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Abstract—Linear (order-one) function evaluation schemes,

such as bipartite and multipartite tables, are usually effective

for low precision approximations. For high output precision,

the lookup table size is often too large for practical use. This

study investigates the so-called (M,p, k) scheme that reduces

the range of input argument to a very small interval so that

trigonometric functions can be approximated with very small

lookup tables and a few additions/subtractions. An optimized

hardware architecture is presented and implemented in both

FPGA device and standard cell based technology. Experimental

results show that the proposed scheme achieves more than 50%
reduction in total chip area compared with the best linear

approach for 24-bit evaluation.

Index Terms—Bipartite table, trigonometric function evalua-

tion, field-programable gate array (FPGA).

I. INTRODUCTION

T

Rigonometric functions are extensively used in com-
puter graphics, digital signal processing, communication

systems, and robotics, to name a few fields of application.
Hardware function generators are usually desirable because
of their major advantages in speed over software solutions
and their potential to save power by avoidance of the use of
hundreds of general-purpose instructions.

In 1984, Sunderland et al. [3] considered approximating a
12-bit sine function in hardware with a input argument x less
than ⇡/2 with the use of tables. They proposed to evenly split
x (in binary form) into three 4-bit sub-words, i.e., x = x0 +

x1 + x2, where x0 < ⇡/2, x1 < 2

�4⇡/2 and x2 < 2

�8⇡/2,
and use the following equation

sin(x0 + x1 + x2) ⇡ sin(x0 + x1) + cos(x0) sin(x2) (1)

By doing so, instead of using one large table with 12 address
bits, two small tables, that each has 8 address bits are needed:
one for sin(x0+x1) and one for cos(x0) sin(x2). In 1995, Das
Sarma and Matula [4] introduced a new scheme to evaluate
reciprocal functions. Two tables are addressed in parallel by
the partitioned input argument. The outputs are then summed
and rounded to the desired accuracy. This scheme is called
the bipartite method. Later, Schulte and Stine [5] generalized
such a scheme to other elementary functions and termed it
the symmetric bipartite table method (SBTM), which also
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generalizes the scheme of Sunderland et al. Compared with
straightforward tabulation, the bipartite approach uses only
two tables with 2q address bits instead of one table with 3q
address bits (assuming that the input argument is split into
three q-bit sub-words).

An enhanced scheme was then proposed by Dinechin and
Tisserand [6], who divided the input argument into more than
three sub-words, so that multiple small tables can be built.
The scheme is thereby named as multipartite table-lookup
method (MTM). Both SBTM and MTM are linear (order-
one) approximations that possess an inherent limitation: to
evaluate functions with high precision, the input argument
needs to be reduced to very small values [2]. Very recently,
Brisebarre, Ercegovac and Muller [1] proposed a new scheme
called (M,p, k)-friendly points to approximate trigonometric
functions by using two small bipartite tables and only a few
additions. However, no analysis of the error bound or practical
hardware implementations were conducted to evaluate the
effectiveness of this scheme. Low and Jong [2] revisited
the tables-and-additions strategy and successfully proposed an
integrated add-table lookup-add (iATA) approach, which could
save 20% to 60% of memory compared with MTM. Other
approaches, such as LUT cascades [7] and order-two piecewise
polynomial approximation and interpolation approaches [8]
are also studied in the literature.

In this study, we investigate and develop implementations
of the (M,p, k) scheme. Section II introduces the proposed
algorithm, rectify prior incorrect definitions and performs an
analysis of the error bound. Section III describes an optimized
hardware architecture that efficiently implements the proposed
algorithm. Section IV provides the FPGA and ASIC based
implementation results. Section IV concludes the paper.

II. THE (M,p, k) SCHEME

A. (M,p, k)-Friendly Points and Angles
Given an n-bit input angle x in the range of [0,⇡/2), we

aim to evaluate the trigonometric functions sin(x) and cos(x)
with p-bit output precision. Assuming that x̂ approximates x
(we will see later how x̂ is obtained), we define ✓ = x � x̂.
When ✓ is much smaller than ⇡/2, sin(✓) and cos(✓) can
be efficiently approximated with high accuracy with the use
of the aforementioned table-and-addition-based schemes. We
can then obtain sin(x) and cos(x) in the form of

sin(x) = sin(x̂) · cos(✓) + cos(x̂) · sin(✓)
cos(x) = cos(x̂) · cos(✓)� sin(x̂) · sin(✓)

(2)

Instead of directly implementing (2) in hardware with the
use of four multipliers, the (M,p, k) scheme uses a different
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TABLE I
THE FIRST AND LAST ENTRIES OF TABLE T0 FOR n = p = 24, m = 8, k = 7 AND r = 7.

Index x0.x1 · · ·x7 a b x̂T |x̂T � x0.x1 · · ·x71| z e

0 00000000 256 1 3.90623e-003 1.98680e-008 100000000000000001̄000000000000000010 8
1 00000001 256 3 1.17182e-002 5.36398e-007 100000000000001̄001̄00000000010001̄0010 8
2 00000010 468 9 1.92284e-002 3.02851e-004 100101̄000000001000100000000010010000 9
· · · · · · · · · · · · · · · · · · · · ·
200 11001000 2 481 1.56664 2.32097e-004 10001000010000001̄001000101̄0000000001̄ 9
201 11001001 0 1 1.57080 3.42242e-003 100000000000000000000000000000000000 0

way to perform these computations. The scheme seeks special
pairs of numbers a, b, and z, which satisfy cos(x̂) = a · z
and sin(x̂) = b · z. If a and b are bounded by a integer M
and z = 1/

p
a2 + b2 has no more than k nonzero bits when

recoded into the canonical form, which contains no adjacent
nonzero digits [10], one can implement (2) at the cost of a
small number of additions/subtractions when M and k are
small. We refer to such numbers (a, b) as (M,p, k)-friendly
points and the corresponding x̂ as an (M,p, k)-friendly angle.
More precisely,

Definition-I: A pair of integers (a, b) is an (M,p, k)-
friendly point if the two following conditions are met:

1) 0  a < M = 2

m and 0  b < M = 2

m;
2) The number

z = rnd
⇣
1/
p
a2 + b2, p+m+ 2

⌘
(3)

can be written in its canonical form

2

�e · 1.z1z2 · · · zpzp+1 · · · zp+m+1zp+m+2 =

X
zi2

�e�i

where function rnd(x, n) rounds variable x to its n-th
fractional bit; m and e are integers, zi 2 {�1, 0, 1}, and
the number of nonzero zi’s is less than or equal to k for
i = 1, 2, · · · , p+m+2. Note that the definition of z is
more accurate than that of [1].

Definition-II: The angle x̂ in the range of 0  x̂ < ⇡/2 is
an (M,p, k)-friendly angle if either x̂ = 0 or

x̂ = arctan(b/a)

where (a, b) is an (M,p, k)-friendly point.

B. Tabulating the Desired Points and Angles

To implement (2), one needs to tabulate the appropriate a, b,
z and x̂ in a lookup table. The search for the desired points is
a trial-and-error process: First, the input x = x0.x1x2 · · ·xn�1

is split into two sub-words, i.e., the higher (r+1)-bit part (as
the table address):

xT = x0.x1x2x3 · · ·xr�1xr

and the lower part 2

�r · xr+1xr+2 · · ·xn�1, where r is an
integer. The angle xT divides the input range [0,⇡/2) into
smaller regions. Second, we select one (M,p, k)-friendly
point (for given M and k) whose angle is closest to
x0.x1x2x3 · · ·xr�1xr1 in each region and denote it as x̂T .
The largest distance between x̂T and x0.x1x2x3 · · ·xr�1xr1

is denoted as Dr . If Dr is smaller than 2

�r�1, then all the
x within that region will be at a distance

Dr + 2

�r�1  2

�r (4)

from x̂T . Consequently, the value of ✓ = x � x̂T has an
absolute value less than 2

�r. If there are no such x̂T found,
M and k will be enlarged and another round of search is
performed. As long as r is sufficiently large, we can build
small bipartite tables to generate sin(✓) and cos(✓) with high
output precision. Table I provides a numerical example of the
selected (M,p, k)-friendly points and angles for n = p = 24,
m = 8, k = 7 and r = 7. The search process, performed
off-line, has a time complexity of O(M2

) for given r.

C. Computation Steps of the Algorithm

Assuming that the correct (M,p, k)-friendly points (a, b)
and angles x̂T are stored in a lookup table T0, the following
computation steps are used to implement (2):

1) Subtraction of ✓ = x� x̂T is performed, and the values
of sin(✓) and cos(✓) are looked up in two bipartite
tables;

2) The following is computed:

S = b · cos(✓) + a · sin(✓)
C = a · cos(✓)� b · sin(✓)

(5)

Assuming that a and b are stored in radix-4 with a
digit set {-2,-1,0,1,2}, each multiplication can be im-
plemented in dm/2e additions/subtractions;

3) S · z and C · z are performed to implement (2). Because
z is in the canonical representation and the number of
nonzero bits is bounded by k, the two multiplications can
also be simplified to 2(k + 1) additions/subtractions.

We note that the efficiency of the proposed scheme relies on
how small ✓ can be for not-too-large values of parameters
M and k. Generally, for a given n and p, multiple pairs
of parameters can be selected. For instance, we list several
possible values of the parameters for n = 24 in Table II.
The optimal choice of the parameters is determined by the
hardware cost and performance. A scheme is proposed in
Section III-B to address this design issue.

D. Error Bound

By denoting z̃, f
sin(✓) and fcos(✓) as the exact values of

1/
p
a2 + b2, sin(✓) and cos(✓), respectively, three truncation

errors can be expressed in ez = (z� z̃), es = [sin(✓)�f
sin(✓)]
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TABLE II
VALUES OF PARAMETERS k, M AND r FOR n = 24, p = 24.

PPPPPPM
r 5 6 7 8 9 10 11

128 7 8 9 na na na na
256 7 7 8 9 na na na
512 6 6 7 8 9 na na

1024 5 6 7 7 8 9 na
2048 4 5 6 7 7 8 9

and ec = [cos(✓)�fcos(✓)]. Then, the total approximation error
entailed by the proposed algorithm is bounded by

|fcos(x)� cos(x)| =
���(z̃ � z)[afcos(✓)� bfsin(✓)]

+ [az(fcos(✓)� cos(✓))� bz(fsin(✓)� sin(✓))]
���

=

��
p
a2 + b2 · fcos(✓ + x̂)ez + az · ec � az · es

��

< 2

m
p
2 · |ez|+ |ec|+ |es|

(6)

where fcos(x) is the exact value of the final result obtained by
infinite precision computations. From (3), we already know
that |ez| < 2

�(p+m+3). If both outputs of the sine and cosine
bipartite tables have a maximum absolute error of 2

�(p+2),
the absolute value of the total error is bounded by 2

�p.
Therefore, the precision of the results is only determined by
the parameters n and p.

III. HARDWARE ARCHITECTURE

A. Proposed Architecture

Fig. 1 shows the top-level hardware architecture that im-
plements the proposed algorithm. Table T0 stores the pre-
computed (M,p, k)-friendly points (a, b), angles x̂T , and
associated z. SBT0 and SBT1 are two small bipartite lookup
tables that generate sin(✓) and cos(✓).

In Table T0, the m-bit integers a and b are recoded in
radix-4 with digit set {�2,�1, 0, 1, 2}. To reduce the area of
shifters used, we introduce another constraint on z, and only
those x̂T ’s whose associated z satisfies this extra condition
are tabulated. Fig. 2 shows that z is divided into the lower
b(p + m + 2)/2c-bit and higher d(p + m + 2)/2e-bit sub-
words, and the new constraint requires that the number of
nonzero zi’s in the two sub-words is not larger than bk/2c
and dk/2e, respectively. Usually, a new round of search for
x̂T should be performed. The value of m might need to be
enlarged to find a sufficient number of x̂T ’s.

After recoding, z has (k+1) fields. The first field (Field-0)
has log2(e) bits and is reserved for the leading “1”. The other
fields either have dlog2

(p+m+2)
2 e+1 bits or blog2

(p+m+2)
2 c+

1 bits, in which one sign bit is added at the most significant
bit. Those fields that have no corresponding nonzero zi are
filled with all “1”, which represents multiplication by zero.

The multiple generation module (MGEN) generates dm/2e
“multiples” by implementing a simple logic as described in
[11]. The multi-operand adder (MOPADD) has a compressor
tree structure based on [3:2] carry-save adders when standard
cell based implementations are targeted. For FPGA implemen-
tation, an [N:3] redundant adder structure is proposed in this

SBT0

x

SBT1

Table T0

CPA

pipelining register
sin(θ) cos(θ)

xT

MGEN MGEN

a

b

MOPADD1

... ...

pipelining register

CPA / Ternary Adder

BSFT0

...

z

z[field-0]

z[field-k]

CPA / Ternary Adder

Sin(x)

BSFT1 BSFTk

z[field-1]

+ −

MOPADD2

a
b

Fig. 1. The proposed hardware architecture for table-based trigonometric
function evaluation circuit utilizing (M,p, k)-friendly angles and points.

Higher -bit word

z = 28 100000001000000001_00000001000001001

Lower -bit word

Field-0

1111110100001011011001111111111111110100000001111000

Field-1 Field-kAutomaticaly filled
with all 1

Recoded
z word

Fig. 2. The proposed recoding scheme for variable z.

study to efficiently utilize the carry-propagate adders (CPAs)
and ternary adder structures on FPGAs with dedicated carry-
chains that can provide carry propagation by more than one
order of magnitude faster compared with the use of general
logic resources [14]. Fig. 3 shows an example of a [9:3]
compressor for the proposed redundant adder structure. The
compressor consists of two diagonally deployed linear arrays
(only one is shown in Fig. 3) of CPAs. The structure can be
efficiently mapped into two arrays of CPAs, in which the fast
carry-chain (blue lines) is efficiently utilized. The proposed
redundant adder significantly reduces the critical path delay
of the proposed architecture.

The right-shift barrel shifter (BSFT) has an internal structure
that merges two consecutive levels of 2-to-1 shift operations
into a single stage [15]. Efficiently mapping each stage into
4-to-1 multiplexors can reduce critical path delay without
increasing the shifter area. Sign extension is performed after
shifting.

B. Selecting the Optimal Parameters

From Section III-A, we know that the total size of table T0
and two bipartite tables can be estimated by

ST0 = 2

r+1 ·
h
dm/2e · 6 + p+ dlog2(p+m+ 2)e · k

i

SSBT = 2

b2(n�1�r)/3c+1 · [(p+ 4) + p/4]

where ST0 and SSBT denote the memory cost in bits. Apply-
ing the precomputed parameter values in Table II, we draw
the diagram of Fig. 4 to illustrate the variation trend of the
lookup table size with parameter r. An optimal value for r to
minimize the memory usage can be observed.
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Fig. 3. The proposed parallel linear array structure for a [9:3] compressor.
The output signals SO, CO1 and CO2 are fed to a ternary adder, which
can support 3-input addition (A+B+C=D) with the same amount of resource
overhead and similar speed as a simple 2-input adder. FA: full-adder.

Similarly, one can estimate the area of the multi-operand
adders and shifters by

SADD =

⇥
(2dm/2e � 2) + 2(k � 2)

⇤
· (p+m+ 2) ·NR

SSFT = dm/2e · (p+ 2) · 2 + dlog2(e)e · (p+m+ 2)

+ dlog2(p+m+ 2)e · (p+m+ 2) · k

where SADD is calculated in numbers of FA used, whereas
SSFT is counted in numbers of 2-to-1 multiplexors. NR
denotes the ratio of the area of one 2-to-1 multiplexor to that
of one FA. In this study, we assume that NR = 1.6 for ASIC
and NR = 1 for FPGA implementation. After the optimal r
is selected, another diagram can be drawn to find the optimal
m. Usually, multiple local optimal values can be considered.
For the case of n = 24, they are m = 7, 9, 11. This diagram
is not presented because of limited space.

The critical path delay of the second pipeline stage is
substantially affected by the value of m, whereas that of the
third stage is determined by k. Table II shows that the value
of k gradually increases as m decreases. Therefore, in this
study, we select the pair of m and k that minimize the value
of m+ k (i.e., m = 9, k = 7 for the presented instance).

IV. IMPLEMENTATION RESULTS

The proposed hardware architecture was written in RTL-
level System Verilog. Functional simulations were performed
with Cadence NC-sim 5.4. The verified designs were imple-
mented in two technologies: 1) Virtex-II XC2V1000-FG456-5
FPGA device synthesized and fitted with the ISE 8.1i tool1 and
2) TSMC 65nm CLN65G standard cell library synthesized by
Synopsys Design Compiler C-2010.03-SP1, placed-and-routed
by SoC Encounter 10.1.

Table III first compares the estimated hardware costs of
the proposed design with three different schemes, namely, the
multipartite table (MTM [6]), piecewise table lookup approxi-
mation (Sasao [7]) and order-two interpolation (Lee [8]). The
memory resource is counted in bit, while other supporting
arithmetic/logic units are measured in the numbers of FA.
The proposed design is observed to achieve 79% and 73%

1The old device and compilation tool were selected for a fair comparison
with the reference designs [2], [9]. Optimization goal and effort were set as
“Speed” and “High”, respectively.
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Fig. 4. The estimated lookup table sizes for different values of r when
n = 24, p = 24. For r = 11, the total lookup size is 384 Kbits, which is
4.5 times larger than the lookup size for r = 7 (85.7 Kbits).

TABLE III
ESTIMATED RESOURCE REQUIREMENTS OF DIFFERENT SCHEMES FOR

THE EVALUATION OF sin(x) 24-BIT PRECISIONS.

Resource MTM [6] Sasao [7] Lee [8] Proposed
(table-add.) (approxim.) (interp.)

Logic (FA) 260 672 20,796 2,392
Memory (bit) 419,840 327,680 3,773a 87,885
aThe range of x is [0,⇡/4).

reduction in memory resource compared with [6] and [7] for
24-bit evaluations, respectively. The increase in logic resources
are 8.2⇥ and 1.5⇥. Because of the degree-2 interpolation
algorithm adopted, the scheme of [8] can further compress the
lookup tables used. However, due to the large multipliers used,
the growth in logic resources is significant. More accurate
comparison of the total circuit area are made after the designs
are mapped on a specific technology.

Two design instances with precisions n = 16 and n = 24

were finally implemented. Tables IV and V report the imple-
mentation results. To enable direct comparison architectures
that do not utilize lookup tables, all ROMs were synthesized
into pure combinational logic cells (ASIC) or distributed ROM
structures (FPGA) as suggested by [8]. The MTM designs
were generated in VHDL by using the program provided by
[12] and implemented in the same technologies. A balanced
two-stage pipeline structure is implemented such that each
stage has a similar delay to the proposed design.

Both tables show that the total area of the proposed design is
almost two times larger than that of MTM for 16-bit evalua-
tion. It is revealed that, when using the proposed algorithm
to perform low precision evaluations, reducing the lookup
table size does not satisfactorily compensate for the hardware
cost introduced by the extra arithmetic operations. For 24-
bit evaluation, the advantage of the proposed architecture is
obvious: it achieves more than 63% reduction in the total
circuit area over MTM for both pipelined and non-pipelined
FPGA based implementations. It is also observed that the
CPAs in the proposed architecture introduces a 42% longer
critical latency. However, a simple pipelining scheme enables
both scheme working at a similar frequency at the cost of a few
registers. For ASIC designs, the area reduction is 51%, and the
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TABLE IV
COMPARISON OF FPGA BASED IMPLEMENTATION RESULTS.

Scheme Precision Lookup Table Total Area Critical Path Delay Latency
(bit) (Slice) (Slice) (ns) (ns)

Proposed 16 159 (15%) 1,078 (100%) 11.5 34.5
(3-stage pipelined) 24 1,144 (39%) 2,861 (100%) 16.7 50.1

MTM [6] 16 426 (80%) 532 (100%) 10.8 21.7
(2-stage pipelined) 24 7,735 (98%) 7,910 (100%) 18.3 36.7

Proposed 16 159 988 29.1 29.1
(Non-pipelined) 24 1,130 2,642 38.2 38.2

MTM [6] 16 425 511 18.6 18.6
(Non-pipelined) 24 7,697 7,881 26.8 26.8

Xilinx CORDIC IPcore [13] 16 na 595 91.6 91.6
(Non-pipelined) 24 na 1,248 146.5 146.5

Radix-4 CORDIC [9] (Non-pipelined) 16 na 1,184 37.0 37.0
iATA [2] (Non-pipelined) 24 na 4,963 30.9 30.9

TABLE V
COMPARISON OF STANDARD CELL-BASED IMPLEMENTATION RESULTS.

Scheme Precision Lookup Table Total Area Critical Path Delay Latency
(bit) (Kgate) (Kgate) (ns) (ns)

Proposed 16 993 (12%) 8,093 (100%) 4.6 13.8
(3-stage pipelined) 24 4,223 (29%) 14,256 (100%) 6.9 20.7

MTM [6] 16 2,205 (72%) 3,061 (100%) 2.9 5.8
(2-stage pipelined) 24 28,526 (97%) 29,292 (100%) 8.5 17.1

latency gap also decreases to 17%. Our approach consumes a
42% lesser chip area than the newly reported iATA [2] scheme,
but their critical path delays are close.

CORDIC-based designs are compared with the proposed
scheme in Table IV. Standard parallel CORDIC structures are
implemented with the Xilinx IPcore generator [13]. For both
16- and 24-bit evaluations, the proposed design achieves more
than 70% reduction in the critical path delay. The main con-
tribution comes from the optimized multi-operand redundant
adder structure presented in this paper. Compared with the
radix-4 CORDIC design [9], our proposed architecture is both
superior in critical path delay and total circuit area. Because of
the limited information, however, we can not directly compare
with the schemes presented in [7] and [8].

V. CONCLUSION

This brief has presented a new scheme to compute sine
and cosine functions. The main contribution of our work
includes rectifying prior incorrect definitions, conducting an
analysis on the error bound and developing an optimal hard-
ware architecture that efficiently implements the proposed
algorithm. The 16- and 24-bit design instances are coded
in Verilog HDL and mapped on Xilinx FPGA and 65nm
standard cell based technology. Comparison of our proposed
work with multipartite and CORDIC-based designs shows that
a considerable reduction in chip area and critical path delay
is achieved for 24-bit evaluations.
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