
Correctly rounded multiplication by arbitrary
precision constants

J.-M. Muller
Arénaire, LIP, É.N.S. Lyon

N. Brisebarre
LArAl, Univ. St-Étienne et Arénaire, LIP, É.N.S. Lyon

Arith’17
June 27, 2005

Multiplications by constants

Many numerical algorithms : multiplications by constants that are not exactly
representable in floating-point (FP) arithmetic.

Typical constants that are used : π, 1/π, ln(2), e, Bk/k! (Euler-McLaurin
summation), cos(kπ/N) and sin(kπ/N) (Fast Fourier Transforms). Some nume-
rical integration formulas such as :∫ x1

x0

f(x)dx ≈ h

(
55
24

f(x1)−
59
24

f(x2) +
37
24

f(x3)−
9
24

f(x4)
)

also naturally involve multiplications by constants.

Correctly rounded multiplication by arbitrary precision constants 2/26

Correctly rounded Multiplications by constants

For approximating Cx, where C is an infinite-precision constant and x is a
FP number, desirable result = ◦(Cx), where ◦(u) is u rounded to the nearest
FP number.

Our goal : We want to compute at low cost ◦(Cx) for all input FP numbers x
(provided no overflow or underflow occur).

Naive idea : let Ch be the FP number that is closest to C, we actually com-
pute ◦(Chx). The obtained result is frequently different from ◦(Cx).

Correctly rounded multiplication by arbitrary precision constants 3/26

Some statistics

Let n = number of mantissa bits of the binary FP format.

Comparison of ◦(Chx) and ◦(Cx) for all possible values of the mantissa of x.

n
Proportion of correctly

rounded results
4 0.62500
5 0.93750
6 0.78125
7 0.59375

· · · · · ·
16 0.86765
17 0.73558
· · · · · ·
24 0.66805

TAB. 1: Proportion of input values x for which ◦(Chx) = ◦(Cx) for C = π and various values
of the number n of mantissa bits.

Correctly rounded multiplication by arbitrary precision constants 4/26

Correctly rounded Multiplications by constants

Our goal – at least for some constants and some FP formats – is to return
◦(Cx) for all input FP numbers x (provided no overflow or underflow occur), and
at a low cost.

To do that, we will use fused multiply and add (fma) instructions.

fma : computes correct rounding of ab + c where a, b and c are FP numbers.

We assume binary FP arithmetic.

Correctly rounded multiplication by arbitrary precision constants 5/26

The algorithm

• We want Cx with correct rounding (assuming rounding to nearest even).
• C is not an FP number.
• We assume that a fma instruction is available. Operands stored in a bi-

nary FP format with n-bit mantissas.
• We assume that the two following FP numbers are pre-computed :{

Ch = ◦(C),
C` = ◦(C − Ch),

where ◦(t) stands for t rounded to the nearest FP number.

Algorithm . (Multiplication by C with a multiplication and a fma). From x,
compute {

u1 = ◦(C`x),
u2 = ◦(Chx + u1).

The result to be returned is u2.

Correctly rounded multiplication by arbitrary precision constants 6/26

Algorithm . (Multiplication by C with a multiplication and a fma). From x,
compute {

u1 = ◦(C`x),
u2 = ◦(Chx + u1).

The result to be returned is u2.

Without l.o.g., we assume that 1 < x < 2 and 1 < C < 2, that C is not exactly
representable, and that C − Ch is not a power of 2.

Warning ! There exist C and x s.t. u2 6= ◦(Cx).

We give 3 methods for checking if ∀x, u2 = ◦(Cx).

Correctly rounded multiplication by arbitrary precision constants 7/26

Algorithm . (Multiplication by C with a multiplication and a fma). From x,
compute {

u1 = ◦(C`x),
u2 = ◦(Chx + u1).

The result to be returned is u2.

3 methods for checking if ∀x, u2 = ◦(Cx).

Methods 1 and 2 are simple but do not always give a complete answer :

• they either certify that our algorithm always returns a correctly rounded result,

• or give a “bad case”, i.e. an FP number x s.t. u2 6= ◦(Cx).

Method 3 is a bit more complicated but gives a complete answer :

• it gives all “bad cases”,

• or certify that there are none, i.e. that our algorithm always gives the correct
result.

Correctly rounded multiplication by arbitrary precision constants 8/26

Analyzing the algorithm

We will use the following property, that bounds the maximum possible dis-
tance between u2 and Cx in the algorithm.

Property 1.
For all FP number x, we have

|u2 − Cx| < 1
2

ulp (u2) + 2 ulp (C`).

[Remember that Ch = ◦(C), C`=◦(C − Ch), u1 = ◦(C`x),

u2 = ◦(Chx + u1).]

Correctly rounded multiplication by arbitrary precision constants 9/26

Analyzing the algorithm

Recall : we have |u2 − Cx| < 1/2 ulp (u2) + η with η := 2 ulp (C`).

u2

FP numbers

located

If xC is here, then ◦(xC) = u2

Can xC be here ?

2η
Domain where
xC can be

2η
1
2 ulp (u2)

Correctly rounded multiplication by arbitrary precision constants 10/26

Analyzing the algorithm

Remark . We know that xC is within 1/2 ulp (u2) + 2 ulp (C`) from the FP num-
ber u2. If we prove that xC cannot be at a distance ≤ 2 ulp (C`) from the middle
of two consecutive FP numbers, then u2 will be the FP number that is closest
to xC.

Correctly rounded multiplication by arbitrary precision constants 11/26

A reminder on continued fractions

Let β ∈ R. From β, two sequences (ai) and (ri) defined by : r0 = β,
ai = bric ,
ri+1 = 1/(ri − ai).

If β /∈ Q, these sequences are defined ∀i, and the rational number

pi

qi
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

. . . +
1
ai

is the ith convergent to β. If β ∈ Q, these sequences terminate for some i, and
pi/qi = β exactly.

Correctly rounded multiplication by arbitrary precision constants 12/26

We will use the following two results :

Theorem 2. Let (pj/qj)j≥1 be the convergents of β. For any (p, q), with
0 ≤ q < qn+1, we have

|p− βq| ≥ |pn − βqn|.

Theorem 3. Let p, q be nonzero integers, with gcd(p, q) = 1. If∣∣∣∣pq − β

∣∣∣∣ <
1

2q2

then p/q is a convergent of β.

Correctly rounded multiplication by arbitrary precision constants 13/26

Method 3

Assume x > xcut := 2/C (the case x < xcut = 2/C is similar).

Let Xcut := b2n−1xcutc.

We recall the notations : Ch = ◦(C), C`=◦(C − Ch), u1 = ◦(C`x),
u2 = ◦(Chx + u1).

We want to determine the integers X, Xcut ≤ X ≤ 2n − 1 that satisfy∣∣∣∣u2 − C
X

2n−1

∣∣∣∣ <
1
2

ulp (u2) + 2 ulp (C`),

or equivalently, the integers X, Xcut ≤ X ≤ 2n − 1 s.t. there exists an integer A
with ∣∣∣∣C X

2n−1
− 2A + 1

2n−1

∣∣∣∣ ≤ 2 ulp (C`).

Once we know the X candidate, we compute u2 and ◦(Cx) to check if they
coincide or not.

Correctly rounded multiplication by arbitrary precision constants 14/26

Method 3

We search for the x = X/2n−1, Xcut ≤ X ≤ 2n − 1 s.t. there exits an integer
A with ∣∣∣∣C X

2n−1
− 2A + 1

2n−1

∣∣∣∣ ≤ 2 ulp (C`).

We know that ulp (C`) ≤ 2−2n.

We distinguish the cases ulp (C`) ≤ 2−2n−1 and ulp (C`) = 2−2n.

Correctly rounded multiplication by arbitrary precision constants 15/26

Method 3

First, we assume ulp (C`) ≤ 2−2n−1.

In that case, the integers x = X/2n−1, Xcut ≤ X ≤ 2n − 1 satisfy∣∣∣∣2C − 2A + 1
X

∣∣∣∣ <
1

2X2
:

(2A + 1)/X is a convergent of 2C from Theorem 3. It suffices then to check the
convergents of 2C of denominator less or equal to 2n − 1.

Correctly rounded multiplication by arbitrary precision constants 16/26

Method 3

Now, assume ulp (C`) = 2−2n.

Careful computations lead to the following problem : determine the
X, Xcut ≤ X ≤ 2n − 1 s.t.

{X(Ch + C`) +
1

2n+1
} ≤ 1

2n
,

where {y} is the fractional part of y : {y} = y − byc.

We use an efficient algorithm due to V. Lefèvre to determine all the integers
X, Xcut ≤ X ≤ 2n − 1 solution of this inequality.

Correctly rounded multiplication by arbitrary precision constants 17/26

Two other methods

• See the paper for details.

• Methods 1 and 2 are simpler : they each give a criterion, easy to check,
that guarantee that the algorithm always returns a correctly rounded re-
sult. They also may give some values of x such that u2 6= ◦(Cx).

• Method 1 uses Theorem 2, Method 2 uses Theorem 3. We may need the
examination of all convergents to 2C or C.

Correctly rounded multiplication by arbitrary precision constants 18/26

Two examples

Method 1 allows to prove

Theorem 4. [Correctly rounded multiplication by π] The algorithm always
returns a correctly rounded result in double precision with C = 2jπ, where j
is any integer, provided no under/overflow occur.

With ln(2), needs more work (uses Method 2 and examination of all conver-
gents)

Theorem 5. [Correctly rounded multiplication by ln(2)] The algorithm al-
ways returns a correctly rounded result in double precision with C = 2j ln(2),
where j is any integer, provided no under/overflow occur.

Correctly rounded multiplication by arbitrary precision constants 19/26

Example 3 : multiplication by 1/π in double precision

Consider the case C = 4/π and n = 53, and assume we use Method 1. We
find a counterexample : x = 6081371451248382× 2±k.

Method 3 certifies that x = 6081371451248382× 2±k are the only FP values
for which our algorithm fails.

Correctly rounded multiplication by arbitrary precision constants 20/26

Implementation

We have written Maple programs that implement Methods 1, 2 and 3, and a
GP/PARI program that implements Method 3.

These programs can be downloaded from the url

http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html

Correctly rounded multiplication by arbitrary precision constants 21/26

http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html

Some results

C n Method 1 Method 2 Method 3

π 8
Does not
work for

226

Does not
work for

226

AW (c)
unless X =

226
π 24 unable unable AW
π 53 AW unable AW
π 64 unable AW AW (c)
π 113 AW AW AW (c)

TAB. 2: Some results obtained using Methods 1, 2 and 3. The results given for
constant C hold for all values 2±jC. “AW” means “always works” and “unable”
means “the method is unable to conclude”. For Method 3, “(c)” means that we
have needed to check the convergents.

Correctly rounded multiplication by arbitrary precision constants 22/26

C n Method 1 Method 2 Method 3

1/π 24 unable unable AW

1/π 53
Does not
work for

6081371451248382

unable
AW

unless X =
6081371451248382

1/π 64 AW AW AW (c)
1/π 113 unable unable AW

ln 2 24 AW AW AW (c)
ln 2 53 AW unable AW (c)
ln 2 64 AW unable AW (c)
ln 2 113 AW AW AW (c)

TAB. 3: Some results obtained using Methods 1, 2 and 3. The results given for
constant C hold for all values 2±jC. “AW” means “always works” and “unable”
means “the method is unable to conclude”. For Method 3, “(c)” means that we
have needed to check the convergents.

Correctly rounded multiplication by arbitrary precision constants 23/26

C n Method 1 Method 2 Method 3
1

ln 2 24 unable AW AW (c)
1

ln 2 53 AW AW AW (c)
1

ln 2 64 unable unable AW
1

ln 2 113 unable unable AW

ln 10 24 unable AW AW (c)
ln 10 53 unable unable AW
ln 10 64 unable AW AW (c)
ln 10 113 AW AW AW (c)

TAB. 4: Some results obtained using Methods 1, 2 and 3. The results given for
constant C hold for all values 2±jC. “AW” means “always works” and “unable”
means “the method is unable to conclude”. For Method 3, “(c)” means that we
have needed to check the convergents.

Correctly rounded multiplication by arbitrary precision constants 24/26

C n Method 1 Method 2 Method 3
2j

ln 10 24 unable unable AW
2j

ln 10 53 unable AW AW (c)
2j

ln 10 64 unable AW AW (c)
2j

ln 10 113 unable unable AW

cos π
8 24 unable unable AW

cos π
8 53 AW AW AW (c)

cos π
8 64 AW unable AW

cos π
8 113 unable AW AW (c)

TAB. 5: Some results obtained using Methods 1, 2 and 3. The results given for
constant C hold for all values 2±jC. “AW” means “always works” and “unable”
means “the method is unable to conclude”. For Method 3, “(c)” means that we
have needed to check the convergents.

Correctly rounded multiplication by arbitrary precision constants 25/26

Conclusion

The three methods we have proposed allow to check whether correctly roun-
ded multiplication by an “infinite precision” constant C is feasible at a low cost
(one multiplication and one fma).

Correctly rounded multiplication by arbitrary precision constants 26/26

	[Titre] Correctly rounded multiplication by arbitrary precision constants (1)
	 Multiplications by constants (2)
	 Correctly rounded Multiplications by constants (3)
	 Some statistics (4)
	 Correctly rounded Multiplications by constants (5)
	 The algorithm (6)
	 (7)
	 (8)
	 Analyzing the algorithm (9)
	 Analyzing the algorithm (10)
	 Analyzing the algorithm (11)
	 A reminder on continued fractions (12)
	 (13)
	 Method 3 (14)
	 Method 3 (15)
	 Method 3 (16)
	 Method 3 (17)
	 Two other methods (18)
	 Two examples (19)
	 Example 3: multiplication by red1/ in double precision (20)
	 Implementation (21)
	 Some results (22)
	 (23)
	 (24)
	 (25)
	 Conclusion (26)

