
Two methods for computing machine-efficient
polynomial approximants

J.-M. Muller and A. Tisserand
Arénaire, LIP, É.N.S. Lyon

N. Brisebarre
LArAl, Univ. St-Étienne and Arénaire, LIP, É.N.S. Lyon

Slovenská Akadémia Vied
05/30/2005



Function evaluation on a machine

Problem : evaluation of a function ϕ over R or a subset of R.

We wish to only use additions, subtractions, multiplications (we should avoid
divisions) ⇒ use of polynomials.

The algorithms for evaluating elementary functions (exp, ln, cos, sin,
arctan,

√
, . . .) use polynomial approximants.

Two methods for computing machine-efficient polynomial approximants 2/45



Evaluation of elementary functions

exp, ln, cos, sin, arctan,
√

, . . .

First step. Argument reduction (Payne & Hanek, Ng, Daumas et al) : eva-
luation of a function ϕ over R or a subset of R is reduced to the evaluation of a
function f over [a, b].

Second step. Polynomial approximation of f :
• least square approximation ;
• minimax approximation.

Two methods for computing machine-efficient polynomial approximants 3/45



Minimax Approximation

Reminder. Let g : [a, b] → R, ||g||[a,b] = supa≤x≤b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Minimax approximation : let f : [a, b] → R, n ∈ N, we search for p ∈ Rn[X]
s.t.

||p− f ||[a,b] = inf
q∈Rn[X]

||q − f ||[a,b].

An algorithm by Remez gives p.

Problem : we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.

Two methods for computing machine-efficient polynomial approximants 4/45



Our context : the coefficients of the polynomials must be written on a finite
(imposed) number of bits.

Let m = (mi)0≤i≤n a finite sequence of natural integers.

Let q(x) = q0 + q1x + · · · + qnxn ∈ Rn[x]. Each qi must be an integer mul-
tiple of 2−mi : qi = ai/2mi with ai ∈ Z.

Two methods for computing machine-efficient polynomial approximants 5/45



Truncated Polynomials

Let m = (mi)0≤i≤n a finite sequence of natural integers. Let

Pm
n = {q = q0 + q1x + · · · + qnxn ∈ Rn[X]; qi integer multiple of 2−mi,∀i}.

First idea. Remez → p(x) = p0 + p1x + · · · + pnxn. Every pi rounded to p̂i,
the nearest integer multiple of 2−mi → p̂(x) = p̂0 + p̂1x + · · · + p̂nxn.

Problem : p̂ not necessarily the minimax approx. of f among the polynomials
of Pm

n .

Two methods for computing machine-efficient polynomial approximants 6/45



Applications

Two targets :
• specific hardware implementations in low precision (∼ 15 bits). Reduce

the cost (time and silicon area) keeping a correct accuracy ;
• single or double IEEE precision software implementations. Get very high

accuracy keeping an acceptable cost (time and memory).

Two methods for computing machine-efficient polynomial approximants 7/45



Statement of the problem

Let f : [a, b] → R, n ∈ N, m = (mi)0≤i≤n a finite sequence of natural inte-
gers, p(x) = p0 + p1x + · · · + pnxn the minimax approx. of f over [a, b] (Re-
mez).

Pm
n =

{
q(x) =

a0

2m0
+

a1

2m1
x + · · · +

an

2mn
xn; ai ∈ Z,∀i

}
.

Every pi rounded to p̂i, the nearest integer multiple of 2−mi →
p̂(x) = p̂0 + p̂1x + · · · + p̂nxn.

Two methods for computing machine-efficient polynomial approximants 8/45



Let
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.

We choose K ∈ [ε, ε̂]. We search for a truncated polynomial
p? ∈ Pm

n s.t.
||f − p?||[a,b] = min

q∈Pm
n

||f − q||[a,b]

and
||f − p?||[a,b] ≤ K.

Two methods for computing machine-efficient polynomial approximants 9/45



Approach

We put p?(x) = p?
0 + p?

1x + · · · + p?
nxn.

1. We find relations relations satisfied by the p?
i ⇒ finite number of candidate

polynomials.

2. If this number is small enough, we perform an exhaustive search : computa-
tion of the norms ||f − q||[a,b], q running among the candidate polynomials.

Two methods for computing machine-efficient polynomial approximants 10/45



First approach : Chebyshev polynomials

“Partial” method : it only works with intervals of the form [0, a] or [−a, a].

We work over [0, a].

Definition . Chebyshev polynomials can be defined either by the recurrence
relation  T0(x) = 1

T1(x) = x
Tn(x) = 2xTn−1(x)− Tn−2(x);

or by

Tn(x) =
{

cos
(
n cos−1 x

)
(|x| ≤ 1)

cosh
(
n cosh−1 x

)
(x > 1).

T. J. Rivlin, Chebyshev polynomials.

P. Borwein and T. Erdélyi, Polynomials and Polynomials Inequalities.

Two methods for computing machine-efficient polynomial approximants 11/45



Proposition . Let a, b ∈ R, a < b. The monic degree-n polynomial having the
smallest || · ||[a,b] norm is

(b− a)n

22n−1
Tn

(
2x− b− a

b− a

)
.

Two methods for computing machine-efficient polynomial approximants 12/45



Let f : [0, a] → R, m0, . . . ,mn ∈ N, p(x) = p0 + p1x + · · · + pnxn the mini-
max approx. of f over [0, a] (Remez),

Pm
n =

{
q(x) =

a0

2m0
+

a1

2m1
x + · · · +

an

2mn
xn; ai ∈ Z,∀i

}
.

We determine bounds s. t. if the coefficients of q ∈ Pm
n are not within these

bounds then
||f − q||[0,a] > K i.e. q 6= p?.

Idea : use p. We have

||f − q||[0,a] ≥ ||p− q||[0,a] − ||f − p||[0,a].

If ||p− q||[0,a] > ε + K, we are done.

Two methods for computing machine-efficient polynomial approximants 13/45



We write the i-th coef. of q as pi + δi, avec δi 6= 0. We have

(q − p)(x) = δix
i +

∑
0≤j≤n,

j 6=i

(qj − pj)xj.

Hence, ||q − p||[0,a] minimum implies

∥∥∥xi +
1
δi

∑
0≤j≤n,

j 6=i

(qj − pj)xj
∥∥∥

[0,a]

minimum.

Two methods for computing machine-efficient polynomial approximants 14/45



We use T ∗n(x) = Tn(2x− 1).

We have T ∗n(x) = T2n(x1/2).

Proposition . Let a ∈ ]0,+∞[, we define

α0 + α1x + α2x
2 + · · · + αnxn = T ∗n

(x

a

)
.

Let k ∈ N, 0 ≤ k ≤ n, the polynomial

1
αk

T ∗n

(x

a

)
has the smallest || · ||[0,a] norm among the polynomials of degree at most n with
a degree-k coefficient equal to 1. That norm is |1/αk|.

Two methods for computing machine-efficient polynomial approximants 15/45



Therefore ∥∥∥xi +
1
δi

∑
0≤j≤n,

j 6=i

(qj − pj)xj
∥∥∥

[0,a]
≥ 1
|αi|

,

where αi is the i-th coef. of T ∗n(x/a). From which, we have

||q − p||[0,a] ≥
|δi|
|αi|

.

Reminder : If ||q − p||[0,a] > ε + K, we have q 6= p?.

Hence, if there exists i, 0 ≤ i ≤ n, s.t. |δi| > (ε + K)|αi| then

||q − p||[0,a] > ε + K.

Reminder : δi = qi − pi.

Thus, the i-th coef. of p? must belong to

[pi − (ε + K)|αi|, pi + (ε + K)|αi|].

Two methods for computing machine-efficient polynomial approximants 16/45



We put ε = ||f − p||[0,a] , p?(x) = p?
0 + p?

1x + · · · + p?
nxn. For all i,

pi − (ε + K)|αi| ≤ p?
i ≤ pi + (ε + K)|αi|.

Reminder : p?
i = ai/2mi with ai ∈ Z. We obtain, for all i

d2mi(pi − (ε + K)|αi|)e︸ ︷︷ ︸
ci

≤ 2mip?
i ≤ b2mi(pi + (ε + K)|αi|)c︸ ︷︷ ︸

di

.

Therefore, we have di − ci + 1 possible values for the rational integer 2mip?
i .

We have A =
∏n

i=0(di − ci + 1) candidate polynomials. If A small enough,
exhaustive search : we compute the norms ||f − q||[0,a], q running among the
candidate polynomials. Otherwise, second approach.

Two methods for computing machine-efficient polynomial approximants 17/45



Approximation of the function cos over [0, π/4] by a degree- 3
polynomial

>m := [12,10,6,4]:polstar(cos,Pi/4,3,m);

"minimax = ", .9998864206 +
(.00469021603 + (-.5303088665 + .06304636099 x) x) x

"Distance between f and p =", .0001135879209

1 3 17 2 5
"hatp = ", -- x - -- x + ---- x + 1

16 32 1024

"Distance between f and hatp =", .0006939707

Two methods for computing machine-efficient polynomial approximants 18/45



>Do you want to continue (y;/n;)? y;
>Enter the value of parameter lambda: 1/2;

degree 0: 4 possible values between 2047/2048 and
4097/4096

degree 1: 22 possible values between -3/512 and
15/1024

degree 2: 5 possible values between -9/16 and
-1/2

degree 3: 1 possible values between 1/16 and
1/16

440 polynomials need be checked

>Do you want to try to refine the bounds (y;/n;)?n;

Two methods for computing machine-efficient polynomial approximants 19/45



1 3 17 2 3 4095
"pstar = ", -- x - -- x + --- x + ----

16 32 512 4096

"Distance between f and pstar =", .0002441406250

"Time elapsed (in seconds) =", 1.840

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

Two methods for computing machine-efficient polynomial approximants 20/45



Approximation of the exponential function over
[0, log(1 + 1/2048)] by a degree- 3 polynomial

>Digits:=30:
>m := [56,45,33,23]: polstar(exp,log(1.+1./2048),3,m);

"minimax = ", .999999999999999981509827946165 +
(1.00000000000121203815619648271

+ (.499999987586063030320493910112
+ .166707352549861488779274879363 x) x) x

-16
"Distance between f and p =", .1849017208895 10

1398443 3 4294967189 2 35184372088875
"hatp =", ------- x + ---------- x + -------------- x

8388608 8589934592 35184372088832

Two methods for computing machine-efficient polynomial approximants 21/45



72057594037927935
+ -----------------

72057594037927936

"Distance between f and hatp =",
-16

.23624220969326235229443 10

>Do you want to continue (y;/n;)? y;
>Enter the value of parameter lambda: 1;

degree 0: 6 possible values between
18014398509481983/18014398509481984

and 72057594037927937/72057594037927936
degree 1: 109 possible values between
35184372088821/35184372088832

and 35184372088929/35184372088832

Two methods for computing machine-efficient polynomial approximants 22/45



degree 2: 146 possible values between
4294967117/8589934592
and 2147483631/4294967296

degree 3: 194 possible values between 699173/4194304
and 1398539/8388608

18 523 896 polynomials need be checked

Two methods for computing machine-efficient polynomial approximants 23/45



A more general and efficient approach : polytopes

First approach has several drawbacks :
• available only for domains of the form [0, a] or [−a, a] ;
• quickly not good enough. Not a surprise since

I we use triangle inequality ;
I the coefficients are handled independently.

Two methods for computing machine-efficient polynomial approximants 24/45



Definitions . Let k ∈ N.

A polyhedron is a subset P of Rk s.t. there exists a matrix A ∈Mm,k(R) and
a vector b ∈ Rm (with m ≥ 0) s. t.

P = {x ∈ Rk|Ax ≤ b}.

A polytope is a bounded polyhedron.

A polyhedron (resp. polytope) P is rational if it defined by a matrix and a
vector with rational coefficients.

Two methods for computing machine-efficient polynomial approximants 25/45



An example of polyhedron : half-plane in R2.

Two methods for computing machine-efficient polynomial approximants 26/45



An example of polyhedron : cone in R2.

Two methods for computing machine-efficient polynomial approximants 27/45



An example of polytope.

Two methods for computing machine-efficient polynomial approximants 28/45



Reminder of the problem

We put
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.

We choose K ∈ [ε, ε̂]. We search for a truncated polynomial
p? ∈ Pm

n s.t.
||f − p?||[a,b] = min

q∈Pm
n

||f − q||[a,b]

and
||f − p?||[a,b] ≤ K.

Two methods for computing machine-efficient polynomial approximants 29/45



Let p?(x) = p?
0 + p?

1x + · · · + p?
nxn.

Over [0, a], we obtained for all i

d2mi(pi − (ε + K)|αi|)e︸ ︷︷ ︸
ci

≤ 2mip?
i ≤ b2mi(pi + (ε + K)|αi|)c︸ ︷︷ ︸

di

.

They define a polytope which the integers 2mip?
i belong to.

Idea : construct a polytope still containing the integers 2mip?
i but with a smal-

ler number of points with integer coordinates ⇒ exhaustive research reduced.

Two methods for computing machine-efficient polynomial approximants 30/45



Method works over any [a, b].

We must have

f(x)−K ≤
n∑

i=0

p?
i x

i ≤ f(x) + K (1)

for all x ∈ [a, b]. We have p?
i = a?

i /2mi with a?
i ∈ Z.

We plug into (1) N rational numbers from [a, b]. Let x = r/s with r ∈ Z, s ∈ N.
We have

f
(r

s

)
−K ≤

n∑
i=0

a?
i

2mi

(r

s

)i

≤ f
(r

s

)
+ K.

We chose m(r
s) and M(r

s) ∈ Q such that m(r
s) ≤ f

(
r
s

)
−K and f

(
r
s

)
+ K ≤ M(r

s),
m(r

s) “close” to f
(

r
s

)
−K and M(r

s) “close” to f
(

r
s

)
+ K.

Two methods for computing machine-efficient polynomial approximants 31/45



If N ≥ n + 1 ⇒ we have a rational polytope whose the integers a?
i = 2mip?

i

are elements.

If the number of integer points in the polytope is small enough, perform
exhaustive research by running the points with integer coordinates of the poly-
tope.

We can use C libraries (s. t. Polylib, CLooG or PIP) designed for efficiently
scanning the integer points of polytopes.

Remark . Gives only candidates (but forgets none of them).

Two methods for computing machine-efficient polynomial approximants 32/45



Method works over any [a, b].

We must have

f(x)−K ≤
n∑

i=0

p?
i x

i ≤ f(x) + K (2)

for all x ∈ [a, b].

1. Chose A and B ∈ Q, a ≤ A ≤ B ≤ b, A “close” to a and B “close” to b. We
define xk = A + k

d(B −A) where d ∈ N is chosen ∀k, 0 ≤ k ≤ d.

2. We plug the xk into (2). We compute rational approx. of the f(xk)−K and
f(xk) + K.
d ≥ n ⇒ we have a rational polytope which the integers 2mip?

i belong to.

3. If the number of integer points of the polytope is “small enough”, perform
exhaustive search by scanning the points with integer coord. of the polytope.
To do so, we use C libraries (such as Polylib, CLooG ou PIP) designed for
efficiently scanning the integer points of polytopes.

Two methods for computing machine-efficient polynomial approximants 33/45



(0, 0) (1, 0)

(0, 1)

Approximation by a degree-1 polynomial. Green polytope : 110 points of Z2.
Blue polytope : 21 points of Z2. Red polytope : 1 point of Z2.

Two methods for computing machine-efficient polynomial approximants 34/45



Approximation of the exponential function over
[0, log(1 + 1/2048)] by a degree- 3 polynomial

>Digits:=30:
>m := [56,45,33,23]: polstar(exp,log(1.+1./2048),3,m);

"minimax = ", .999999999999999981509827946165 +
(1.00000000000121203815619648271

+ (.499999987586063030320493910112
+ .166707352549861488779274879363 x) x) x

-16
"Distance between f and p =", .1849017208895 10

1398443 3 4294967189 2 35184372088875
"hatp =", ------- x + ---------- x + -------------- x

8388608 8589934592 35184372088832

Two methods for computing machine-efficient polynomial approximants 35/45



72057594037927935
+ -----------------

72057594037927936

"Distance between f and hatp =",
-16

.23624220969326235229443 10

>Do you want to continue (y;/n;)? y;
>Enter the value of parameter lambda: 1;

degree 0: 6 possible values between
18014398509481983/18014398509481984

and 72057594037927937/72057594037927936
degree 1: 109 possible values between
35184372088821/35184372088832

and 35184372088929/35184372088832

Two methods for computing machine-efficient polynomial approximants 36/45



degree 2: 146 possible values between
4294967117/8589934592
and 2147483631/4294967296

degree 3: 194 possible values between 699173/4194304
and 1398539/8388608

18 523 896 polynomials need be checked

>Do you want to try to refine the bounds (y;/n;)?y;
>Enter the value of parameter d: 25;

degree 0: 2 possible values between
72057594037927935/72057594037927936

and 1
degree 1: 27 possible values between

35184372088857/35184372088832
and 35184372088883/35184372088832

degree 2: 32 possible values between
536870897/1073741824
and 4294967207/8589934592

Two methods for computing machine-efficient polynomial approximants 37/45



degree 3: 44 possible values between 1398421/8388608
and 21851/131072

76 032 polynomials need be checked

>Do you want to try to refine the bounds (y;/n;)?n;
>Do you want to change the value of Digits (y;/n;)?y;
>Enter the value of Digits: 21;

1398443 3 2147483595 2 35184372088873
"pstar =", ------- x + ---------- x + -------------- x

8388608 4294967296 35184372088832

72057594037927935
+ -----------------

72057594037927936

"Distance between f and pstar =",
-16

.20246280367096470182285 10

"Time elapsed (in seconds) =", 54721.961

Two methods for computing machine-efficient polynomial approximants 38/45



In this example, we gain − log2(0.85) ≈ 0.22 bits of accuracy.

Two methods for computing machine-efficient polynomial approximants 39/45



The polytope method is flexible !

We can add some constraints (fix values of some coef. for instance) or use
other distances.

Examples .
• If we restrict our search to odd truncated polynomials, we consider

f(xk)−K ≤
I∑

i=0

p?
i x

2i+1
k ≤ f(xk) + K, k = 0, . . . , d

with xk ∈ Q ∩ [a, b], d ≥ I. We compute rational approximations mk and
Mk of f(xk)−K and f(xk) + K. We obtain a rational polytope P of Rk+1

whose we scan the points with integer coordinates.

Two methods for computing machine-efficient polynomial approximants 40/45



• If we restrict our search to truncated polynomials whose constant term is
1, we consider

f(xk)−K ≤ 1 +
n∑

i=1

p?
i x

2i+1
k ≤ f(xk) + K, k = 0, . . . , d

with xk ∈ Q ∩ [a, b], d ≥ n− 1.

• We can search for the best truncated polynomial for the relative error
|| · ||rel,[a,b]

defined by

||f − p||rel,[a,b]
= sup

a≤x≤b

1
|f(x)|

|p(x)− f(x)|.

Two methods for computing machine-efficient polynomial approximants 41/45



Let K ≥ 0, we search for a truncated polynomial p? ∈ Pm
n such that

||f − p?||rel,[a,b]
= min

q∈Pm
n

||f − q||rel,[a,b]

and
||f − p?||rel,[a,b]

≤ K.

We consider

−K|f(x)| − f(x) ≤
n∑

i=0

p?
i x

i ≤ K|f(x)|+ f(x)

for at least n + 1 rational values of x ∈ [a, b].

Two methods for computing machine-efficient polynomial approximants 42/45



Approximation of functions by sums of cosines

Let f : [0, 2π] → R, m = (mi)0≤i≤2n a finite sequence of natural integers,

T m
n =

{
t(x) =

a0

2m0
+

a1

2m1
cos(x/2) +

a2

2m2
cos(x) + · · ·

+
a2n−1

2m2n−1
cos((n− 1/2)x) +

a2n

2m2n
cos(nx) ; ai ∈ Z,∀i

}
.

Let K > 0. We search for a “sum of truncated cosines”
t? ∈ T m

n s.t.
||f − t?||[0,2π] = min

t∈T m
n

||f − t||[0,2π]

and
||f − t?||[0,2π] ≤ K.

Two methods for computing machine-efficient polynomial approximants 43/45



Method working on [0, 2π].

We must have

f(x)−K ≤
2n∑
i=0

t?i cos(ix/2) ≤ f(x) + K (3)

for all x ∈ [0, 2π]. We have t?i = a?
i /2mi with a?

i ∈ Z.

We want to construct rational polytope.

Trick : we plug into (3) N values of 2 arccos into rational points of [−1, 1].

Indeed, let x = r/s with r ∈ Z, s ∈ N, |r| ≤ s. We have

f
(
2 arccos

(r

s

))
−K ≤

2n∑
i=0

a?
i

2mi
cos

(
i arccos

(r

s

))
︸ ︷︷ ︸

Ti(r/s)∈Q!

≤ f
(
2 arccos

(r

s

))
+ K.

Two methods for computing machine-efficient polynomial approximants 44/45



Let x = r/s with r ∈ Z, s ∈ N, |r| ≤ s. We have

f
(
2 arccos

(r

s

))
−K ≤

2n∑
i=0

Ti(r/s)
2mi

a?
i ≤ f

(
2 arccos

(r

s

))
+ K.

Choose m(r
s) and M(r

s) ∈ Q such that m(r
s) ≤ f

(
2 arccos

(
r
s

))
−K and

f
(
2 arccos

(
r
s

))
+ K ≤ M(r

s), m(r
s) “close” to f

(
2 arccos

(
r
s

))
−K and M(r

s)
“close” to f

(
2 arccos

(
r
s

))
+ K.

If N ≥ 2n + 1 ⇒ we have a rational polytope which the integers a?
i = 2mip?

i

belong to.

Two methods for computing machine-efficient polynomial approximants 45/45


	[Titre] Two methods for computing machine-efficient polynomial approximants (1)
	   Function evaluation on a machine (2)
	   Evaluation of elementary functions (3)
	   Minimax Approximation (4)
	    (5)
	   Truncated Polynomials (6)
	   Applications (7)
	   Statement of the problem (8)
	    (9)
	   Approach (10)
	   First approach: Chebyshev polynomials (11)
	    (12)
	    (13)
	    (14)
	    (15)
	    (16)
	    (17)
	   Approximation of the function redcos over red[0,/4] by a degree-red3 polynomial (18)
	   Approximation of the exponential function over [0,log(1+1/2048)] by a degree-red3 polynomial (21)
	   A more general and efficient approach: polytopes (24)
	    (25)
	    (26)
	    (27)
	    (28)
	   Reminder of the problem (29)
	    (30)
	    (31)
	    (32)
	    (33)
	    (34)
	   Approximation of the exponential function over [0,log(1+1/2048)] by a degree-red3 polynomial (35)
	   The polytope method is flexible! (40)
	    (41)
	   Approximation of functions by sums of cosines (43)
	    (44)
	    (45)

