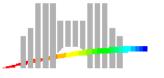
Correctly rounded multiplication by arbitrary precision constants

J.-M. Muller Arénaire, LIP, É.N.S. Lyon N. Brisebarre LArAI, Univ. St-Étienne et Arénaire, LIP, É.N.S. Lyon

Arith'17 June 27, 2005



Multiplications by constants

Many numerical algorithms : multiplications by constants that are not exactly representable in floating-point (FP) arithmetic.

Typical constants that are used : π , $1/\pi$, $\ln(2)$, e, $B_k/k!$ (Euler-McLaurin summation), $\cos(k\pi/N)$ and $\sin(k\pi/N)$ (Fast Fourier Transforms). Some numerical integration formulas such as :

$$\int_{x_0}^{x_1} f(x) dx \approx h\left(\frac{55}{24}f(x_1) - \frac{59}{24}f(x_2) + \frac{37}{24}f(x_3) - \frac{9}{24}f(x_4)\right)$$

also naturally involve multiplications by constants.

Correctly rounded Multiplications by constants

For approximating Cx, where C is an infinite-precision constant and x is a FP number, desirable result = $\circ(Cx)$, where $\circ(u)$ is u rounded to the nearest FP number.

Our goal : We want to compute at low cost $\circ(Cx)$ for all input FP numbers x (provided no overflow or underflow occur).

Naive idea : let C_h be the FP number that is closest to C, we actually compute $\circ(C_h x)$. The obtained result is frequently different from $\circ(C x)$.

Some statistics

Let n = number of mantissa bits of the binary FP format.

Comparison of $\circ(C_h x)$ and $\circ(C x)$ for all possible values of the mantissa of x.

n	Proportion of correctly rounded results		
4	0.62500		
5	0.93750		
6	0.78125		
7	0.59375		
•••			
16	0.86765		
17	0.73558		
•••			
24	0.66805		

TAB. 1: Proportion of input values x for which $\circ(C_h x) = \circ(Cx)$ for $C = \pi$ and various values of the number n of mantissa bits.

Correctly rounded Multiplications by constants

Our goal – at least for some constants and some FP formats – is to return $\circ(Cx)$ for all input FP numbers x (provided no overflow or underflow occur), and at a low cost.

To do that, we will use *fused multiply and add* (fma) instructions.

fma : computes correct rounding of ab + c where a, b and c are FP numbers.

We assume binary FP arithmetic.

The algorithm

- We want Cx with correct rounding (assuming rounding to nearest even).
- *C* is not an FP number.
- We assume that a fma instruction is available. Operands stored in a binary FP format with n-bit mantissas.
- We assume that the two following FP numbers are pre-computed :

$$\begin{cases} C_h = \circ(C), \\ C_\ell = \circ(C - C_h), \end{cases}$$

where o(t) stands for t rounded to the nearest FP number.

Algorithm. (Multiplication by C with a multiplication and a fma). From x, compute

$$\begin{cases} u_1 &= \circ(C_{\ell}x), \\ u_2 &= \circ(C_hx + u_1). \end{cases}$$

The result to be returned is u_2 .

Algorithm. (Multiplication by C with a multiplication and a fma). From x, compute

$$u_1 = \circ(C_{\ell}x),$$

$$u_2 = \circ(C_hx + u_1).$$

The result to be returned is u_2 .

Without I.o.g., we assume that 1 < x < 2 and 1 < C < 2, that C is not exactly representable, and that $C - C_h$ is not a power of 2.

Warning! There exist *C* and *x* s.t. $u_2 \neq \circ(Cx)$.

We give 3 methods for checking if $\forall x, u_2 = \circ(Cx)$.

Algorithm. (Multiplication by C with a multiplication and a fma). From x, compute

$$u_1 = \circ(C_{\ell}x),$$

$$u_2 = \circ(C_hx + u_1).$$

The result to be returned is u_2 .

3 methods for checking if $\forall x, u_2 = \circ(Cx)$.

Methods 1 and 2 are simple but do not always give a complete answer :

- they either certify that our algorithm always returns a correctly rounded result,
- or give a "bad case", i.e. an FP number x s.t. $u_2 \neq \circ(Cx)$.

Method 3 is a bit more complicated but gives a complete answer :

- it gives all "bad cases",
- or certify that there are none, i.e. that our algorithm always gives the correct result.

Analyzing the algorithm

We will use the following property, that bounds the maximum possible distance between u_2 and Cx in the algorithm.

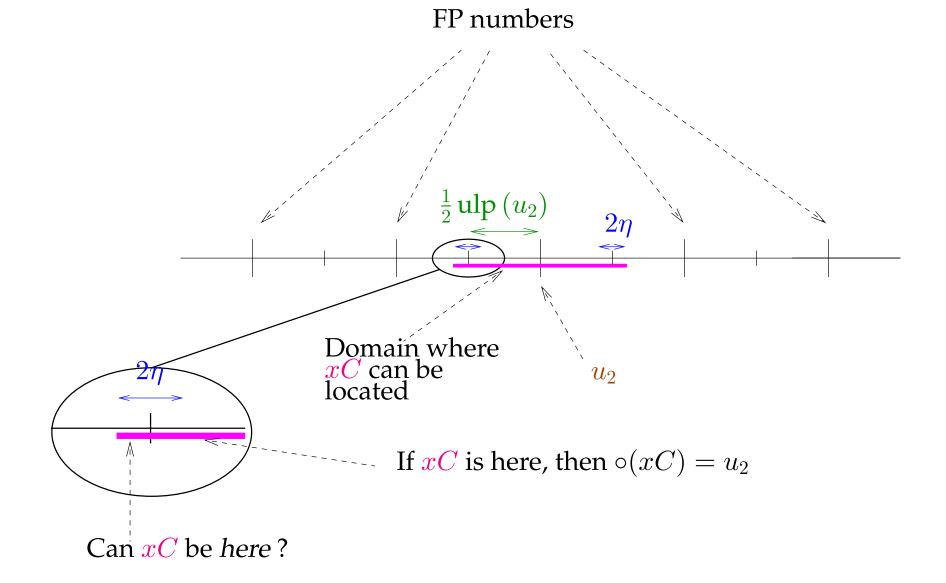
Property 1. For all FP number x, we have

$$|u_2 - Cx| < \frac{1}{2} ulp(u_2) + 2 ulp(C_\ell).$$

[Remember that $C_h = \circ(C), C_\ell = \circ(C - C_h), u_1 = \circ(C_\ell x),$ $u_2 = \circ(C_h x + u_1).$]

Analyzing the algorithm

Recall : we have $|u_2 - Cx| < 1/2 \operatorname{ulp}(u_2) + \eta$ with $\eta := 2 \operatorname{ulp}(C_{\ell})$.



Correctly rounded multiplication by arbitrary precision constants

Analyzing the algorithm

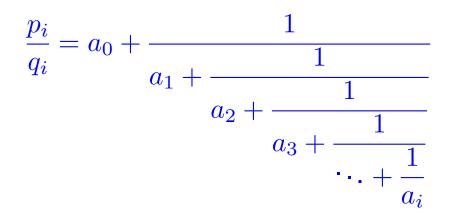
Remark. We know that xC is within $1/2 ulp(u_2) + 2 ulp(C_\ell)$ from the FP number u_2 . If we prove that xC cannot be at a distance $\leq 2 ulp(C_\ell)$ from the middle of two consecutive FP numbers, then u_2 will be the FP number that is closest to xC.

A reminder on continued fractions

Let $\beta \in \mathbb{R}$. From β , two sequences (a_i) and (r_i) defined by :

$$\begin{cases} r_0 &= \beta, \\ a_i &= \lfloor r_i \rfloor, \\ r_{i+1} &= 1/(r_i - a_i). \end{cases}$$

If $\beta \notin \mathbb{Q}$, these sequences are defined $\forall i$, and the rational number



is the *i*th *convergent* to β . If $\beta \in \mathbb{Q}$, these sequences terminate for some *i*, and $p_i/q_i = \beta$ exactly.

We will use the following two results :

Theorem 2. Let $(p_j/q_j)_{j\geq 1}$ be the convergents of β . For any (p,q), with $0 \leq q < q_{n+1}$, we have

 $|p - \beta q| \ge |p_n - \beta q_n|.$

Theorem 3. Let p, q be nonzero integers, with gcd(p, q) = 1. If

$$\left|\frac{p}{q} - \beta\right| < \frac{1}{2q^2}$$

then p/q is a convergent of β .

Assume $x > x_{cut} := 2/C$ (the case $x < x_{cut} = 2/C$ is similar).

Let $X_{\text{cut}} := \lfloor 2^{n-1} x_{\text{cut}} \rfloor$.

We recall the notations : $C_h = \circ(C), C_\ell = \circ(C - C_h), u_1 = \circ(C_\ell x), u_2 = \circ(C_h x + u_1).$

We want to determine the integers X, $X_{cut} \leq X \leq 2^n - 1$ that satisfy

$$\left| u_2 - C \frac{X}{2^{n-1}} \right| < \frac{1}{2} \operatorname{ulp}(u_2) + 2 \operatorname{ulp}(C_\ell),$$

or equivalently, the integers X, $X_{cut} \le X \le 2^n - 1$ s.t. there exists an integer A with

$$C\frac{X}{2^{n-1}} - \frac{2A+1}{2^{n-1}} \le 2 \operatorname{ulp}(C_{\ell}).$$

Once we know the X candidate, we compute u_2 and $\circ(Cx)$ to check if they coincide or not.

We search for the $x = X/2^{n-1}$, $X_{cut} \le X \le 2^n - 1$ s.t. there exits an integer A with

$$\left| C \frac{X}{2^{n-1}} - \frac{2A+1}{2^{n-1}} \right| \le 2 \operatorname{ulp} (C_{\ell}).$$

We know that $ulp(C_{\ell}) \leq 2^{-2n}$.

We distinguish the cases $ulp(C_{\ell}) \leq 2^{-2n-1}$ and $ulp(C_{\ell}) = 2^{-2n}$.

First, we assume $ulp(C_{\ell}) \leq 2^{-2n-1}$.

In that case, the integers $x = X/2^{n-1}$, $X_{cut} \le X \le 2^n - 1$ satisfy

$$\left|2C - \frac{2A+1}{X}\right| < \frac{1}{2X^2}:$$

(2A+1)/X is a convergent of 2*C* from Theorem 3. It suffices then to check the convergents of 2*C* of denominator less or equal to $2^n - 1$.

Now, assume ulp $(C_{\ell}) = 2^{-2n}$.

Careful computations lead to the following problem : determine the $X, X_{cut} \le X \le 2^n - 1$ s.t.

$$\{X(C_h + C_\ell) + \frac{1}{2^{n+1}}\} \le \frac{1}{2^n},$$

where $\{y\}$ is the fractional part of $y : \{y\} = y - \lfloor y \rfloor$.

We use an efficient algorithm due to V. Lefèvre to determine all the integers $X, X_{cut} \leq X \leq 2^n - 1$ solution of this inequality.

Two other methods

- See the paper for details.
- Methods 1 and 2 are simpler : they each give a criterion, easy to check, that guarantee that the algorithm always returns a correctly rounded result. They also may give some values of x such that $u_2 \neq \circ(Cx)$.
- Method 1 uses Theorem 2, Method 2 uses Theorem 3. We may need the examination of all convergents to 2*C* or *C*.

Two examples

Method 1 allows to prove

Theorem 4. [Correctly rounded multiplication by π] The algorithm always returns a correctly rounded result in double precision with $C = 2^{j}\pi$, where *j* is any integer, provided no under/overflow occur.

With $\ln(2)$, needs more work (uses Method 2 and examination of all convergents)

Theorem 5. [Correctly rounded multiplication by $\ln(2)$] The algorithm always returns a correctly rounded result in double precision with $C = 2^{j} \ln(2)$, where *j* is any integer, provided no under/overflow occur.

Example 3 : multiplication by $1/\pi$ **in double precision**

Consider the case $C = 4/\pi$ and n = 53, and assume we use Method 1. We find a counterexample : $x = 6081371451248382 \times 2^{\pm k}$.

Method 3 certifies that $x = 6081371451248382 \times 2^{\pm k}$ are the *only* FP values for which our algorithm fails.

Implementation

We have written Maple programs that implement Methods 1, 2 and 3, and a GP/PARI program that implements Method 3.

These programs can be downloaded from the url

http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html

Some results

C	n	Method 1	Method 2	Method 3
		Does not	Does not	AW (c)
π	8	work for	work for	unless $X =$
		226	226	226
π	24	unable	unable	AW
π	53	AW	unable	AW
π	64	unable	AW	AW (c)
π	113	AW	AW	AW (c)

TAB. 2: Some results obtained using Methods 1, 2 and 3. The results given for constant *C* hold for all values $2^{\pm j}C$. "AW" means "always works" and "unable" means "the method is unable to conclude". For Method 3, "(c)" means that we have needed to check the convergents.

C	n	Method 1	Method 2	Method 3
$1/\pi$	24	unable	unable	AW
		Does not		AW
$1/\pi$	53	work for	unable	unless $X =$
		6081371451248382		6081371451248382
$1/\pi$	64	AW	AW	AW (c)
$1/\pi$	113	unable	unable	AW
$\ln 2$	24	AW	AW	AW (c)
$\ln 2$	53	AW	unable	AW (c)
$\ln 2$	64	AW	unable	AW (c)
$\ln 2$	113	AW	AW	AW (c)

TAB. 3: Some results obtained using Methods 1, 2 and 3. The results given for constant *C* hold for all values $2^{\pm j}C$. "AW" means "always works" and "unable" means "the method is unable to conclude". For Method 3, "(c)" means that we have needed to check the convergents.

C	n	Method 1	Method 2	Method 3
$\frac{1}{\ln 2}$	24	unable	AW	AW (c)
$\frac{1}{\ln 2}$	53	AW	AW	AW (c)
$\frac{1}{\ln 2}$	64	unable	unable	AW
$\frac{1}{\ln 2}$	113	unable	unable	AW
$\ln 10$	24	unable	AW	AW (c)
$\ln 10$	53	unable	unable	AW
$\ln 10$	64	unable	AW	AW (c)
$\ln 10$	113	AW	AW	AW (c)

TAB. 4: Some results obtained using Methods 1, 2 and 3. The results given for constant *C* hold for all values $2^{\pm j}C$. "AW" means "always works" and "unable" means "the method is unable to conclude". For Method 3, "(c)" means that we have needed to check the convergents.

C	n	Method 1	Method 2	Method 3
$\frac{2^j}{\ln 10}$	24	unable	unable	AW
$\frac{2^j}{\ln 10}$	53	unable	AW	AW (c)
$\frac{2^j}{\ln 10}$	64	unable	AW	AW (c)
$\frac{2^j}{\ln 10}$	113	unable	unable	AW
$\cos\frac{\pi}{8}$	24	unable	unable	AW
$\cos\frac{\pi}{8}$	53	AW	AW	AW (c)
$\cos\frac{\pi}{8}$	64	AW	unable	AW
$\cos\frac{\pi}{8}$	113	unable	AW	AW (c)

TAB. 5: Some results obtained using Methods 1, 2 and 3. The results given for constant C hold for all values $2^{\pm j}C$. "AW" means "always works" and "unable" means "the method is unable to conclude". For Method 3, "(c)" means that we have needed to check the convergents.

Conclusion

The three methods we have proposed allow to check whether correctly rounded multiplication by an "infinite precision" constant C is feasible at a low cost (one multiplication and one fma).