Quantum Query complexity lower bounds

Nemo Fournier Jérémy Petithomme Ugo Giocanti

December 6, 2019

Outline

(1) Nemo

- Quantum Lower Bounds by polynomials

(2) Jérémy

- Quantum Lower Bounds by Quantum Arguments
(3) Ugo
- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action

Some context

Quantum Lower Bounds by Polynomials (Beals, Cleve, Mosca, Wolf, 1998)

Deutsch-Jozsa algorithm (1992): 2^{n} queries vs 1 query Simon algorithm (1994): $\Omega\left(2^{\frac{n}{2}}\right)$ queries vs $\mathcal{O}(n)$
Grover algorithm (1996): n queries vs \sqrt{n} queries

Black-box framework

Black-box framework

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{N-2}, x_{N-1} \\
f(X) \\
f(X)
\end{array}\right)=x_{0} \vee x_{1} \vee x_{2} \vee \cdots \vee x_{N-1} \\
& f(X)=x_{0} \wedge x_{1} \wedge x_{2} \wedge \cdots \wedge x_{N-1} \\
& f(X)=(-1)^{|X|} \\
& f(X)=\operatorname{MAJORITY}(X)
\end{aligned}
$$

Black-box framework

Black-box framework

$|0\rangle^{\otimes m}=U_{0}-O_{1}-U_{1}-O_{2}-\cdots-\sqrt[O_{T}]{-}-U_{T}-\alpha=b_{1} b_{2} \ldots b_{m-1} b_{m}$

Notions of Query Complexity

Classical Query Complexity

Notions of Query Complexity

Classical Query Complexity

Quantum Query Complexity

$Q_{E}(f)$: smallest T in the exact setting.
$Q_{2}(f)$: smallest T in the approximate setting ($\left.\mathbf{P}\left\{b_{m} \neq f(X)\right\} \leq 1 / 3\right)$
$Q_{0}(f)$: smallest T in the 0-error setting $\left(b_{m-1}=1 \Longrightarrow b_{m}=f(X)\right)$

Representation by Polynomials

$$
f:\{0,1\}^{N} \rightarrow\{0,1\} \text { and } P \in \mathbf{R}\left[x_{0}, x_{1}, \ldots, x_{N}-1\right]
$$

P represents f if $\forall X \in\{0,1\}^{N}, P(X)=f(X)$

$$
\text { e.g. } P(X)=1-\left(1-x_{0}\right) \ldots\left(1-x_{N-1}\right) \text { represents OR }
$$

P approximates f if $\forall X \in\{0,1\}^{N},|P(X)-f(X)| \leq 1 / 3$
e.g. $P(X)=\frac{1}{3} x_{0}+\frac{1}{3} x_{1}$ approximtes AND
$\operatorname{deg}(f)=\min _{P \text { represents } f} \operatorname{deg} P \quad$ and $\quad \widetilde{\operatorname{deg}}(f)=\min _{P \text { approximates } f} \operatorname{deg} P$

Tools from the Polynomial World

Theorem (Nisan, Szegedy)
 If f depends on N variables then $\operatorname{deg}(f) \geq \log N-\mathcal{O}(\log \log N)$

A first Lower Bound, in the exact setting

$$
\begin{aligned}
& 10)^{\otimes m}-U_{0}-O_{1}-\sqrt[U_{1}]{U_{1}}-O_{2}-\cdots-O_{T}-U_{T}: \boxed{X}=b_{1} b_{2} \ldots b_{m-1} b_{m} \\
& |\psi\rangle
\end{aligned}
$$

A first Lower Bound, in the exact setting

$$
|0\rangle^{\otimes m}-\sqrt[U_{0}]{-}-\sqrt[O_{1}]{-}-\sqrt[U_{1}]{-O_{2}}-\cdots \cdot-\sqrt[O_{T}]{-U_{T}}: \begin{array}{|c:c}
\chi \\
|\psi\rangle
\end{array}
$$

$$
|\psi\rangle=\sum_{k \in\{0,1\}^{m}} p_{k}(X)|k\rangle
$$

A first Lower Bound, in the exact setting

$$
|0\rangle^{\otimes m}-U_{0}-O_{1}-U_{1}-O_{2}-\cdots \cdot-O_{T}-\frac{U_{T}}{|\psi\rangle}=b_{1} b_{2} \ldots b_{m-1} b_{m}
$$

$$
|i, b, z\rangle \mapsto\left|i, b \oplus x_{i}, z\right\rangle
$$

$$
|\psi\rangle=\sum_{k \in\{0,1\}^{m}} p_{k}(X)|k\rangle
$$

A first Lower Bound, in the exact setting

$$
|0\rangle^{\otimes m}-U_{0}-O_{1}-U_{1}-O_{2}-\cdots \cdot-O_{T}-\frac{U_{T}}{|\psi\rangle}=b_{1} b_{2} \ldots b_{m-1} b_{m}
$$

$$
|i, b, z\rangle \mapsto\left|i, b \oplus x_{i}, z\right\rangle
$$

$$
|\psi\rangle=\sum_{k \in\{0,1\}^{m}} p_{k}(X)|k\rangle
$$

$$
\begin{aligned}
& \alpha|i, 0, z\rangle \\
& \beta|i, 1, z\rangle
\end{aligned} \mapsto \begin{aligned}
& \left(\left(1-x_{i}\right) \alpha+x_{i} \beta\right)|i, 0, z\rangle \\
& \left(x_{i} \alpha+\left(1-x_{i}\right) \beta\right)|i, 1, z\rangle
\end{aligned}
$$

A first Lower Bound, in the exact setting

$$
\begin{gathered}
|0\rangle^{\otimes m}-U_{0}-O_{1}-U_{1}-O_{2}-\cdots \cdots b_{1} b_{2} \ldots b_{m-1} b_{m} \\
|\psi\rangle=\sum_{k \in\{0,1\}^{m}} p_{k}(X)|k\rangle \quad \text { with } \operatorname{deg} p_{k} \leq T
\end{gathered}
$$

A first Lower Bound, in the exact setting

$$
\begin{aligned}
& |0\rangle^{\otimes m}-U_{0}-O_{1}-U_{1}-O_{2}-\cdots \cdot-O_{T}-U_{T}: x=b_{1} b_{2} \ldots b_{m-1} b_{m} \\
& |\psi\rangle
\end{aligned}
$$

$$
|\psi\rangle=\sum_{k \in\{0,1\}^{m}} p_{k}(X)|k\rangle
$$

with $\operatorname{deg} p_{k} \leq T$

Consequence: for $T=Q_{E}(f), P(X)=\sum_{k \in B}\left|p_{k}(X)\right|^{2}$ represents f, and $\operatorname{deg}(P) \leq 2 T$, hence $Q_{E}(f) \geq \operatorname{deg}(f) / 2$

A first Lower Bound, in the exact setting

$$
\begin{aligned}
& |0\rangle^{\otimes m}-U_{0}-O_{1}-U_{1}-O_{2}-\cdots \cdot-O_{T}-U_{T}: \begin{array}{rl:l}
\lambda \\
= & b_{1} b_{2} \ldots b_{m-1} b_{m}
\end{array} \\
& |\psi\rangle
\end{aligned}
$$

$$
|\psi\rangle=\sum_{k \in\{0,1\}^{m}} p_{k}(X)|k\rangle
$$

with $\operatorname{deg} p_{k} \leq T$

Consequence: for $T=Q_{E}(f), P(X)=\sum_{k \in B}\left|p_{k}(X)\right|^{2}$ represents f, and $\operatorname{deg}(P) \leq 2 T$, hence $Q_{E}(f) \geq \operatorname{deg}(f) / 2$

$$
Q_{E}(f) \geq \frac{\log (N)}{2}-\mathcal{O}(\log \log N)
$$

The quantum advantage is at most polynomial

$$
Q_{E}(f) \geq \sqrt{b s(f) / 8}, Q_{2}(f) \geq \sqrt{b s(f) / 16}
$$

The quantum advantage is at most polynomial

$$
\begin{aligned}
& Q_{E}(f) \geq \sqrt{b s(f) / 8}, Q_{2}(f) \geq \sqrt{b s(f) / 16} \\
& D(f) \leq b s(f)^{3}
\end{aligned}
$$

The quantum advantage is at most polynomial

$$
\begin{aligned}
& Q_{E}(f) \geq \sqrt{b s(f) / 8}, Q_{2}(f) \geq \sqrt{b s(f) / 16} \\
& D(f) \leq b s(f)^{3}
\end{aligned}
$$

$$
D(f) \leq 4096 Q_{2}(f)^{6}
$$

Outline

(1) Nemo

- Quantum Lower Bounds by polynomials
(2) Jérémy
- Quantum Lower Bounds by Quantum Arguments
(3) Ugo
- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action

Motivation

Quantum Algorithm \rightarrow Quantum Adversary

Motivation

Quantum Algorithm \rightarrow Quantum Adversary

Oracle part + Algorithm part

Motivation

Quantum Algorithm \rightarrow Quantum Adversary

Oracle part + Algorithm part \rightarrow entangled

Motivation

Quantum Algorithm \rightarrow Quantum Adversary
Oracle part + Algorithm part \rightarrow entangled

- Tools

Motivation

Quantum Algorithm \rightarrow Quantum Adversary
Oracle part + Algorithm part \rightarrow entangled

- Tools
- New lower bounds

Motivation

Quantum Algorithm \rightarrow Quantum Adversary
Oracle part + Algorithm part \rightarrow entangled

- Tools
- New lower bounds
- General lower bound theorem (Unification of proofs)

Model

We consider:
A boolean function: $f:\{0,1\}^{N} \rightarrow\{0,1\}$
An oracle O

Model

We consider:
A boolean function: $f:\{0,1\}^{N} \rightarrow\{0,1\}$
An oracle O

Network:

$$
U_{0} \rightarrow O \rightarrow U_{1} \rightarrow O \rightarrow \ldots \rightarrow U_{T-1} \rightarrow O \rightarrow U_{T}
$$

O_{x} : oracle transformation corresponding to input x

Model

Initial state: $|0\rangle$
Measure: rightmost bit of the final state

Definition (Error of a quantum network)

We say that a quantum network computes f with bounded error if, for every $x=\left(x_{1}, \ldots x_{N}\right)$, the probability that the rightmost bit of $U_{T} O_{x} U_{T-1} \ldots O_{x} U_{0}|0\rangle$ equals $f\left(x_{1}, \ldots, x_{N}\right)$ is at least $1-\epsilon$ for some $\epsilon>\frac{1}{2}$.

Idea

Let
$S \subseteq\{0,1\}^{N}$
\mathcal{H}_{A} the workspace of the algorithm A
\mathcal{H}_{l} is an "input space"

Idea

Let

$$
S \subseteq\{0,1\}^{N}
$$

\mathcal{H}_{A} the workspace of the algorithm A
\mathcal{H}_{l} is an "input space"

We consider the bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{l}$

$$
U_{T} O U_{T-1} \ldots O U_{0} \quad \rightarrow \quad U_{T}^{\prime} O^{\prime} U_{T-1}^{\prime} \ldots O^{\prime} U_{0}^{\prime}
$$

where

$$
\begin{aligned}
& U_{i}^{\prime}=U_{i} \otimes I \\
& O^{\prime} \text { is simply } O_{x} \text { on } \mathcal{H}_{A} \otimes|x\rangle
\end{aligned}
$$

Idea

Beginning: algorithm in state $|0\rangle$. Initial state of the system:

$$
\left|\psi_{\text {start }}\right\rangle=|0\rangle \otimes \sum_{x \in S} \alpha_{x}|x\rangle
$$

Idea

Beginning: algorithm in state $|0\rangle$. Initial state of the system:

$$
\left|\psi_{\text {start }}\right\rangle=|0\rangle \otimes \sum_{x \in S} \alpha_{x}|x\rangle
$$

Final state

$$
\left|\psi_{\text {end }}\right\rangle=\sum_{x \in S} \alpha_{x}\left|\psi_{x}\right\rangle \otimes|x\rangle
$$

where $\left|\psi_{x}\right\rangle$ is the final state of $U_{T} O_{x} U_{T-1} \ldots O_{x} U_{0}|0\rangle$.

Idea

Beginning: algorithm in state $|0\rangle$. Initial state of the system:

$$
\left|\psi_{\text {start }}\right\rangle=|0\rangle \otimes \sum_{x \in S} \alpha_{x}|x\rangle
$$

Final state

$$
\left|\psi_{\text {end }}\right\rangle=\sum_{x \in S} \alpha_{x}\left|\psi_{x}\right\rangle \otimes|x\rangle
$$

where $\left|\psi_{x}\right\rangle$ is the final state of $U_{T} O_{x} U_{T-1} \ldots O_{x} U_{0}|0\rangle$.
If $\alpha_{x}=\frac{1}{\sqrt{m}}$ for all x and $\epsilon=0$,

$$
\left|\psi_{e n d}\right\rangle=\frac{1}{\sqrt{m}} \sum_{x \in S}|x\rangle\left|\varphi_{x}\right\rangle \otimes|x\rangle
$$

\Rightarrow full entanglement.

Idea

Bound the entanglement:
We trace out \mathcal{H}_{A} from $\left|\psi_{\text {start }}\right\rangle$ and $\left|\psi_{\text {end }}\right\rangle$
\Rightarrow mixed states over \mathcal{H}_{1}
$\rho_{\text {start }}$ and $\rho_{\text {end }}$ density matrices.
Starting state $\sum_{x \in S} \alpha_{x}|x\rangle \Leftrightarrow\left(\rho_{\text {start }}\right)_{x y}=\alpha_{x}^{*} \alpha_{y}$.

Lemma

Let A be an algorithm that computes f with probability at least $1-\epsilon$. Let x, y be such that $f(x) \neq f(y)$. Then,

$$
\left|\left(\rho_{e n d}\right)_{x y}\right| \leq 2 \sqrt{\epsilon(1-\epsilon)}\left|\alpha_{x}\right|\left|\alpha_{y}\right|
$$

General lower bound theorem

Theorem

Let $f\left(x_{1}, \ldots, x_{N}\right)$ be a function of $n\{0,1\}$-valued variables and X, Y be two sets of inputs such that $f(x) \neq f(y)$ if $x \in X$ and $y \in Y$. Let $R \subset X \times Y$ be such that:

1. For every $x \in X$ there exist at least m different $y \in Y$ such that $(x, y) \in R$.
2. For every $y \in Y$ there exist at least m^{\prime} different $x \in X$ such that $(x, y) \in R$.
3. For every $x \in X$ and $i \in\{1, \ldots, n\}$ there are at most I different $y \in Y$ such that $(x, y) \in R$ and $x_{i} \neq y_{i}$.
4. For every $y \in Y$ and $i \in\{1, \ldots, n\}$ there are at most I^{\prime} different $x \in X$ such that $(x, y) \in R$ and $x_{i} \neq y_{i}$.
Then any algorithm computing f uses $\Omega\left(\sqrt{\frac{m m^{\prime}}{l l^{\prime}}}\right)$ queries.

Block sensivity

General lower bound theorem: generalization of the block sensitivity bound.

Theorem

Let f be any Boolean function (or property). Then, any quantum algorithm computing f uses $\Omega(\sqrt{b s(f)})$ queries.

Particular case of the general theorem. Let :
x be the input on which f achieves bs (f)
$X=\{x\}, Y=\left\{x^{\left(S_{1}\right)}, \ldots, x^{\left(S_{b s(f)}\right)}\right\}$
$R=\left\{\left(x, x^{\left(S_{1}\right)}\right),\left(x, x^{\left(S_{2}\right)}\right), \ldots,\left(x, x^{\left(S_{b s(f)}\right)}\right)\right\}$.
We have $m=b s(f), m^{\prime}=1, I=1$ and $I^{\prime}=1$. Bound :

$$
\Omega\left(\sqrt{\frac{m m^{\prime}}{I^{\prime}}}\right)=\Omega(\sqrt{b s(f)})
$$

AND and OR's

Let x_{1}, \ldots, x_{N} be N boolean variables, we consider a function AND and ORs:

$$
f\left(x_{1}, \ldots, x_{N}\right)=\left(x_{1} O R x_{2} \ldots O R x_{\sqrt{N}}\right) A N D \ldots A N D\left(x_{N-\sqrt{N}+1} O R \ldots O R x_{N}\right)
$$

Theorem

Any quantum algorithm computing $A N D$ and ORs uses $\Omega(\sqrt{N})$ queries.

Proof.

Application of the general lower bound theorem.
Better than BS: $\Theta(\sqrt{b s(f)})=\Theta(\sqrt{N})$.

More general result

Theorem

Let $f\left(x_{1}, \ldots, x_{N}\right)$ be a function of $n\{0,1\}$-valued variables and X, Y be two sets of inputs such that $f(x) \neq f(y)$ if $x \in X$ and $y \in Y$. Let $R \subset X \times Y$ be such that:

1. For every $x \in X$ there exist at least m different $y \in Y$ such that $(x, y) \in R$.
2. For every $y \in Y$ there exist at least m^{\prime} different $x \in X$ such that $(x, y) \in R$.

- Let $I_{x, i}$ be the number of $y \in Y$ such that $(x, y) \in R$ and $x_{i} \neq y_{i}$
- Let $l_{y, i}$ be the number of $x \in X$ such that $(x, y) \in R$ and $x_{i} \neq y_{i}$
- Let $I_{\text {max }}$ be the maximum of $I_{x, i} I_{y, i}$ over all $(x, y) \in R$ and
$i \in\{1, \ldots, N\}$ such that $x_{i} \neq y_{i}$.
Then any algorithm computing f uses $\Omega\left(\sqrt{\frac{m m^{\prime}}{I_{\text {max }}}}\right)$

Outline

(1) Nemo

- Quantum Lower Bounds by polynomials
(2) Jérémy
- Quantum Lower Bounds by Quantum Arguments
(3) Ugo
- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action
(directed)

Invariance, circularity

Invariance, circularity

Definiton (Invariance)

Let $f:\{0,1\}^{N} \rightarrow\{0,1\}$ be a property, and Γ a subgroup of \mathfrak{S}_{N}. We say that f is invariant under the action of Γ iff :

$$
\forall\left(x_{1}, \ldots, x_{N}\right) \in\{0,1\}^{N}, \forall \sigma \in \Gamma, f\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right)=f\left(x_{1}, \ldots, x_{N}\right)
$$

Circular functions

Circular functions

Definiton (circularity)

A circular function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is a property invariant under the cyclic action of $\Gamma:=<(12 \ldots N)>$, i.e :

$$
\begin{array}{r}
\forall\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{N}, \forall I \in\{1, \ldots, N\}, f\left(x_{1+\prime} \bmod (N), \ldots, x_{N+I \bmod (N)}\right) \\
=f\left(x_{1}, \ldots, x_{N}\right)
\end{array}
$$

Circular functions

Definiton (circularity)

A circular function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is a property invariant under the cyclic action of $\Gamma:=<(12 \ldots N)>$, i.e :

$$
\begin{array}{r}
\forall\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{N}, \forall I \in\{1, \ldots, N\}, f\left(x_{1+I} \bmod (N), \ldots, x_{N+I \bmod (N)}\right) \\
=f\left(x_{1}, \ldots, x_{N}\right)
\end{array}
$$

Theorem (Sun, Xiaoming, Yao, 2004)
There exists a circular non-constant function $f:\{0,1\}^{N} \rightarrow\{0,1\}$, such that forall $\epsilon>0$:

$$
Q_{2}(f)=\mathcal{O}\left(N^{\frac{1}{4}+\epsilon}\right)
$$

Graph Properties

We identify $\{1, \ldots, N\}$ with set of edges when $N=\binom{n}{2}$ (resp. with set of arcs when $N=n(n-1)$), and $\{0,1\}^{N}$ with set of graphs (resp. directed graph).

Graph Properties

We identify $\{1, \ldots, N\}$ with set of edges when $N=\binom{n}{2}$ (resp. with set of arcs when $N=n(n-1)$), and $\{0,1\}^{N}$ with set of graphs (resp. directed graph).

Definiton (Graph properties)

A (directed) graph property $f:\{0,1\}^{N} \rightarrow\{0,1\}$ when $N=\binom{n}{2}$ (resp. $N=n(n-1))$ is a property stable under graph isomorphism.

Graph Properties

We identify $\{1, \ldots, N\}$ with set of edges when $N=\binom{n}{2}$ (resp. with set of arcs when $N=n(n-1)$), and $\{0,1\}^{N}$ with set of graphs (resp. directed graph).

Definiton (Graph properties)

A (directed) graph property $f:\{0,1\}^{N} \rightarrow\{0,1\}$ when $N=\binom{n}{2}$ (resp. $N=n(n-1))$ is a property stable under graph isomorphism.

Claim

A property $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is a graph property iff it is invariant by the group action induced by relabelling of vertices.

Graph properties in the classical deterministic model

Graph properties in the classical deterministic model

Theorem (Rivest, Vuillemin, 1976)

If $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is a non-constant monotone graph property or a directed graph property, we have:

$$
D(f)=\Omega(N)=\Omega\left(n^{2}\right)
$$

Graph properties in the classical deterministic model

Theorem (Rivest, Vuillemin, 1976)

If $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is a non-constant monotone graph property or a directed graph property, we have:

$$
D(f)=\Omega(N)=\Omega\left(n^{2}\right)
$$

Theorem (Karp's/evasiveness conjecture, 1973)

If $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is a non-constant monotone graph property, then:

$$
D(f)=N=\binom{n}{2}
$$

Scorpion Graph

Scorpion Graph

Definiton (Scorpion Graph)

A graph G is a Scorpion iff there exist three distinct special vertices $B, T, S \in V$ (Body, Tail and Sting), such that:
S has degree 1 and its only neighbour is T,
T has degree 2 and its two neighbors are S and B, B has degree $n-2$ (with $n=|V(G)|)$.

Scorpion Graph

Definiton (Scorpion Graph)

A graph G is a Scorpion iff there exist three distinct special vertices $B, T, S \in V$ (Body, Tail and Sting), such that:
S has degree 1 and its only neighbour is T,
T has degree 2 and its two neighbors are S and B, B has degree $n-2$ (with $n=|V(G)|)$.

Theorem (Sun, Xiaoming, Yao, 2004)

Forall $\epsilon>0$, we have:

$$
Q_{2}\left(f_{\text {scorpion }}\right)=\mathcal{O}\left(N^{\frac{1}{4}+\epsilon}\right)
$$

Sink

Sink

Definiton (Sink)

A directed graph G is a sink if there exists a vertex v with out-degree 0 and in-degree n.

Sink

Definiton (Sink)

A directed graph G is a sink if there exists a vertex v with out-degree 0 and in-degree n.

Theorem (Sun, Xiaoming, Yao, 2004)

Forall $\epsilon>0$, we have:

$$
Q_{2}\left(f_{\text {sink }}\right)=\mathcal{O}\left(N^{\frac{1}{4}+\epsilon}\right)
$$

Outline

(1) Nemo

- Quantum Lower Bounds by polynomials
(2) Jérémy
- Quantum Lower Bounds by Quantum Arguments
(3) Ugo
- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action

Definition (Transitivity)

A subgroup Γ of \mathfrak{S}_{N} is said to have a transitive action on $\{1, \ldots, N\}$ if forall $i, j \in\{1, \ldots N\}$, there exists $\sigma \in \Gamma$ such that: $\sigma(i)=j$. In other words, the action of Γ on $\{1, . ., N\}$ has only one orbit.

Definition (Transitivity)

A subgroup Γ of \mathfrak{S}_{N} is said to have a transitive action on $\{1, \ldots, N\}$ if forall $i, j \in\{1, \ldots N\}$, there exists $\sigma \in \Gamma$ such that: $\sigma(i)=j$. In other words, the action of Γ on $\{1, . ., N\}$ has only one orbit.

Example

Everything we saw until now: circular properties, graph properties, directed graph properties.

A general lower bound

A general lower bound

Theorem (Sun, Xiaoming, Yao, 2004)

If there exists some subgroup Γ of \mathfrak{S}_{N} acting transitively on $\{1, \ldots, N\}$ such that the property $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is invariant under the action of Γ, then :

$$
Q_{2}(f)=\Omega\left(N^{\frac{1}{4}}\right)
$$

Thank you

