Graph-based Methods for Connectivity Analysis

Nemo Fournier

June 11, 2020

Brain Connectivity

Graph Signal Processing

Graph Curvature

Non Invasive Imaging

Figure: made by DinosoftLabs

Brain Connectivity

Graph Signal Processing 000000 Graph Curvature 0000

Connectivity Analysis

- Establish a map of Human Cognition
- Perform diagnosis or prevention based on imaging
- Follow pathologies or treatments

Connectome Comparison

Brain Connectivity

Graph Signal Processing 000000

Graph Curvature 0000

Issues, and our contribution

- Local vs global
- Combinatorial vs connectivity information

Graph Signal Processing

gradient ∇ Laplacian L

$$s^{\mathsf{T}}Ls = \sum_{i,j} w_{i,j} \left(s_i - s_j \right)^2$$

Brain Connectivity 0000 Graph Signal Processing

Graph Curvature 0000

Graph Signal Processing

gradient ∇ Laplacian L

$$s^{\mathsf{T}}Ls = \sum_{i,j} w_{i,j} \left(s_i - s_j\right)^2$$

Brain Connectivity 0000 Graph Signal Processing

Graph Curvature 0000

Fourier Transform

Brain Connectivity 0000 Graph Signal Processing

Graph Curvature 0000

A Wasserstein Distance for Graphs

Smooth signals

$$\mathcal{G}\mapsto\mathcal{N}\left(0,L^{-1}
ight)$$

Maretic et al. (2019)

Graph Signal Processing

Graph Curvature 7 / 15 0000

A Wasserstein Distance for Graphs

Smooth signals

$$\mathcal{G}\mapsto\mathcal{N}\left(0,L^{-1}
ight)$$

Maretic et al. (2019)

Graph Signal Processing

Graph Curvature 0000

Comparing Two Cohorts with this Distance

Density

Brain Connectivity 0000 Graph Signal Processing

Graph Curvature 0000

Barycenter

Optimal transport theory

 $G(\mu) = \mu$

Álvarez-Esteban et al. (2015)

 Tractable iteration for Gaussians measures

	$\bot \bot \bot \bot$	エヒヒリ
	1.1.2	
	-	
	1	LLI
\vdash	. //	
		+ + + 1
	• +	+ + +
	+ + + +	+ + + 1
	+ + 🔶 +	+ + + +
	<u></u>	
	ттот	гггі
	т т 🦲 т	ГГГІ
	т т 🦲 г	ГГГГ
	÷ ÷ ÷	
	11 L	<u> </u>
	1 1 1	1 1 1 1
	T T T	TTTT
	T T T T	
	<u>+</u> + – +	
	1 1 1 1	
	111	LLLI
	ĪĪĪĪĪĪ	

Graph Signal Processing

Graph Curvature 0000

Barycenter of Connectivity Matrices

Brain	Connec	tivity
0000		

Graph Signal Processing

Graph Curvature 0000

Graph Curvature

$W_1(p_x, p_y) = (1 - \kappa(x, y))d(x, y)$

Brain Connectivity 0000 Graph Signal Processing 000000 Graph Curvature 11 / 15

Graph Curvature

 $W_1(p_x, p_y) = (1 - \kappa(x, y))d(x, y)$

Brain Connectivity 0000 Graph Signal Processing 000000 Graph Curvature

Metric space for connectivity maps

$$\kappa(x,y) = 1 - \frac{W_1(p_x, p_y)}{d(x, y)}$$

Network curvature as a hallmark of brain structural connectivity Farooq et al. (2019)

$$d(x,y) = \text{shortest_path}(x,y)$$

Brain Connectivity 0000 Graph Signal Processing 000000

Graph Curvature

Heat Kernel Distance

$$\left(\frac{\partial}{\partial t}+L\right)f(t)=0$$
 $f(t)=\underbrace{e^{-tL}}_{k_t}f_0$

 $k_t(x, y)$ amount of heat transfered from x to y in time t

$$d_t(x,y) = k_t(x,x) + k_t(y,y) - 2k_t(x,y)$$

Brain Connectivity 0000 Graph Signal Processing 000000 Graph Curvature

Heat Kernel Distance

$$\left(\frac{\partial}{\partial t}+L\right)f(t)=0$$
 $f(t)=\underbrace{e^{-tL}}_{k_t}f_0$

 $k_t(x, y)$ amount of heat transferred from x to y in time t

$$d_t(x,y) = k_t(x,x) + k_t(y,y) - 2k_t(x,y)$$

Brain Connectivity 0000 Graph Signal Processing

Graph Curvature

Heat Kernel Distance and Curvature

Brain Connectivity 0000 Graph Signal Processing

Graph Curvature 14 / 15

Heat Kernel Distance and Curvature

Conclusion

- Applied a new tool based on GSP and Optimal Transport
- Developped a notion of barycenter of connectomes
- Investigated a new formulation of connectome curvature