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Some context

Quantum Lower Bounds by Polynomials (Beals, Cleve, Mosca, Wolf, 1998)

Deutsch–Jozsa algorithm (1992): 2n queries vs 1 query

Simon algorithm (1994): Ω
Ä
2

n
2
ä
queries vs O(n)

Grover algorithm (1996): n queries vs
√
n queries
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Black-box framework

x0, x1, x2, x3, . . . , xN−2, xN−1

f (X ) ∈ {0, 1}

X

property f

f (X ) = x0 ∨ x1 ∨ x2 ∨ · · · ∨ xN−1

f (X ) = x0 ∧ x1 ∧ x2 ∧ · · · ∧ xN−1

f (X ) = (−1)|X |

f (X ) = MAJORITY(X )
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Black-box framework

x0, x1, x2, x3, . . . , xN−2, xN−1

f (X ) ∈ {0, 1}

X

property f

|i , b, z〉

|i , b ⊕ xi , z〉

O

U0 U1 UTO1 O2 OT|0〉⊗m b1b2 . . . bm−1bm
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Notions of Query Complexity

x0
0 1

0 x1

x20

0 1

D(f ) Classical Query Complexity

Quantum Query Complexity

U0 U1 UTO1 O2 OT|0〉⊗m b1b2 . . . bm−1bm

QE (f ): smallest T in the exact setting.
Q2(f ): smallest T in the approximate setting (P {bm 6= f (X )} ≤ 1/3)
Q0(f ): smallest T in the 0-error setting (bm−1 = 1 =⇒ bm = f (X ))
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Representation by Polynomials

f : {0, 1}N → {0, 1} and P ∈ R[x0, x1, . . . , xN − 1]

P represents f if ∀X ∈ {0, 1}N ,P(X ) = f (X )
e.g. P(X ) = 1− (1− x0) . . . (1− xN−1) represents OR

P approximates f if ∀X ∈ {0, 1}N , |P(X )− f (X )| ≤ 1/3
e.g. P(X ) = 1

3x0 + 1
3x1 approximtes AND

deg(f ) = min
P represents f

degP and d̃eg(f ) = min
P approximates f

degP
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Tools from the Polynomial World

Theorem (Nisan, Szegedy)
If f depends on N variables then deg(f ) ≥ logN −O(log logN)
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A first Lower Bound, in the exact setting

U0 U1 UT

|ψ〉

O1 O2 OT|0〉⊗m b1b2 . . . bm−1bm

|ψ〉 =
∑

k∈{0,1}m
pk(X ) |k〉

|i , b, z〉 7→ |i , b ⊕ xi , z〉

α |i , 0, z〉
β |i , 1, z〉 7→

((1− xi )α + xiβ) |i , 0, z〉
(xiα + (1− xi )β) |i , 1, z〉
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A first Lower Bound, in the exact setting

U0 U1 UT

|ψ〉

O1 O2 OT|0〉⊗m b1b2 . . . bm−1bm

|ψ〉 =
∑

k∈{0,1}m
pk(X ) |k〉 with deg pk ≤ T

Consequence: for T = QE (f ), P(X ) =
∑

k∈B |pk(X )|2 represents f , and
deg(P) ≤ 2T , hence QE (f ) ≥ deg(f )/2

QE (f ) ≥ log(N)

2
−O(log logN)
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The quantum advantage is at most polynomial

QE (f ) ≥
√

bs(f )/8, Q2(f ) ≥
√
bs(f )/16

D(f ) ≤ bs(f )3

D(f ) ≤ 4096Q2(f )6
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Motivation

Quantum Algorithm → Quantum Adversary

Oracle part + Algorithm part → entangled

− Tools
− New lower bounds
− General lower bound theorem (Unification of proofs)
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Model

We consider:
A boolean function: f : {0, 1}N → {0, 1}
An oracle O

Network:

U0 → O → U1 → O → ...→ UT−1 → O → UT

Ox : oracle transformation corresponding to input x
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Model

Initial state: |0〉
Measure: rightmost bit of the final state

Definition (Error of a quantum network)
We say that a quantum network computes f with bounded error if, for
every x = (x1, ...xN), the probability that the rightmost bit of
UTOxUT−1...OxU0 |0〉 equals f (x1, ..., xN) is at least 1− ε for some ε > 1

2 .
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Idea

Let
S ⊆ {0, 1}N

HA the workspace of the algorithm A

HI is an "input space"

We consider the bipartite system H = HA ⊗HI

UTOUT−1...OU0 → U ′TO
′U ′T−1...O

′U ′0

where
U ′i = Ui ⊗ I

O ′ is simply Ox on HA ⊗ |x〉
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Idea

Beginning: algorithm in state |0〉. Initial state of the system:

|ψstart〉 = |0〉 ⊗
∑
x∈S

αx |x〉

Final state
|ψend〉 =

∑
x∈S

αx |ψx〉 ⊗ |x〉

where |ψx〉 is the final state of UTOxUT−1...OxU0 |0〉.

If αx = 1√
m

for all x and ε = 0,

|ψend〉 =
1√
m

∑
x∈S
|x〉 |ϕx〉 ⊗ |x〉

⇒ full entanglement.
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Idea

Bound the entanglement:
We trace out HA from |ψstart〉 and |ψend〉

⇒ mixed states over HI

ρstart and ρend density matrices.

Starting state
∑
x∈S

αx |x〉 ⇔ (ρstart)xy = α∗xαy .

Lemma

Let A be an algorithm that computes f with probability at least 1− ε. Let
x , y be such that f (x) 6= f (y). Then,

|(ρend)xy | ≤ 2
»
ε(1− ε)|αx ||αy |
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General lower bound theorem

Theorem

Let f (x1, ..., xN) be a function of n {0, 1}-valued variables and X ,Y be two
sets of inputs such that f (x) 6= f (y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y
be such that:

1. For every x ∈ X there exist at least m different y ∈ Y such that
(x , y) ∈ R .
2. For every y ∈ Y there exist at least m′ different x ∈ X such that
(x , y) ∈ R .
3. For every x ∈ X and i ∈ {1, ..., n} there are at most l different
y ∈ Y such that (x , y) ∈ R and xi 6= yi .
4. For every y ∈ Y and i ∈ {1, ..., n} there are at most l ′ different
x ∈ X such that (x , y) ∈ R and xi 6= yi .

Then any algorithm computing f uses Ω
(»

mm′

ll ′

)
queries.
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Block sensivity

General lower bound theorem: generalization of the block sensitivity bound.

Theorem
Let f be any Boolean function (or property). Then, any quantum algorithm
computing f uses Ω(

√
bs(f )) queries.

Particular case of the general theorem. Let :
x be the input on which f achieves bs(f )

X = {x}, Y = {x (S1), ..., x (Sbs(f ))}
R = {(x , x (S1)), (x , x (S2)), ..., (x , x (Sbs(f )))}.

We have m = bs(f ), m′ = 1, l = 1 and l ′ = 1.
Bound :

Ω

Ç…
mm′

ll ′

å
= Ω

(»
bs(f )

)
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AND and OR’s

Let x1, ..., xN be N boolean variables, we consider a function AND and ORs:

f (x1, ..., xN) = (x1ORx2...ORx√N)AND...AND(xN−
√
N+1OR...ORxN)

Theorem
Any quantum algorithm computing AND and ORs uses Ω(

√
N) queries.

Proof.
Application of the general lower bound theorem.

Better than BS: Θ(
√

bs(f )) = Θ(
√
N).
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More general result

Theorem

Let f (x1, ..., xN) be a function of n {0, 1}-valued variables and X ,Y be two
sets of inputs such that f (x) 6= f (y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y
be such that:

1. For every x ∈ X there exist at least m different y ∈ Y such that
(x , y) ∈ R .
2. For every y ∈ Y there exist at least m′ different x ∈ X such that
(x , y) ∈ R .
− Let lx ,i be the number of y ∈ Y such that (x , y) ∈ R and xi 6= yi

− Let ly ,i be the number of x ∈ X such that (x , y) ∈ R and xi 6= yi

− Let lmax be the maximum of lx ,i ly ,i over all (x , y) ∈ R and
i ∈ {1, ...,N} such that xi 6= yi .

Then any algorithm computing f uses Ω
Ä»

mm′

lmax

ä
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(directed)

Nemo Fournier, Jérémy Petithomme, Ugo GiocantiQuantum Query complexity lower bounds December 6, 2019 24 / 33



Invariance, circularity

Definiton (Invariance)

Let f : {0, 1}N → {0, 1} be a property, and Γ a subgroup of SN . We
say that f is invariant under the action of Γ iff :

∀ (x1, ..., xN) ∈ {0, 1}N , ∀ σ ∈ Γ, f (xσ(1), ..., xσ(N)) = f (x1, ..., xN)
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Circular functions

Definiton (circularity)

A circular function f : {0, 1}N → {0, 1} is a property invariant under the
cyclic action of Γ :=< (1 2 ... N) >, i.e :

∀(x1, ..., xn) ∈ {0, 1}N , ∀l ∈ {1, ...,N}, f (x1+l mod(N), ..., xN+l mod(N))

= f (x1, ..., xN)

Theorem (Sun, Xiaoming, Yao, 2004)

There exists a circular non-constant function f : {0, 1}N → {0, 1}, such
that forall ε > 0:

Q2(f ) = O(N
1
4+ε)
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Graph Properties

We identify {1, ...,N} with set of edges when N =

Ç
n

2

å
(resp. with set of

arcs when N = n(n − 1)), and {0, 1}N with set of graphs (resp. directed
graph).

Definiton (Graph properties)

A (directed) graph property f : {0, 1}N → {0, 1} when N =

Ç
n

2

å
(resp.

N = n(n − 1)) is a property stable under graph isomorphism.

Claim
A property f : {0, 1}N → {0, 1} is a graph property iff it is invariant by
the group action induced by relabelling of vertices.
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Graph properties in the classical deterministic model

Theorem (Rivest, Vuillemin, 1976)

If f : {0, 1}N → {0, 1} is a non-constant monotone graph property or a
directed graph property, we have:

D(f ) = Ω(N) = Ω(n2)

Theorem (Karp’s/evasiveness conjecture, 1973)

If f : {0, 1}N → {0, 1} is a non-constant monotone graph property, then:

D(f ) = N =

Ç
n

2

å
.
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Scorpion Graph

Definiton (Scorpion Graph)
A graph G is a Scorpion iff there exist three distinct special vertices
B,T , S ∈ V (Body, Tail and Sting), such that:

S has degree 1 and its only neighbour is T ,
T has degree 2 and its two neighbors are S and B ,
B has degree n − 2 (with n = |V (G )|).

Theorem (Sun, Xiaoming, Yao, 2004)
Forall ε > 0, we have:

Q2(fscorpion) = O(N
1
4+ε)
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Sink

Definiton (Sink)
A directed graph G is a sink if there exists a vertex v with out-degree 0
and in-degree n.

Theorem (Sun, Xiaoming, Yao, 2004)
Forall ε > 0, we have:

Q2(fsink) = O(N
1
4+ε)

Nemo Fournier, Jérémy Petithomme, Ugo GiocantiQuantum Query complexity lower bounds December 6, 2019 29 / 33



Sink

Definiton (Sink)
A directed graph G is a sink if there exists a vertex v with out-degree 0
and in-degree n.

Theorem (Sun, Xiaoming, Yao, 2004)
Forall ε > 0, we have:

Q2(fsink) = O(N
1
4+ε)

Nemo Fournier, Jérémy Petithomme, Ugo GiocantiQuantum Query complexity lower bounds December 6, 2019 29 / 33



Sink

Definiton (Sink)
A directed graph G is a sink if there exists a vertex v with out-degree 0
and in-degree n.

Theorem (Sun, Xiaoming, Yao, 2004)
Forall ε > 0, we have:

Q2(fsink) = O(N
1
4+ε)

Nemo Fournier, Jérémy Petithomme, Ugo GiocantiQuantum Query complexity lower bounds December 6, 2019 29 / 33



Outline

1 Nemo
Quantum Lower Bounds by polynomials

2 Jérémy
Quantum Lower Bounds by Quantum Arguments

3 Ugo
Some “easy” to decide properties
A general lower bound for functions invariant under transitive group
action
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Definition (Transitivity)
A subgroup Γ of SN is said to have a transitive action on {1, ...,N} if forall
i , j ∈ {1, ...N}, there exists σ ∈ Γ such that: σ(i) = j . In other words, the
action of Γ on {1, ..,N} has only one orbit.

Example
Everything we saw until now: circular properties, graph properties, directed
graph properties.
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A general lower bound

Theorem (Sun, Xiaoming, Yao, 2004)
If there exists some subgroup Γ of SN acting transitively on {1, ...,N}such
that the property f : {0, 1}N → {0, 1} is invariant under the action of Γ,
then :

Q2(f ) = Ω(N
1
4 )
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Thank you
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