ ∈ Γ, f(xσ(1), ..., xσ(N)) = f(x1, ..., xN )

This definition is very general; we will focus on a class of groups which have the property of transi-
tivity:

Definition (Transitivity). A subgroup Γ of SN is said to have a transitive action on {1, ..., N} if forall
i, j ∈ {1, ...N}, there exists σ ∈ Γ such that: σ(i) = j. In other words, the action of Γ on {1, .., N} has
only one orbit.

Here are some examples of properties invariant under some transitive group actions:

Example 3.1

• One can see that symmetric boolean functions f : {0, 1}N → {0, 1} that were defined in 1 are
exactly properties invariant under SN . The action is transitive.

• For Γ :=< (1 2 ... N) > the group composed of all cyclic shifts of {1, ..., N}, if f : {0, 1}N → {0, 1}
is invariant under Γ, we call f a circular function. Such an action is transitive.

• The trivial properties are the two constant functions over {0, 1}N ; they are of course symmetric,
and have deterministic query complexity 0.

Two other classes of properties, called graph properties and directed graph properties lead to open
interesting questions in the classical deterministic model: we consider a fixed set of vertices V of size n.

Then we can see that if N =

(
n

2

)
(resp. N = n(n− 1)), a boolean vector (x1, ..., xN ) can be associated

bijectively to a graph G with edges in
(
V

2

)
(resp. a directed graph G with edges in V 2\{(v, v), v ∈ V }).

Indeed, one have to see indices i ∈ {1, ..., N} as edges, and xi = 1 iff i is an edge of E(G). Then a graph
property will be a property f : {0, 1}N → {0, 1} which is “invariant under graph isomorphism”, which
means that two x’s inducing two isomorphic graphs will have the same image under f . More formally,
it simply corresponds to the following definition:

13



Definition (Graph property). We assume that V is a fixed set of vertices such that |V | = n for some

nonnegative integer n. In the case N =

(
n

2

)
(resp. N = n(n − 1)), we associate implicitely {1, ..., N}

and
(
V

2

)
(resp. V 2\{(v, v), v ∈ V }). Hence a relabelling σ ∈ SV of the vertices induces a bijection

σ ∈ SN with: ∀{u, v} ∈ {1, ..., N}, σ · {u, v} := {σu, σv}. Let Γ ' Sn be the subgroup of SN whose
elements are all these induced bijections. We say that f : {0, 1}N → {0, 1} is a graph property (resp.
directed graph property) if f is invariant under the action of Γ.

One have to pay attention when talking about graph property that the underlying number of vertices
n is always fixed. One can see that properties as “being connected”, “having at most/least k edges” (for
a fixed k) or “having a k − clique” correspond to graph properties. Deciding query complexity of such
properties is equivalent to know how many bits of the upper triangle part of the adjacency matrix of an
input graph G we will have to see see in the worst case before being able to decide whether G satisfies
f or not.

An interesting case of properties is the one of monotone properties, which correspond to monotone
functions f : {0, 1}N → {0, 1} (where {0, 1}N has to be considered with the product order). No
result about them is given in the article, and we will just mention them there with a few words as they
appear to be quite hard to decide. One have to see that a monotone graph property is a graph property
f which is invariant under taking subgraph, which means that if x, x′ corresponds to two graphs, with
x a subgraph of x′, then if f(x′) = 1, we have f(x) = 1. Amongst our last examples, the property
“having at most k edges” is monotone. It is known since 1976 that deciding monotone graph properties
is “asymptoticaly hard”; more precisely, Rivest and Vuillemin showed in [LRV76] that for nontrivial
monotone graph properties (directed or not), we have: D(f) = Ω(n2) = Ω(N). However the following
more precise conjecture is still open today:

Conjecture 3.1 (Karp’s Conjecture, 1973) Any non trivial monotone graph property f : {0, 1}N → {0, 1}

has deterministic query complexity D(f) =

(
n

2

)
= N .

3.1.3 The main results of the article

Important convention: From now until the end of the section, we will consider that all properties that
we are considering are nontrivial, otherwise everything we will assert is be trivially wrong.
The authors give “almost tight” upper bounds on Q2(f) for different properties invariant under some
transitive actions, and a general lower bound, using some results from 1 and 2:

Theorem 3.1 There exists a graph property f : {0, 1}N → {0, 1} (N =

(
n

2

)
), such that forall ε > 0:

Q2(f) = O(N
1
4 +ε)

Theorem 3.2 There exists a directed graph property f : {0, 1}N → {0, 1} (N =

(
n

2

)
), such that

forall ε > 0:
Q2(f) = O(N

1
4 +ε)

The proof of Theorem 2 is not given in the paper, as a similar reasonning than the one of Theorem
1 is used.

Theorem 3.3 There exists a circular function f : {0, 1}N → {0, 1}, such that forall ε > 0:

Q2(f) = O(N
1
4 +ε)

The following theorem states that Theorems 1, 2 and 3 are “almost optimal”:

Theorem 3.4 If there exists some subgroup Γ of SN acting transitively on {1, ..., N}such that the
property f : {0, 1}N → {0, 1} is invariant under the action of Γ, then :

Q2(f) = Ω(N
1
4 )

We will develop more precisely the proof of Theorem 4.
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3.2 General idea about the proofs of the upper bounds
To prove Theorems 1 and 2, the authors considered properties whose query complexity is known to
be “low” in the deterministic case, and showed that this is still the case in the quantum model. They
designed efficient quantum algorithms to decide these properties, that use as subroutine variants of
Grover’s algorithm [Gro96]. These algorithmic tricks allow them to do fast computings on graph, namely
find some vertex with a certain property amongst some subset of the vertex set. Some technical lemmas
allow them to get a bounded complexity at each step. For Theorem 1, the graph property studied is
the property of beeing a Scorpion: a graph G is a Scorpion iff there exist three distinct special vertices
B, T, S ∈ V called the Body, the Tail and the Sting, such that:

• S has degree 1 and its only neighbour is T ,

• T has degree 2 and its two neighbors are S and B,

• B has degree n− 2 (with n = |V (G)|).
It is known (see for example [dL12]) that for fscorpion corresponding to this property and n ≥ 5, we

have D(fscorpion) ≤ 6n − 13 (recall that N =

(
n

2

)
). This complexity is one of the lowest that a graph

property can have in deterministic model.
For Theorem 2, the graph property studied is the property fsink of being a sink: we say that a directed
graph G is a sink when there exists a vertex v ∈ V (G) with out-degree 0 and in-degree n− 1. Again in
deterministic case, the complexity of this property is linear (see for example [BMZ17]) : D(fsink) ≤ 3n−4.

3.2.1 Variants of Grover algorithm

We recall that Grover’s algorithm return a marked element amongst a list of n elements, and an error
message if such element does not exist in time O(

√
n) (with a constant error probability, say 1

3 ). Here
are some more precises versions of this algorithm and of its complexity which are used in the article
almost everywhere, and were presented in [HMdW03]:

Lemma 3.1 Assume we have a subroutine that decides if a given element is marked or not in time
q. Then there exists a quantum algorithm that we will call Algo1 which takes as input n elements and
returns a marked element or an error message if no marked element exists, with constant error probability
(say 1

3 ). Moreover this algorithm runs in expected time and query complexity O(
√

n
mq), where m is the

number of marked elements.

From this Lemma, with some algorithmic tricks the authors show how to get the following result:

Lemma 3.2 Assume we have a subroutine that decides if a given element is marked or not in time q.
Let k be a fixed integer and ε > 0. Then there exists a quantum algorithm that we will call Algo2 which
takes as input n elements, with m of them marked, and returns k marked element if there are at least k
marked elements or the m marked elements otherwise, with error probability less than ε. Moreover this
algorithm runs in expected time and query complexity O(q

√
min(k,m)n+ q

√
nlog(kε )).

We give here some examples of applications of these algorithms that are used in the article: let G be
a graph with n vertices and ε > 0.

• Given a vertex v, we can check in O(
√
nlog( 2

ε )) queries if it has degree 1 with error probability less
than ε. For this apply Algo2 with k = 2, list of elements V \{v} and marked elements neighbours
of v. Our subroutine consists here only in checking that a given vertex u is a neighbour of v, so
q = 1. If the algorithm returns some solution, then v has degree at least 2 with error probability
ε
2 . Apply Algo1 (or Algo2 with k = 1) then to check whether deg(v) = 0.

• With the same idea, by inverting marked and unmarked elements, we can check that a given v has
degree n− 2.

• Contrarily to what is written in the article, with the same method we need O(
√
nlog( 3

ε )) queries
to check whether a given vertex has degree 2.

• If U is a subset of V with u vertices such that all vertices v in V \U with no neighbour in U have
degree at most d in G, then we can find with O(

√
n
√

u
d ) queries such a vertex v. For this we
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apply Algo1 with list of elements V and marked elements vertices v with no neighbour in U . The
subroutine of Algo1 used here consists in checking that an input vertex v has no neighbour in U ,
which can be done by running Algo2 with list of elements U , marked elements neighbours of v (so
m ≤ d), and q = 1.

3.2.2 One of the algorithms (very informal version)

Two algorithms are given deciding fscorpion, the second beeing a modified version of the first which has
the desired complexity. Their goal is to find as quick as possible candidates for S, T and B, and to discard
a maximum of candidates if it fails to do this. If we have three candidates vertices, we can then check
with “low” complexity (namely O(

√
nlog( 1

ε ))) whether the input graph G is a scorpion graph with these
vertices as S, T and B (see Lemma 7 of the article). We just give here the idea of the first algorithm,
and won’t talk of its modified version, as its complexity analysis is quite unclear.
Recall that the algorithm takes as input a graph G = (V,E) and outputs whether G is a scorpion or not
with high probability. Here are its five steps:

1 We chose uniformly at random a subset U of V with only “few vertices”: |U | = 2
√
nlog(n). Then

if G is a scorpion, T and S are not in U with “high” probability.

2 We find a vertex v which has no neighbour in U with tricks used in the last subsection; if G is a
scorpion, we know that such a vertex exists with high probability, as S and T have this property.
Some probability lemma (see Lemma 8 of the article) ensure us that if v exists, then it has “low”
degree with high probability, namely: deg(v) ≤

√
nlog(n).

3 If we are lucky, we found in step 3 a vertex v which is T or S. So we check whether G is a scorpion
with v in the role of T or S. If the answer is ’Yes’ we are done and return ’Scorpion graph’.

4 Otherwise, we know that if G is a scorpion, then B has to be a neighbour of v. Our objective now
is then to find B amongst the neighbors of v. We saw that we can assume that v has at most√
nlog(n) neighbors, so it won’t be too costly to look for B amongst them. We use Algo2 with

k =
√
nlog(n) to get the set W of these elements.

5 We look for a (unique) candidate for B in W with Algo1, i.e a vertex with degree n−2. If we don’t
find it, then we return ’Not a Scorpion graph’; otherwise we test whether G is a scorpion with this
candidate as B, and return the answer of this check.

As we mentioned earlier, this algorithm is still too costly to achieve the bound of Theorem 1. This is why
the authors transformed it with the following idea: instead of looking for a unique v in step 1, they now
look for many v′is associated to many sets U ′is, and hope to find with high probability a good candidate
for body in the intersection of their neighborhoods. However it is not so clear how they get all their
complexity bounds and use Algo1 and Algo2...

We won’t talk about the proof of Theorem 3 here, as the same kind of tricks and reasonnings are
used.

3.3 Proof of the lower bound of Theorem 4
In the last section of the article, two proofs are given of two lower bounds: one for the classical model,
and then the one of Theorem 4. We give here these two proofs; however we warn the reader that though
the Lemma 14 which is given in the paper to give the first proof is true, it is too specific and unap-
propriate to prove the result which is discussed. The authors were more likely thinking in their proof
about the more general version of the lemma that we can find in [LRV76], as it is the one we need to use
to obtain the good equality. We will then use this formulation here instead of the one given in the article.

The first result discussed is a lower bound in the classical case; we take again here the notations of
section 1 for certificate complexity:

Theorem 3.5 If a property f : {0, 1}N → {0, 1} is invariant under some transitive group action Γ,
then C0(f)C1(f) ≥ N and thus D(f) ≥ C(f) ≥

√
N .

Proof. We consider here A,B ⊆ {1, ..., N} 1- and 0-certificates of size respectively C1(f) and C0(f),
with associated a and b ∈ {0, 1}N such that f(a) = 1 and f(b) = 0. If we show that |A||B| ≥ N , then
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we are done. One can observe that the group action of Γ on {1, ..., N} induces a group action of Γ on
2{1,...,N} defined by:

∀σ ∈ Γ, ∀C ⊆ {1, ..., N}, σ(C) := {σ(i), i ∈ C}

This action preserves cardinalities of subsets. We denote with Γ(B) := {σ(B), σ ∈ Γ} the orbit of B
by this action. One can observe by transitivity of Γ that, forall i ∈ {1, ..., N}, the quantity |{σ(B), σ ∈
Γ, i ∈ σ(B)}| is constant, i.e does not depend on i.
A first observation that can be done is that any B′ = σ(B) ∈ Γ(B) is a 0-certificate as well associated
to b′ := σ(b); indeed, let x be such that: x|B′ = b′|B′ . Then if we note σ(x) := (xσ(1), ..., xσ(N)) we have:
f(x) = f(σ−1(x)), and f(b′) = f(σ−1(b′)) as f is invariant under Γ action. But σ−1(x)|B = σ−1(b′)|B =
b|B , so : f(x) = f(b′) = 0, which prove that B′ is a 0-certificate.
One can observe moreover that any B′ ∈ Γ(B) must intersect A: if there is B′ ∈ Γ(B) such that
A ∩ B′ = ∅, then by flipping bits of a with indices in B′ to those of b′ = σ(b), we get a a′ valued 1 by
f , as A is a 1-certificate, which contradicts our previous observation that B′ is a 0-certificate. Hence:
A ∩B′ 6= ∅.
This result allows us to derive the following inequality:∑

B′∈Γ(B)

|A ∩B′| ≥ |Γ(B)| (1)

Now we will use the following lemma stated in [LRV76]:

Lemma 3.3 Let E be a finite set, and O be a family of k-subsets of E. If Γ is a transitive group action
on E such that O is an orbit of its induced action on 2E , then for any i ∈ E:

k|O| = |E| |{B′ ∈ O, i ∈ B′}|

If we apply this lemma here with E := {1, ..., N}, O := Γ(B) and any i ∈ E then we get:

|B||Γ(B)| = N |{σ(B), σ ∈ Γ, i ∈ σ(B)}| (2)

Hence we have :∑
B′∈Γ(B)

|A ∩B′| =
∑
σ∈Γ

∑
i∈A

1i∈σ(B) =
∑
i∈A

∑
σ∈Γ

1i∈σ(B) =
∑
i∈A
|{σ(B), σ ∈ Γ, i ∈ σ(B)}| = |A| |B||Γ(B)|

N

We then conclude with (1) that |A||B| ≥ N , which is the desired result. �

Now we have a bound in the classical model, we will conclude by giving the proof in the quantum
model of Theorem 4; again, we will use the notations of section 1 for block sensitivity complexity, and
of 2:

Proof (Theorem 4). Let f be a nontrivial function invariant under the transitive group action of some
Γ. As query complexity of f is the same that the one of its complementary 1− f in any model, we can
consider wlog that f((0, ..., 0)) = 0. We consider B ⊆ {1, ..., N} some minimal by inclusion such that
f((0, ..., 0)B) = 1. Then we have: |B| ≤ bs(f), and from section 1, we know that Q2(f) = Ω(

√
bs(f)).

Then if are able to show that Q2(f) = Ω(
√

N
|B| ) = Ω(

√
N

bs(f) ), by combining the two bounds, we will

get that Q2(f)2 = Ω(
√
N), which gives us the desired result. We show this last bound from Ambaini’s

theorem presented in section 2:
we choose set of entries X := {(0, ..., 0)} and Y := {σ((0, ..., 0)B), σ ∈ Γ}. By invariance of f under
Γ action, f is valued 1 on Y , and so f(x) 6= f(y) for any (x, y) ∈ X × Y . We choose the relation
R := X × Y , and the parameters of the theorem (there is a little mistake in the article: one have to
exchange min and maxs):

1 m := minx∈X |{y ∈ Y, (x, y) ∈ R}| = |Y |

2 m′ := miny∈Y |{x ∈ X, (x, y) ∈ R}| = 1

3 l := maxx∈X,i∈{1,...,N}|{y ∈ Y, (x, y) ∈ R, xi 6= yi}| = |{y ∈ Y, yi = 1}| = |{σ((0, ..., 0)B), σ ∈
Γ, σ((0, ..., 0)B)i = 1}| for any i ∈ {1, ..., N}.

4 l′ := maxy∈Y,i∈{1,...,N}|{x ∈ X, (x, y) ∈ R, xi 6= yi}| = 1
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Ambaini’s theorem gives us Q2(f) = Ω(
√

mm′

ll′ ). Now we can see that if we apply Lemma 3 by identifying
elements of {0, 1}N with subsets of {1, ..., N}, with E := {1, ..., N}, O := Y the orbit of B by Γ, and k
the hamming weight of (0, ..., 0)B , so k = |B|, we have for any i:

|B||Y | = N |{σ((0, ..., 0)B), σ ∈ Γ, σ((0, ..., 0)B)i = 1}|

Hence:
mm′

ll′
=
|Y |
l

and we can conclude the proof. �
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