Quantum Query complexity lower bounds

Nemo Fournier Jérémy Petithomme Ugo Giocanti

December 6, 2019

Nemo Fournier, Jérémy Petithomme, Ug(Quantum Query complexity lower bounds

December 6, 2019 1 / 33

1 Nemo

• Quantum Lower Bounds by polynomials

Jérémy

• Quantum Lower Bounds by Quantum Arguments

B) Ugo

- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action

Quantum Lower Bounds by Polynomials (Beals, Cleve, Mosca, Wolf, 1998)

Deutsch–Jozsa algorithm (1992): 2^n queries vs 1 query Simon algorithm (1994): $\Omega\left(2^{\frac{n}{2}}\right)$ queries vs $\mathcal{O}(n)$ Grover algorithm (1996): n queries vs \sqrt{n} queries

Black-box framework

$$X \xrightarrow{x_0, x_1, x_2, x_3, \dots, x_{N-2}, x_{N-1}} \int_{f(X)}^{property f} f(X) \in \{0, 1\}$$

Image: A matrix

3

$$X \xrightarrow{x_0, x_1, x_2, x_3, \dots, x_{N-2}, x_{N-1}} \int_{\text{property } f} f(X) \in \{0, 1\}$$

$$f(X) = x_0 \lor x_1 \lor x_2 \lor \cdots \lor x_{N-1}$$
$$f(X) = x_0 \land x_1 \land x_2 \land \cdots \land x_{N-1}$$
$$f(X) = (-1)^{|X|}$$
$$f(X) = \mathsf{MAJORITY}(X)$$

3

Image: A matrix

Black-box framework

Black-box framework

Notions of Query Complexity

Notions of Query Complexity

Quantum Query Complexity

$$|0\rangle^{\otimes m} \underbrace{U_0} \underbrace{O_1} \underbrace{U_1} \underbrace{O_2} \underbrace{O_T} \underbrace{U_T} \underbrace{U_T} \underbrace{J_2} \underbrace{D_1 b_2 \dots b_{m-1} b_m}$$

 $Q_E(f)$: smallest T in the exact setting. $Q_2(f)$: smallest T in the approximate setting ($P\{b_m \neq f(X)\} \leq 1/3$) $Q_0(f)$: smallest T in the 0-error setting ($b_{m-1} = 1 \implies b_m = f(X)$)

$$f: \{0,1\}^N \to \{0,1\}$$
 and $P \in \mathsf{R}[x_0, x_1, \dots, x_N - 1]$

 $P \text{ represents } f \text{ if } \forall X \in \{0,1\}^N, P(X) = f(X)$ e.g. $P(X) = 1 - (1 - x_0) \dots (1 - x_{N-1})$ represents OR $P \text{ approximates } f \text{ if } \forall X \in \{0,1\}^N, |P(X) - f(X)| \le 1/3$ e.g. $P(X) = \frac{1}{3}x_0 + \frac{1}{3}x_1$ approximtes AND

$$\deg(f) = \min_{\substack{P \text{ represents } f}} \deg P \quad \text{and} \quad \widetilde{\deg}(f) = \min_{\substack{P \text{ approximates } f}} \deg P$$

Nemo Fournier, Jérémy Petithomme, Ug(Quantum Query complexity lower bounds

Theorem (Nisan, Szegedy)

If f depends on N variables then $\deg(f) \ge \log N - \mathcal{O}(\log \log N)$

$$|\psi
angle = \sum_{k\in\{0,1\}^m} p_k(X) \, |k
angle$$

9/33

$$|0\rangle^{\otimes m} \underbrace{U_0} \underbrace{O_1} \underbrace{U_1} \underbrace{O_2} \underbrace{O_T} \underbrace{U_T} \underbrace{V_T} \underbrace{J_1} \underbrace{J_2} \ldots \underbrace{b_{m-1}b_m} |\psi\rangle$$

 $|i, b, z\rangle \mapsto |i, b \oplus x_i, z\rangle$

9/33

$$|\psi\rangle = \sum_{k\in\{0,1\}^m} p_k(X) |k\rangle$$

Nemo Fournier, Jérémy Petithomme, UgcQuantum Query complexity lower bounds December 6, 2019

$$|0\rangle^{\otimes m} \underbrace{U_0} \underbrace{O_1} \underbrace{U_1} \underbrace{O_2} \underbrace{O_T} \underbrace{U_T} \underbrace{V_T} \underbrace{J_1} \underbrace{J_2} \ldots \underbrace{b_{m-1}b_m} |\psi\rangle$$

Nemo Fournier, Jérémy Petithomme, UgcQuantum Query complexity lower bounds

$$|\psi\rangle = \sum_{k\in\{0,1\}^m} p_k(X) |k\rangle$$

with deg $p_k \leq T$

Nemo Fournier, Jérémy Petithomme, UgqQuantum Query complexity lower bounds December 6, 2019 10/33

$$|0\rangle^{\otimes m} \underbrace{U_0} \underbrace{O_1} \underbrace{U_1} \underbrace{O_2} \underbrace{O_T} \underbrace{U_T} \underbrace{V_T} \underbrace{V_T} \underbrace{b_1 b_2 \dots b_{m-1} b_m}_{|\psi\rangle}$$

$$|\psi\rangle = \sum_{k \in \{0,1\}^m} p_k(X) |k\rangle$$
 with deg $p_k \leq T$

Consequence: for $T = Q_E(f)$, $P(X) = \sum_{k \in B} |p_k(X)|^2$ represents f, and $\deg(P) \leq 2T$, hence $Q_E(f) \geq \deg(f)/2$

December 6, 2019

10/33

$$|0\rangle^{\otimes m} \underbrace{U_0} \underbrace{O_1} \underbrace{U_1} \underbrace{O_2} \underbrace{O_T} \underbrace{U_T} \underbrace{V_T} \underbrace{V_T} \underbrace{b_1 b_2 \dots b_{m-1} b_m}_{|\psi\rangle}$$

$$|\psi\rangle = \sum_{k \in \{0,1\}^m} p_k(X) |k\rangle$$
 with deg $p_k \leq T$

Consequence: for $T = Q_E(f)$, $P(X) = \sum_{k \in B} |p_k(X)|^2$ represents f, and $\deg(P) \leq 2T$, hence $Q_E(f) \geq \deg(f)/2$

$$Q_E(f) \geq rac{\log(N)}{2} - \mathcal{O}(\log\log N)$$

$Q_E(f) \geq \sqrt{bs(f)/8}, \ Q_2(f) \geq \sqrt{bs(f)/16}$

$egin{aligned} Q_E(f) \geq \sqrt{bs(f)/8}, \ Q_2(f) \geq \sqrt{bs(f)/16} \ D(f) \leq bs(f)^3 \end{aligned}$

$egin{aligned} Q_E(f) \geq \sqrt{bs(f)/8}, \ Q_2(f) \geq \sqrt{bs(f)/16} \ D(f) \leq bs(f)^3 \end{aligned}$

 $D(f) \leq 4096 Q_2(f)^6$

Nemo Fournier, Jérémy Petithomme, UgcQuantum Query complexity lower bounds December 6, 2019 11 / 33

Nemo

• Quantum Lower Bounds by polynomials

Jérémy

• Quantum Lower Bounds by Quantum Arguments

Ugo

- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action

$\mathsf{Quantum}\ \mathsf{Algorithm}\ \rightarrow\ \mathsf{Quantum}\ \mathsf{Adversary}$

3

 $\mathsf{Quantum}\ \mathsf{Algorithm} \to \mathsf{Quantum}\ \mathsf{Adversary}$

Oracle part + Algorithm part

$\mathsf{Quantum}\ \mathsf{Algorithm}\ \rightarrow\ \mathsf{Quantum}\ \mathsf{Adversary}$

 $\mathsf{Oracle \ part} + \mathsf{Algorithm \ part} \to \mathsf{entangled}$

 $\mathsf{Quantum}\ \mathsf{Algorithm} \to \mathsf{Quantum}\ \mathsf{Adversary}$

 $\mathsf{Oracle \ part} + \mathsf{Algorithm \ part} \to \mathsf{entangled}$

- Tools

 $\mathsf{Quantum}\ \mathsf{Algorithm}\ \rightarrow\ \mathsf{Quantum}\ \mathsf{Adversary}$

 $\mathsf{Oracle \ part} + \mathsf{Algorithm \ part} \to \mathsf{entangled}$

- Tools
- New lower bounds

 $\mathsf{Quantum}\ \mathsf{Algorithm}\ \rightarrow\ \mathsf{Quantum}\ \mathsf{Adversary}$

 $\mathsf{Oracle \ part} + \mathsf{Algorithm \ part} \to \mathsf{entangled}$

- Tools
- New lower bounds
- General lower bound theorem (Unification of proofs)

We consider:

A boolean function: $f: \{0,1\}^N \rightarrow \{0,1\}$ An oracle O

We consider:

A boolean function: $f: \{0,1\}^N \rightarrow \{0,1\}$ An oracle O

Network:

$$U_0 \rightarrow O \rightarrow U_1 \rightarrow O \rightarrow ... \rightarrow U_{T-1} \rightarrow O \rightarrow U_T$$

 O_x : oracle transformation corresponding to input x

Initial state: $\left|0\right\rangle$ Measure: rightmost bit of the final state

Definition (*Error of a quantum network*)

We say that a quantum network computes f with bounded error if, for every $x = (x_1, ..., x_N)$, the probability that the rightmost bit of $U_T O_X U_{T-1} ... O_X U_0 |0\rangle$ equals $f(x_1, ..., x_N)$ is at least $1 - \epsilon$ for some $\epsilon > \frac{1}{2}$.

Idea

Let

 $S \subseteq \{0,1\}^N$ \mathcal{H}_A the workspace of the algorithm A \mathcal{H}_I is an "input space"

Let

$$S \subseteq \{0,1\}^N$$

 \mathcal{H}_A the workspace of the algorithm A
 \mathcal{H}_I is an "input space"

We consider the bipartite system $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_I$

$$U_T O U_{T-1} ... O U_0 \rightarrow U'_T O' U'_{T-1} ... O' U'_0$$

where

 $U_i' = U_i \otimes I$ O' is simply O_x on $\mathcal{H}_A \otimes |x
angle$

Idea

Beginning: algorithm in state $|0\rangle$. Initial state of the system:

$$\ket{\psi_{\textit{start}}} = \ket{0} \otimes \sum_{x \in S} \alpha_x \ket{x}$$

3

Idea

Beginning: algorithm in state $|0\rangle$. Initial state of the system:

$$|\psi_{\textit{start}}
angle = |0
angle \otimes \sum_{x \in S} lpha_x \left|x
ight
angle$$

Final state

$$\left|\psi_{\textit{end}}\right\rangle = \sum_{\mathbf{x}\in\mathcal{S}}\alpha_{\mathbf{x}}\left|\psi_{\mathbf{x}}\right\rangle\otimes\left|\mathbf{x}\right\rangle$$

where $|\psi_x\rangle$ is the final state of $U_T O_x U_{T-1} ... O_x U_0 |0\rangle$.

Beginning: algorithm in state $|0\rangle$. Initial state of the system:

$$|\psi_{\textit{start}}
angle = |0
angle \otimes \sum_{x \in S} lpha_x |x
angle$$

Final state

$$\left|\psi_{\textit{end}}\right\rangle = \sum_{\mathbf{x}\in\mathcal{S}}\alpha_{\mathbf{x}}\left|\psi_{\mathbf{x}}\right\rangle\otimes\left|\mathbf{x}\right\rangle$$

where $|\psi_x\rangle$ is the final state of $U_T O_x U_{T-1}...O_x U_0 |0\rangle$.

If
$$\alpha_x = \frac{1}{\sqrt{m}}$$
 for all x and $\epsilon = 0$,

$$\ket{\psi_{\textit{end}}} = rac{1}{\sqrt{m}} \sum_{\mathbf{x} \in \mathcal{S}} \ket{x} \ket{arphi_{\mathbf{x}}} \otimes \ket{x}$$

December 6, 2019

17/33

 $\Rightarrow \mathsf{full} \ \mathsf{entanglement}.$

Bound the entanglement: We trace out \mathcal{H}_A from $|\psi_{start}\rangle$ and $|\psi_{end}\rangle$

 \Rightarrow mixed states over \mathcal{H}_I

 $\rho_{\textit{start}}$ and $\rho_{\textit{end}}$ density matrices.

Starting state
$$\sum_{x \in S} \alpha_x |x\rangle \Leftrightarrow (\rho_{start})_{xy} = \alpha_x^* \alpha_y.$$

Lemma

Let A be an algorithm that computes f with probability at least $1 - \epsilon$. Let x, y be such that $f(x) \neq f(y)$. Then,

$$|(\rho_{end})_{xy}| \le 2\sqrt{\epsilon(1-\epsilon)}|\alpha_x||\alpha_y|$$

Theorem

Let $f(x_1, ..., x_N)$ be a function of $n \{0, 1\}$ -valued variables and X, Y be two sets of inputs such that $f(x) \neq f(y)$ if $x \in X$ and $y \in Y$. Let $R \subset X \times Y$ be such that:

1. For every $x \in X$ there exist at least m different $y \in Y$ such that $(x, y) \in R$.

2. For every $y \in Y$ there exist at least m' different $x \in X$ such that $(x, y) \in R$.

3. For every $x \in X$ and $i \in \{1, ..., n\}$ there are at most I different $y \in Y$ such that $(x, y) \in R$ and $x_i \neq y_i$.

4. For every $y \in Y$ and $i \in \{1, ..., n\}$ there are at most l' different $x \in X$ such that $(x, y) \in R$ and $x_i \neq y_i$.

Then any algorithm computing f uses $\Omega\left(\sqrt{\frac{mm'}{ll'}}\right)$ queries.

General lower bound theorem: generalization of the block sensitivity bound.

Theorem

Let f be any Boolean function (or property). Then, any quantum algorithm computing f uses $\Omega(\sqrt{bs(f)})$ queries.

Particular case of the general theorem. Let :

x be the input on which f achieves bs(f)

$$X = \{x\}, Y = \{x^{(S_1)}, ..., x^{(S_{bs(f)})}\}$$
$$R = \{(x, x^{(S_1)}), (x, x^{(S_2)}), ..., (x, x^{(S_{bs(f)})})\}$$

We have m = bs(f), m' = 1, l = 1 and l' = 1. Bound :

$$\Omega\left(\sqrt{\frac{mm'}{ll'}}\right) = \Omega\left(\sqrt{bs(f)}\right)$$

Let $x_1, ..., x_N$ be N boolean variables, we consider a function AND and ORs:

$$f(x_1,...,x_N) = (x_1 ORx_2...ORx_{\sqrt{N}})AND...AND(x_{N-\sqrt{N}+1}OR...ORx_N)$$

Theorem

Any quantum algorithm computing AND and ORs uses $\Omega(\sqrt{N})$ queries.

Proof.

Application of the general lower bound theorem.

Better than BS: $\Theta(\sqrt{bs(f)}) = \Theta(\sqrt{N})$.

Theorem

Let $f(x_1, ..., x_N)$ be a function of $n \{0, 1\}$ -valued variables and X, Y be two sets of inputs such that $f(x) \neq f(y)$ if $x \in X$ and $y \in Y$. Let $R \subset X \times Y$ be such that:

1. For every $x \in X$ there exist at least m different $y \in Y$ such that $(x, y) \in R$.

2. For every $y \in Y$ there exist at least m' different $x \in X$ such that $(x, y) \in R$.

– Let $I_{x,i}$ be the number of $y \in Y$ such that $(x, y) \in R$ and $x_i \neq y_i$

– Let $I_{y,i}$ be the number of $x \in X$ such that $(x, y) \in R$ and $x_i \neq y_i$

- Let I_{max} be the maximum of $I_{x,i}I_{y,i}$ over all $(x, y) \in R$ and $i \in \{1, ..., N\}$ such that $x_i \neq y_i$.

Then any algorithm computing f uses $\Omega\left(\sqrt{\frac{mm'}{l_{max}}}\right)$

1 Nemo

• Quantum Lower Bounds by polynomials

Jérémy

• Quantum Lower Bounds by Quantum Arguments

3 Ugo

• Some "easy" to decide properties

• A general lower bound for functions invariant under transitive group action

23 / 33

(directed)

イロト イヨト イヨト イヨト

э.

Invariance, circularity

Nemo Fournier, Jérémy Petithomme, Ug‹Quantum Query complexity lower bounds December 6, 2019 24/33

2

Definiton (Invariance)

Let $f : \{0,1\}^N \to \{0,1\}$ be a property, and Γ a subgroup of \mathfrak{S}_N . We say that f is invariant under the action of Γ iff :

$$\forall \ (x_1,...,x_N) \in \{0,1\}^N, \ \forall \ \sigma \in \Gamma, \ f(x_{\sigma(1)},...,x_{\sigma(N)}) = f(x_1,...,x_N)$$

Nemo Fournier, Jérémy Petithomme, Ug‹Quantum Query complexity lower bounds December 6, 2019 25/33

3

Definiton (circularity)

A circular function $f:\{0,1\}^N\to\{0,1\}$ is a property invariant under the cyclic action of $\Gamma:=<(1\ 2\ ...\ N)>,$ i.e :

$$\forall (x_1,...,x_n) \in \{0,1\}^N, \ \forall l \in \{1,...,N\}, \ f(x_{1+l \ mod(N)},...,x_{N+l \ mod(N)})$$

$$=f(x_1,...,x_N)$$

Definiton (circularity)

A circular function $f:\{0,1\}^N\to\{0,1\}$ is a property invariant under the cyclic action of $\Gamma:=<(1\ 2\ ...\ N)>,$ i.e :

$$\forall (x_1,...,x_n) \in \{0,1\}^N, \ \forall l \in \{1,...,N\}, \ f(x_{1+l \ mod(N)},...,x_{N+l \ mod(N)})$$

$$= f(x_1,...,x_N)$$

Theorem (Sun, Xiaoming, Yao, 2004)

There exists a circular non-constant function $f : \{0,1\}^N \rightarrow \{0,1\}$, such that forall $\epsilon > 0$:

$$Q_2(f) = \mathcal{O}(N^{\frac{1}{4}+\epsilon})$$

Graph Properties

We identify $\{1, ..., N\}$ with set of edges when $N = \binom{n}{2}$ (resp. with set of arcs when N = n(n-1)), and $\{0, 1\}^N$ with set of graphs (resp. directed graph).

Graph Properties

We identify $\{1, ..., N\}$ with set of edges when $N = \binom{n}{2}$ (resp. with set of arcs when N = n(n-1)), and $\{0, 1\}^N$ with set of graphs (resp. directed graph).

Definiton (Graph properties)

A (directed) graph property
$$f : \{0,1\}^N \rightarrow \{0,1\}$$
 when $N = \binom{n}{2}$ (resp.

N = n(n-1) is a property stable under graph isomorphism.

Graph Properties

We identify $\{1, ..., N\}$ with set of edges when $N = \binom{n}{2}$ (resp. with set of arcs when N = n(n-1)), and $\{0, 1\}^N$ with set of graphs (resp. directed graph).

Definiton (Graph properties)

A (directed) graph property
$$f : \{0,1\}^N \rightarrow \{0,1\}$$
 when $N = \binom{n}{2}$ (resp.

N = n(n-1)) is a property stable under graph isomorphism.

Claim

A property $f : \{0,1\}^N \to \{0,1\}$ is a graph property iff it is invariant by the group action induced by relabelling of vertices.

1 1

Graph properties in the classical deterministic model

Nemo Fournier, Jérémy Petithomme, Ug‹Quantum Query complexity lower bounds December 6, 2019 27/33

Theorem (Rivest, Vuillemin, 1976)

If $f : \{0,1\}^N \to \{0,1\}$ is a non-constant monotone graph property or a directed graph property, we have:

$$D(f) = \Omega(N) = \Omega(n^2)$$

Theorem (Rivest, Vuillemin, 1976)

If $f : \{0,1\}^N \to \{0,1\}$ is a non-constant monotone graph property or a directed graph property, we have:

$$D(f) = \Omega(N) = \Omega(n^2)$$

Theorem (Karp's/evasiveness conjecture, 1973)

If $f : \{0,1\}^N \rightarrow \{0,1\}$ is a non-constant monotone graph property, then:

$$D(f)=N=\binom{n}{2}$$

Nemo Fournier, Jérémy Petithomme, Ug‹Quantum Query complexity lower bounds December 6, 2019 28/33

2

Image: A matrix

Definiton (Scorpion Graph)

A graph G is a Scorpion iff there exist three distinct special vertices $B, T, S \in V$ (Body, Tail and Sting), such that:

- S has degree 1 and its only neighbour is T,
- T has degree 2 and its two neighbors are S and B,
- B has degree n 2 (with n = |V(G)|).

Definiton (Scorpion Graph)

A graph G is a Scorpion iff there exist three distinct special vertices $B, T, S \in V$ (Body, Tail and Sting), such that:

S has degree 1 and its only neighbour is T,

T has degree 2 and its two neighbors are S and B,

B has degree n - 2 (with n = |V(G)|).

Theorem (Sun, Xiaoming, Yao, 2004)

Forall $\epsilon > 0$, we have:

$$Q_2(f_{scorpion}) = \mathcal{O}(N^{\frac{1}{4}+\epsilon})$$

28/33

Nemo Fournier, Jérémy Petithomme, Ug(Quantum Query complexity lower bounds December 6, 2019

Sink

イロト イヨト イヨト イヨト

■ のへで

Definiton (Sink)

A directed graph G is a sink if there exists a vertex v with out-degree 0 and in-degree n.

3

Definiton (Sink)

A directed graph G is a sink if there exists a vertex v with out-degree 0 and in-degree n.

Theorem (Sun, Xiaoming, Yao, 2004)

Forall $\epsilon > 0$, we have:

$$Q_2(f_{sink}) = \mathcal{O}(N^{\frac{1}{4}+\epsilon})$$

Nemo Fournier, Jérémy Petithomme, UgcQuantum Query complexity lower bounds December 6, 2019 29 / 33

3

1 Nemo

• Quantum Lower Bounds by polynomials

Jérém

• Quantum Lower Bounds by Quantum Arguments

3 Ugo

- Some "easy" to decide properties
- A general lower bound for functions invariant under transitive group action

Nemo Fournier, Jérémy Petithomme, Ug(Quantum Query complexity lower bounds December 6, 2019 31/33

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Definition (Transitivity)

A subgroup Γ of \mathfrak{S}_N is said to have a transitive action on $\{1, ..., N\}$ if forall $i, j \in \{1, ..., N\}$, there exists $\sigma \in \Gamma$ such that: $\sigma(i) = j$. In other words, the action of Γ on $\{1, ..., N\}$ has only one orbit.

Definition (Transitivity)

A subgroup Γ of \mathfrak{S}_N is said to have a transitive action on $\{1, ..., N\}$ if forall $i, j \in \{1, ..., N\}$, there exists $\sigma \in \Gamma$ such that: $\sigma(i) = j$. In other words, the action of Γ on $\{1, ..., N\}$ has only one orbit.

Example

Everything we saw until now: circular properties, graph properties, directed graph properties.

A general lower bound

3

▲ 西部

Theorem (Sun, Xiaoming, Yao, 2004)

If there exists some subgroup Γ of \mathfrak{S}_N acting transitively on $\{1, ..., N\}$ such that the property $f : \{0, 1\}^N \to \{0, 1\}$ is invariant under the action of Γ , then :

$$Q_2(f) = \Omega(N^{\frac{1}{4}})$$

Nemo Fournier, Jérémy Petithomme, UgcQuantum Query complexity lower bounds December 6, 2019 32 / 33

Thank you

2

э.