
Computing Machine-Efficient Polynomial
Approximations

NICOLAS BRISEBARRE

Université J. Monnet, St-Étienne and LIP-E.N.S. Lyon

JEAN-MICHEL MULLER

CNRS, LIP-ENS Lyon

and

ARNAUD TISSERAND

INRIA, LIP-ENS Lyon

Polynomial approximations are almost always used when implementing functions on a computing
system. In most cases, the polynomial that best approximates (for a given distance and in a given
interval) a function has coefficients that are not exactly representable with a finite number of bits.
And yet, the polynomial approximations that are actually implemented do have coefficients that are
represented with a finite—and sometimes small—number of bits. This is due to the finiteness of the
floating-point representations (for software implementations), and to the need to have small, hence
fast and/or inexpensive, multipliers (for hardware implementations). We then have to consider
polynomial approximations for which the degree-i coefficient has at most mi fractional bits; in other
words, it is a rational number with denominator 2mi . We provide a general and efficient method
for finding the best polynomial approximation under this constraint. Moreover, our method also
applies if some other constraints (such as requiring some coefficients to be equal to some predefined
constants or minimizing relative error instead of absolute error) are required.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer arithmetic;
G.1.2 [Numerical Analysis]: Approximation; B.2.4 [Arithmetic and Logic Structures]: High-
Speed Arithmetic

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Polynomial approximation, minimax approximation, floating-
point arithmetic, Chebyshev polynomials, polytopes, linear programming

Authors’ addresses: N. Brisebarre, LArAl, Université J. Monnet, 23, rue du Dr P. Michelon, F-42023
Saint-Étienne Cedex, France and LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46
Allée d’Italie, F-69364 Lyon Cedex 07 France; email: Nicolas.Brisebarre@ens-lyon.fr; J.-M.
Muller, LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46 Allée d’Italie, F-69364 Lyon
Cedex 07 France; email: Jean-Michel.Muller@ens-lyon.fr; A. Tisserand, INRIA, LIP/Arénaire
(CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 France;
email: Arnaud.Tisserand@ens-lyon.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0098-3500/06/0600-0236 $5.00

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006, Pages 236–256.

Computing Machine-Efficient Polynomial Approximations • 237

1. INTRODUCTION

The basic floating-point operations that are implemented in hardware on mod-
ern processors are addition/subtraction, multiplication, and sometimes division
and/or fused multiply-add, that is, an expression of the form x y + z, computed
with one final rounding only. Moreover, division is frequently much slower than
addition or multiplication (see Table I), and sometimes, for instance, on the Ita-
nium, it is not hardwired at all. In such cases, it is implemented as a sequence
of fused multiply and add operations, using an iterative algorithm.

Therefore, when trying to implement a given regular enough function f , it
seems reasonable to try to avoid divisions and to use additions, subtractions,
multiplications and possibly fused multiply-adds. Since the only functions of one
variable that one can implement using a finite number of these operations and
comparisons are piecewise polynomials, a natural choice is to focus on piecewise
polynomial approximations to f . Indeed, most recent software-oriented ele-
mentary function algorithms use polynomial approximations [Markstein 2000;
Muller 1997; Story and Tang 1999; Cornea et al. 2002].

Two kinds of polynomial approximations are used: the approximations that
minimize the average error, called least squares approximations, and the ap-
proximations that minimize the worst-case error, called least maximum ap-
proximations, or minimax approximations. In both cases, we want to minimize
a distance ‖p− f ‖, where p is a polynomial of a given degree. For least squares
approximations, that distance is:

‖p − f ‖2,[a,b] =
(∫ b

a
w(x)(f (x) − p(x))2dx

)1/2

,

where w is a continuous weight function that can be used to select parts of
[a, b] where we want the approximation to be more accurate. For minimax
approximations, the distance is:

‖p − f ‖∞,[a,b] = sup
a≤x≤b

|p(x) − f (x)|.

One could also consider distances such as

‖p − f ‖rel,[a,b] = sup
a≤x≤b

1
| f (x)| |p(x) − f (x)|.

The least squares approximations are computed by a projection method us-
ing orthogonal polynomials. Minimax approximations are computed using an
algorithm credited to Remez [Remes 1934; Hart et al. 1968]. See Markstein
[2000] and Muller [1997] for recent presentations of elementary function
algorithms.

In this article, we are concerned with minimax approximations using dis-
tance ‖p − f ‖∞,[a,b]. And yet, our general method in Section 3.2 also applies
to distance ‖p − f ‖rel,[a,b]. Our approximations will be used in finite-precision
arithmetic. Hence, the computed polynomial coefficients are usually rounded:
let m0, m1, . . . , mn be a fixed finite sequence of natural integers, the coefficient
pi of the minimax approximation

p(x) = p0 + p1x + · · · + pnxn

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

238 • N. Brisebarre et al.

Table I. Latencies (in number of cycles) of Double
Precision Floating-Point Addition, Multiplication,

and Division on Some Recent Processors

Processor FP add FP mult. FP div.
Pentium IV 5 7 38
PowerPC 750 3 4 31
UltraSPARC III 4 4 24
Alpha21264 4 4 15
Athlon K6-III 3 3 20

is rounded to, for instance, the nearest multiple of 2−mi . By doing this, we obtain
a slightly different polynomial approximation p̂. But we have no guarantee that
p̂ is the best minimax approximation to f among the polynomials whose degree-
i coefficient is a multiple of 2−mi . The aim of this article is to present a way of
finding this best truncated approximation. We have two goals in mind:

—rather low precision (e.g., around 24 bits), hardware-oriented, for specific-
purpose implementations. In such cases, to minimize multiplier sizes (which
increases speed and saves silicon area), the values of mi, for i ≥ 1, should
be very small. The degrees of the polynomial approximations are low. Typi-
cal recent examples are given in Wei et al. [2001] and Pineiro et al. [2001].
Roughly speaking, what matters here is reducing the cost (in terms of delay
and area) without making the accuracy unacceptable;

—single-precision or double-precision, software-oriented, for implementation
on current general purpose microprocessors. Using table-driven methods,
such as the ones suggested by Tang [1989, 1990, 1991, 1992], the degree of
the polynomial approximations can be made rather low. Roughly speaking,
what matters in this case is to get very high accuracy without making the
cost (in terms of delay and memory) unacceptable.

One could object that the mi ’s are not necessarily known a priori. For instance,
if one wishes a coefficient to be exactly representable in double precision arith-
metic, one needs to know the order of magnitude of that coefficient to know
what value of mi corresponds to that wish. And yet, in practice, good approxi-
mations of the same degree to a given function have coefficients that are very
close (the approach given in Section 3.1 shows this) so that using our approach,
with possibly two different values of mi if the degree-i coefficient of the minimax
approximation is very close to a power of i, suffices.

It is important to notice that our polynomial approximations will be com-
puted once only and will be used very frequently (indeed, several billion times
for an elementary function program in a widely distributed library). Hence, if
it remains reasonably fast, the speed of an algorithm that computes adequate
approximations is not extremely important. However, in the practical cases we
have studied so far, our method will very quickly give a result.

In this article, we provide a general and efficient method for finding the
best truncated approximation(s) (it is not necessarily unique). It consists in
building a polytope � of Rn+1 to which the numerators of the coefficients of this
(these) best truncated approximation(s) belong, such that � contains a number

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 239

as small as possible of points of Zn+1. Once it is achieved, we do an exhaustive
search by computing the norms1∥∥∥ a0

2m0
+ a1

2m1
x + · · · + an

2mn
xn − f

∥∥∥
∞,[a,b]

with (a0, a1, . . . , an) ∈ � ∩ Zn+1.
The method presented here is very flexible since it also applies when we

impose supplementary constraints on the truncated polynomials, and/or when
distance ‖.‖rel,[a,b] is considered. For example, the search can be restricted to
odd or even polynomials or, more generally, to polynomials with some fixed
coefficients. This is frequently useful: one might for instance, wish the com-
puted value of exp(x) to be exactly one if x = 0 (hence, requiring the degree-0
coefficient of the polynomial approximation to be 1).

Of course, one would like to take into account the roundoff error that oc-
curs during polynomial evaluation: getting the polynomial, with constraints
on the size of the coefficients, that minimizes the total (approximation plus
roundoff) error would be extremely useful. Although we are currently work-
ing on that problem, we do not yet have a solution. First, it is very algorithm-
and-architecture dependent (for instance, some architectures have an extended
internal precision). Second, since the largest roundoff error and the largest ap-
proximation error are extremely unlikely to be attained at exactly the same
points, the total error is difficult to predict accurately.

And yet, here are a few observations that lead us to believe that, in many
practical cases, our approach will give us polynomials that will be very close
to these ideal approximations. Please note that these observations are merely
intuitive feelings, and that one can always build cases for which the ideal ap-
proximations differ from the ones we compute.

(1) Good approximations of the same degree to a given function have co-
efficients that are very close in practice. Indeed, the approach given in
Section 3.1 shows this.

(2) When evaluating two polynomials whose coefficients are very close on vari-
ables that belong to the same input interval, the largest roundoff errors will
be very close, too.

(3) In all practical cases, the approximation error oscillates slowly, whereas
the roundoff error varies very quickly so that, if the input interval is rea-
sonably small, an error very close to the maximum error is reached near
any point. This is illustrated in Figures 1 and 2: we have defined p as the
polynomial obtained by rounding to the nearest double precision number
each coefficient of the degree-5 minimax approximation to ex in [0, 1/128].
Figure 1 shows the difference p(x)− ex (approximation error), and Figure 2
shows the difference between the computed value and the exact value of
p(x), assuming Horner’s scheme is used, in double precision arithmetic.

1So far, we have computed these norms using the infnorm function of Maple. Our research group is
working on a C implementation that will use multiple precision interval arithmetic to get certified
upper and lower bounds on the infinite norm of a regular enough function.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

240 • N. Brisebarre et al.

Fig. 1. Approximation error. We have plotted the difference p(x) − ex .

Fig. 2. Roundoff error. We have plotted the difference between the exact and computed values of
p(x). The computations are performed using Horner’s scheme, in double precision, without using
a larger internal format.

These observations tend to indicate that, for all candidate polynomials, the
roundoff errors will be very close, and the total error will be close to the sum of
the approximation and roundoff errors. Hence, the best polynomial when con-
sidering the approximation error only, will be very close to the best polynomial
when considering approximation and roundoff errors.

Of course, these observations are not proofs; they are just result from some
experiments, and we are far from being able to solve the general problem of

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 241

finding the best polynomial, with size constraints on coefficients, when consid-
ering approximation and roundoff errors. Hopefully, these remarks will one day
help to build a more general method.

The outline of the article is the following. We give an account of Chebyshev
polynomials and some of their properties in Section 2. In Section 3, we first
provide a method based on Chebyshev polynomials that partially answers the
problem, and then we give a general and efficient method based on polytopes
that finds a best truncated approximation of a function f over a compact inter-
val [a, b]. Despite the fact that it is less efficient and general than the polytope
method, we present the method based on Chebyshev polynomials because this
approach seems interesting in itself, is simple, and gives results that are easy to
use and, moreover, might be useful in other problems. We end Section 3 with a
remark illustrating the flexibility of our method. We finish with some examples
in Section 4. We complete the article with three appendices. In the first one, we
collect the proofs of the statements given in Section 2. In the second one, we
prove a lemma used in Section 3.2 that implies, in particular, the existence of
a best truncated polynomial approximation. In the last one, we give a worked
example of the methods presented here.

To end this introduction, let us mention that a C implementation of our
method is in process and also that the method applies to some signal process-
ing problems, namely, finding the rational linear combination of cosines with
constraints on the size in bits of the rational coefficients in order to implement
(in software or hardware) digital FIR filters. This will be the purpose of a future
article.

As we only deal with the supremum norm, wherever there is no ambiguity,
we will write ‖ · ‖I instead of ‖ · ‖∞, I , where I is any real set.

2. SOME REMINDERS ON CHEBYSHEV POLYNOMIALS

Definition 1 (Chebyshev Polynomials). The Chebyshev polynomials can be
defined either by the recurrence relation

⎧⎪⎨
⎪⎩

T0(x) = 1,
T1(x) = x,
Tn(x) = 2xTn−1(x) − Tn−2(x);

or by

Tn(x) =
{

cos(n cos−1 x) for |x| ≤ 1,

cosh(n cosh−1 x) for x > 1.

A presentation of Chebyshev polynomials can be found in Borwein and
Erdélyi [1995] and especially in Rivlin [1990]. These polynomials play a cen-
tral role in approximation theory. The following property is easily derived from
Definition 1.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

242 • N. Brisebarre et al.

PROPERTY 1. For n ≥ 0, we have

Tn(x) = n
2

	n/2
∑
k=0

(−1)k (n − k − 1)!
k!(n − 2k)!

(2x)n−2k .

Hence, Tn has degree n and its leading coefficient is 2n−1. It has n real roots,
all strictly between −1 and 1.

We recall that a monic polynomial is a polynomial whose leading coefficient
is 1. The following statement is a well known and remarkable property of
Chebyshev Polynomials.

PROPERTY 2 (MONIC POLYNOMIALS OF SMALLEST NORM). Let a, b ∈ R, a < b.
The monic degree-n polynomial having the smallest ‖ · ‖[a,b] norm is

(b − a)n

22n−1
Tn

(
2x − b − a

b − a

)
.

In the following, we will make use of the polynomials

T ∗
n (x) = Tn(2x − 1).

We have (see Fox and Parker [1972, Chapter 3], e.g.) T ∗
n (x) = T2n(x1/2), hence

all the coefficients of T ∗
n are nonzero integers.

Now, we state two propositions that generalize Property 2 when dealing with
intervals of the form [0, a] and [−a, a].

PROPOSITION 1. Let a ∈ (0, +∞), define

α0 + α1x + α2x2 + · · · + αnxn = T ∗
n

(
x
a

)
.

Let k be an integer, 0 ≤ k ≤ n, the polynomial

1
αk

T ∗
n

(
x
a

)
has the smallest ‖ · ‖[0,a] norm among the polynomials of degree at most n with
a degree-k coefficient equal to 1. That norm is |1/αk|.

Remark 1. Moreover, when k = n = 0 or 1 ≤ k ≤ n, we can show that this
polynomial is the only one having this property. We do not give the proof of this
uniqueness property in this article since we only need the existence result in
the sequel.

PROPOSITION 2. Let a ∈ (0, +∞), p ∈ N, define

β0, p + β1, px + β2, px2 + · · · + βp, px p = Tp

(
x
a

)
.

Let k and n be integers, 0 ≤ k ≤ n.

—If k and n are both even or odd, the polynomial
1

βk,n
Tn

(
x
a

)
ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 243

has the smallest ‖ · ‖[−a,a] norm among the polynomials of degree at most n
with a degree-k coefficient equal to 1. That norm is |1/βk,n|.

—Else, the polynomial
1

βk,n−1
Tn−1

(
x
a

)
has the smallest ‖ · ‖[−a,a] norm among the polynomials of degree at most n
with a degree-k coefficient equal to 1. That norm is |1/βk,n−1|.

3. GETTING THE TRUNCATED POLYNOMIAL THAT IS CLOSEST TO A
FUNCTION ON A COMPACT INTERVAL

Let a, b be two real numbers, let f be a function defined on [a, b] and m0, m1, . . . ,
mn be n+ 1 integers. Define P [m0,m1,...,mn]

n as the set of the polynomials of degree
less than or equal to n whose degree-i coefficient is a multiple of 2−mi for all i
between 0 and n (we will call these polynomials truncated polynomials), that
is to say,

P [m0,m1,...,mn]
n =

{
a0

2m0
+ a1

2m1
x + · · · + an

2mn
xn, a0, . . . , an ∈ Z

}
.

Let p be the minimax approximation to f on [a, b]. Define p̂ as the polynomial
whose degree-i coefficient is obtained by rounding the degree-i coefficient of p
to the nearest multiple of 2−mi (with an arbitrary choice in case of a tie) for
i = 0, . . . , n: p̂ is an element of P [m0,m1,...,mn]

n .
Also define ε and ε̂ as

ε = ‖ f − p‖[a,b] and ε̂ = ‖ f − p̂‖[a,b].

We assume that ε̂ �= 0.
We state our problem as follows. Let K ≥ ε, we are looking for a truncated

polynomial p� ∈ P [m0,m1,...,mn]
n such that

‖ f − p�‖[a,b] = min
q∈P [m0,m1,...,mn]

n

‖ f − q‖[a,b]

and

‖ f − p�‖[a,b] ≤ K . (1)

Lemma 2 in Appendix 2 implies that the number of truncated polynomials
satisfying (1) is finite.

When K = ε̂, this problem has a solution since p̂ satisfies 1. It should be
noted that, in that case, p� is not necessarily equal to p̂.

We can put, for example, K = λε̂ with λ ∈ [
ε/ε̂, 1

]
.

3.1 A Partial Approach Through Chebyshev Polynomials

The term partial refers to the fact that the intervals we can deal with in this
section must be of the form [0, a] or [−a, a], where a > 0. This restriction comes
from the following two problems.

(1) We do not have in the general case [a, b] a result analogous to Propositions
1 and 2 and simple to state.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

244 • N. Brisebarre et al.

(2) From a given polynomial and a given interval, a simple change of variable
allows us to reduce the initial approximation problem to another approxi-
mation problem with an interval of the form [0, a] or [−a, a]. Unfortunately,
this change of variables (that does not keep the size of the coefficients in-
variant) leads to a system of inequalities of the form we faced in Section 3.2.
Then, we have to perform additional operations in order to produce candi-
date polynomials. In doing so, we lose the main interest—the simplicity—of
the approach through Chebyshev polynomials in the cases [0, a] and [−a, a].

We will only deal with intervals [0, a] where a > 0 since the method presented
in the following easily adapts to intervals [−a, a] where a > 0.

In this section, we compute bounds such that, if the coefficients of a polyno-
mial q ∈ P [m0,m1,...,mn]

n are not within these bounds, then

‖p − q‖[0,a] > ε + K .

Knowing these bounds will make an exhaustive searching of p� possible.
To do this, consider a polynomial q whose degree-i coefficient is pi + δi. From
Proposition 1, we have

‖q − p‖[0,a] ≥ |δi|
|αi| ,

where αi is the nonzero degree-i coefficient of T ∗
n (x/a). Now, if q is at a distance

greater than ε + K from p, it cannot be p� since

‖q − f ‖[0,a] ≥ ‖q − p‖[0,a] − ‖p − f ‖[0,a] > K .

Therefore, if there exists i, 0 ≤ i ≤ n, such that

|δi| > (ε + K)|αi|,
then ‖q − p‖[0,a] > ε + K and therefore q �= p�. Hence, the degree-i coefficient
of p� necessarily lies in the interval [pi − (ε + K)|αi|, pi + (ε + K)|αi|]. Thus we
have ⌈

2mi (pi − (ε + K)|αi|)
⌉︸ ︷︷ ︸

ci

≤ 2mi p�
i ≤ ⌊

2mi (pi + (ε + K)|αi|)
⌋︸ ︷︷ ︸

di

, (2)

since 2mi p�
i is an integer. Note that, as 0 ∈ [0, a], Condition (1) implies in

particular

f (0) − K ≤ p�
0 ≤ f (0) + K ,

that is, since 2m0 p�
0 is an integer,

2m0 (f (0) − K)�︸ ︷︷ ︸
c′

0

≤ 2m0 p�
0 ≤ 	2m0 (f (0) + K)
︸ ︷︷ ︸

d ′
0

.

We replace c0 with max(c0, c′
0) and d0 with min(d0, d ′

0).
For i = 0, . . . , n, we have di −ci +1 possible values for the integer 2mi p�

i . This
means that we have

∏n
i=0(di − ci + 1) candidate polynomials. If this amount is

small enough, we search for p� by computing the norms ‖ f − q‖[0,a], q running
among the possible polynomials. Otherwise, we need an additional step to de-
crease the number of candidates. Hence, we now give a method for this purpose.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 245

It allows us to reduce the number of candidate polynomials dramatically and
applies more generally to intervals of the form [a, b] where a and b are any real
numbers.

3.2 A General and Efficient Approach Through Polytopes

From now on, we will deal with intervals of the form [a, b] where a and b are
any real numbers.

We recall the following definitions from Schrijver [2003].

Definitions 1. Let k ∈ N.
A subset � of Rk is called a polyhedron if there exists an m × k matrix A

with real coefficients and a vector b ∈ Rm (for some m ≥ 0) such that � = {x ∈
Rk|Ax ≤ b}.

A subset � of Rk is called a polytope if � is a bounded polyhedron.
A polyhedron (or a polytope) � is called rational if it is determined by a

rational, respectively, system of linear inequalities.

The n + 1 inequalities given by 2 define a rational polytope of Rn+1 which
the numerators of p� (i.e. the 2mi p�

i) belong to. The idea2 is to build a polytope
�, still containing the 2mi p�

i , such that � ∩ Zn+1 is the smallest possible, which
means that the number of candidate polynomials is the smallest possible, in
order to reduce as much as possible the final step of computation of supremum
norms. Once we get this polytope, we need an efficient way of producing these
candidates, that is, an efficient way of scanning the integer points (i.e., to points
with integer coordinates) of the rational polytope we built. Several algorithms
allow us to achieve this. The one given in Ancourt and Irigoin [1991] uses the
Fourier-Motzkin pairwise elimination, the one given in Feautrier [1988] and
Collard et al. [1995] is a parameterized version of the Dual Simplex method
and the one given in Le Verge et al. [1994] is based on the dual representation
of polyhedra used in Polylib [The Polylib Team 2004]. The last two algorithms
allow us to produce in an optimized way3 the loops in our final program of
exhaustive search. Note that these algorithms have, at worst, the complexity
of integer linear programming4. Now, let us give the details of the method.

First we notice that the previous approach handles the unknowns p�
i sepa-

rately which seems unnatural. Hence, the basic aim of the method is to construct
a polytope defined by inequalities that take into account in a more satisfying
way the dependence relations between the unknowns. This polytope should con-
tain fewer points of Zn+1 than the one built from the Chebyshev polynomials’
approach. The examples of Section 4 indicate that this seems to be the case
(and the improvements can be dramatic).

2After the submission of this article, we read that this idea has already been proposed in Habsieger
and Salvy [1997], a paper dealing with number-theoretical issues, but the authors did not have any
efficient method for scanning the integer points of the polytope.
3By optimized, we mean that all points of the polytope are scanned only once.
4In fact, the algorithm given in Feautrier [1988] and Collard et al. [1995] has, in the situation we
are facing, the complexity of rational linear programming.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

246 • N. Brisebarre et al.

Condition (1) means

f (x) − K ≤
n∑

j=0

p�
j x j ≤ f (x) + K (3)

for all x ∈ [a, b].
The idea is to consider inequalities (3) for a certain number (chosen by the

user) of values of x ∈ [a, b]. As we want to build rational polytopes, these values
must be rational numbers. We propose the following choice of values. Let A be
a rational approximation to a greater than or equal to a, let B be a rational
approximation to b less than or equal to b and such that B > A, let d be a
nonzero natural integer chosen by the user. We show in Lemma 2 in Appendix 2
that we must have d ≥ n in order to ensure that we get a polytope (which
implies the finiteness of the number of the best truncated approximation(s)).
We consider the rational values5 xi = A + i

d (B − A), i = 0, . . . , d . Then again,
since the polytope has to be rational, we compute, for i = 0, . . . , d , two rational
numbers li and ui that are rational approximations to, respectively, f (xi) − K
and f (xi)+K such that li ≤ f (xi)−K and ui ≥ f (xi)+K . The rational polytope
� searched is therefore defined by the inequalities

li ≤
n∑

j=0

p�
j x j

i ≤ ui, i = 0, . . . , d . (4)

If � ∩ Zn+1 is small enough (this can be estimated thanks to Polylib), we start
our exhaustive search by computing the norms∥∥∥ a0

2m0
+ a1

2m1
x + . . .

an

2mn
xn − f

∥∥∥
[a,b]

, (5)

with (a0, a1, . . . , an) ∈ � ∩ Zn+1. This set can be scanned efficiently thanks to
one of the algorithms given in Ancourt and Irigoin [1991], Feautrier [1988] and
Collard et al. [1995] or Le Verge et al. [1994] that we have previously quoted.
Or else, we increase the value of the parameter d in order to construct another
rational polytope �′ that contains fewer elements of Zn+1. We must point out
that, assuming that the new parameter is greater than d , does not necessarily
lead to a new polytope with fewer elements of Zn+1 inside (it is easy to show such
counterexamples), but it is reasonable to expect that, generally, a polytope built
with a greater parameter should contain fewer elements of Zn+1 inside since
it is defined from a larger number of inequalities (4) or, in other words, as our
discretization method is done using a larger number of rational points, which
should allow us to restrict the number of possible candidates since there are
more conditions to satisfy. It is indeed the case if we choose any positive integer
multiple of d as new parameter. In this case, the new polytope �′, associated
with the parameter νd , with ν ∈ N∗, is a subset of �: � is built from the set of
rational points {A+ i

d (B− A)}i=0,...,d which is a subset of {A+ j
νd (B− A)} j=0,...,νd

from which �′ is built.

5Choosing equally-spaced rational values seems a natural choice when dealing with regular enough
functions. And yet, in a few cases, we get a better result with very irregularly-spaced points. This
is something we plan to investigate in the near future.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 247

Remark 2. As we said in the introduction, this method is very flexible. We
give some examples to illustrate it.

—If we restrict our search to odd truncated polynomials (in this case, we put
n = 2k + 1 and we must have d ≥ k), it suffices to replace inequalities (4)
with

li ≤
k∑

j=0

p�
j x2 j+1

i ≤ ui, i = 0, . . . , d

to create a polytope � of Rk+1 whose points with integer coordinates we scan.
—If we restrict our search to truncated polynomials some of whose coefficients

have fixed values, (e.g., if we assume that the truncated polynomials sought
have constant term equal to 1) it suffices to replace inequalities (4) with

li ≤ 1 +
n∑

j=1

p�
j x2 j+1

i ≤ ui, i = 0, . . . , d

to create a polytope � of Rn whose points we scan with integer coordinates
(we must have d ≥ n − 1).

—Our method also applies to the search for the best truncated polynomial with
respect to the relative error distance ‖ · ‖rel,[a,b] defined in the introduction.
In this case, we can state the problem as follows. Let K ≥ 0, we search for a
truncated polynomial p� ∈ P [m0,m1,...,mn]

n such that

‖ f − p�‖rel,[a,b] = min
q∈P [m0,m1,...,mn]

n

‖ f − q‖rel,[a,b]

and

‖ f − p�‖rel,[a,b] ≤ K . (6)

It suffices to consider the inequalities

−K | f (x)| − f (x) ≤
n∑

j=0

p�
j x j ≤ K | f (x)| + f (x)

for at least n + 1 distinct rational values of x ∈ [a, b] to make a polytope to
which we apply the method presented.

4. EXAMPLES

We implemented in Maple the method given in Section 3.1, and we started
developing a C library that implements the method described in Section 3.2.

For producing the results presented in this section, we implemented the
approach through polytopes in a C program of our own, based on the polyhedral
library Polylib [The Polylib Team 2004]. This allows us to treat a lot of examples,
but it is too roughly done to tackle examples with approximations of degree 15
to 20, for instance. Our goal is to implement the method presented here in a
C library which would use Polylib and PIP Feautrier [2003] that implements
the parametric integer linear programming solver given in Feautrier [1988]
and Collard et al. [1995] for scanning the integer points of the polytope. The
choice of PIP instead of the algorithm given in Le Verge et al. [1994] is due to

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

248 • N. Brisebarre et al.

Table II. Examples

f [a, b] m ε ε̂ K

1 cos
[
0, π

4

]
[12, 10, 6, 4] 1.135...10−4 6.939...10−4 ε̂/2

2 exp
[
0, 1

2

]
[15, 14, 12, 10] 2.622...10−5 3.963...10−5 < ε̂

3 exp
[
0, log

(
1 + 1

2048

)]
[56, 45, 33, 23] 1.184...10−17 2.362...10−17 < ε̂

4 arctan(1 + x)
[
0, 1

4

]
[24, 21, 18, 17, 16] 2.381...10−8 3.774...10−8 < ε̂

5 exp
[
− log(2)

256 , log(2)
256

]
[25, 17, 9] 8.270...10−10 3.310...10−9 < ε̂

6 exp
[
− log(2)

256 , − log(2)
256

]
[28, 19, 9] 8.270...10−10 3.310...10−9 < ε̂

7 log(3/4+x)
log(2)

[−1/4, 1/4
] [12, 9, 7, 5] 6.371...10−4 7.731...10−4 < ε̂

8 log(
√

2/2+x)
log(2)

[
1−√

2
2 , 2−√

2
2

]
[12, 9, 7, 5] 6.371...10−4 9.347...10−4 < ε̂

Table III. Corresponding Results

Chebyshev Polytope (d) T1 T2 Gain of Accuracy in Bits
1 330 1 (4) 0.62 0.26 ≈ 1.5
2 84357 9 (20) 0.51 2.18 ≈ 0.375
3 9346920 15 (20) 0.99 1.77 ≈ 0.22
4 192346275 1 (20) 0.15 0.55 ≈ 0.08
5 1 0 (4) 0.05 0 0
6 4 1 (4) 0.03 0.10 ≈ 0.41
7 38016 2 (15) 0.13 0.69 ≈ 0.06
8 12 (20) 0.59 5.16 ≈ 0.26

the fact that our polytope may, in some cases, have a large amount of vertices
(due to the need for a large amount of points x j , i.e., constraints, when building
the polytope) which can generate memory problems if we use Le Verge et al.
[1994]. We also need the MPFR multiple-precision library [The Spaces Project
2004] since we face precision problems when forming the polytope, and the
GMP library [Granlund 2002] since the polytope is defined by a matrix and a
vector which may have very large integer coefficients. The GMP library is also
used inside some Polylib computations.

We put some examples in Table II, and we group the corresponding results in
Table III. In the last column of Table II, the notation < ε̂ means that we chose a
value slightly smaller than ε̂, namely ε̂ rounded down to four fractional digits.

In the first column of Table III, one can find the number of candidates given
by Chebyshev’s approach. In the second, we give the number of candidates
given by the approach through polytopes and the corresponding parameter d .
T1 denotes the time in seconds for producing the candidate polynomials with the
polytope method. T2 denotes the time in seconds for computing the norms (5)
which, for the moment (cf. footnote 1), is done with Maple 9 in which the value of
Digits was fixed equal to 20. In the last column, we give the gain of accuracy in
bits that we get if we use the best truncated polynomial instead of polynomial p̂.

All the computations were done on a 2.53GHz Pentium 4 computer run-
ning Debian Linux with 256MB RAM. The compiler used was gcc without
optimization.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 249

Fig. 3. This figure shows how the number of integer points of the polytope drops when K decreases,
in the case of example 2. The term all candidates means the integer points of the polytope. By good
candidate, we mean the points that fulfill the requirement (1).

4.1 Choice of the Examples

These examples correspond to common cases that occur in elementary and
special function approximation [Muller 1997]. Examples 1, 2, and 4 are of
immediate interest. Example 3 is of interest for implementing the exponen-
tial function in double precision arithmetic, using a table-driven method such
as Tang’s method [Tang 1991, 1992]. Examples 5 and 6 also correspond to a
table-driven implementation of the exponential function in single precision.
Examples 7 and 8 aim at producing very cheap approximations to logarithms
in [1/2, 1], for special purpose applications.

Figure 3 shows how the number of integer points of the polytope drops when
K decreases, in the case of example 2.

APPENDIX 1. PROOFS OF PROPOSITIONS 1 AND 2

Proving those propositions first requires the following two results. The first one
is well known.

PROPERTY 3. There are exactly n + 1 values x0, x1, x2, . . . , xn such that

−1 = x0 < x1 < x2 < · · · < xn = 1,

which satisfy

Tn(xi) = (−1)n−i max
x∈[−1,1]

|Tn(x)| ∀i, i = 0, . . . , n.

That is, the maximum absolute value of Tn is attained at the xi’s, and the sign
of Tn alternates at these points.

PROOF. These extreme points are simply the points cos(kπ/n), k =
0, . . . , n.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

250 • N. Brisebarre et al.

LEMMA 1. Let (δi)i=0,...,n be an increasing sequence of nonnegative integers
and

P (x) = a0xδ0 + · · · + anxδn ∈ R[x],

then either P = 0 or P has at most n zeros in (0, +∞).

PROOF. By induction on n. For n = 0, it is straightforward. Now we assume
that the property is true until the rank n. Let

P (x) = a0xδ0 + · · · + anxδn + an+1xδn+1 ∈ R[x]

with 0 ≤ δ0 < · · · < δn+1 and a0a1 . . . an+1 �= 0. Assume that P has at least n + 2
zeros in (0, +∞). Then P1 = P/xδ0 has at least n + 2 zeros in (0, +∞).

Thus, the nonzero polynomial

P ′
1(x) = (δ1 − δ0)a1xδ1−δ0 + · · · + (δn+1 − δ0)an+1xδn+1−δ0

has, from Rolle’s Theorem, at least n+ 1 zeros in (0, +∞) which contradicts the
induction hypothesis.

PROOF OF PROPOSITION 1. From Property 3, there exist 0 = η0 < η1 < · · · <

ηn = 1 such that

α−1
k T ∗

n (ηi) = α−1
k (−1)n−i‖T ∗

n (·/a)‖[0,a] = α−1
k (−1)n−i.

Let q(x) = ∑n
j=0,
j �=k

c j x j ∈ R[x] satisfy ‖xk −q(x)‖[0,a] < |α−1
k |. Then the polynomial

P (x) = α−1
k T ∗

n (x)−(xk −q(x)) has the form
∑n

j=0,
j �=k

dj x j and is not identically zero.
As it changes sign between any two consecutive extrema of T ∗

n , it has at least
n zeros in (0, +∞). Hence, from Lemma 1, it must vanish identically which is
the contradiction desired. �

PROOF OF PROPOSITION 2. We assume that n is even since a straightforward
adaptation of the proof in this case gives the proof of the case where n is odd.

First, we suppose k even. Let

P (x) = anxn + · · · + ak+1xk+1 + xk + ak−1xk−1 + · · · + a0

such that ‖P‖[−a,a] < |1/βk,n|. Then, for all x ∈ [−a, a],

− 1
|βk,n| < Q(x) := P (x) + P (−x)

2
<

1
|βk,n|

that is, since k and n are both even, for all x ∈ [−a, a],

− 1
|βk,n| < Q(x) = anxn + · · · + ak+2xk+2 + xk + ak−2xk−2 + · · · + a0 <

1
|βk,n| .

From Property 3 and the inequality ‖Q‖[−a,a] < |1/βk,n| = ‖Tn(·/a)‖[−a,a], the
polynomial R(x) = Q(x) − Tn(x/a)/βk,n = ∑n/2

j=0,
j �=k/2

c j x2 j changes sign between

two consecutive extrema of Tn(x/a). Then, it has at least n distinct zeros in
[−a, a] and, more precisely, in [−a, 0)∪ (0, a] since 0 is an extrema of Tn(x/a) as
n is even. Hence, the polynomial R(

√
x) = ∑n/2

j=0,
j �=k/2

c j x j has at least n/2 distinct
zeros in (0,

√
a] : it is identically zero from Lemma 1.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 251

We have just proved that

P (x) = 1
βk,n

Tn

(x
a

)
+ P (x) − P (−x)

2
.

We recall that |P (x)| < 1/|βk,n| for all x ∈ [−a, a]. Therefore, we have, by
substituting 1 and −1 to x

− 1
|βk,n| − 1

βk,n
Tn

(
1
a

)
<

P (1) − P (−1)
2

<
1

|βk,n| − 1
βk,n

Tn

(
1
a

)
and

− 1
|βk,n| − 1

βk,n
Tn

(
−1

a

)
<

P (−1) − P (1)
2

<
1

|βk,n| − 1
βk,n

Tn

(
−1

a

)
As n is even, we know that Tn(1/a) = Tn(−1/a) = 1. Hence, we obtain

0 <
P (1) − P (−1)

2
< 0

which is the contradiction desired.
Now, we suppose k odd. Let

P (x) = anxn + · · · + ak+1xk+1 + xk + ak−1xk−1 + · · · + a0

such that ‖P‖[−a,a] < |1/βk,n−1|. Then, for all x ∈ [−a, a],

− 1
|βk,n−1| < Q(x) := P (x) − P (−x)

2
<

1
|βk,n−1|

that is, for all x ∈ [−a, a],

− 1
|βk,n−1| < Q(x) = an−1xn−1+· · ·+ak+2xk+2+xk +ak−2xk−2+· · ·+a1 <

1
|βk,n−1| .

From Property 3 and the inequality ‖Q‖[−a,a] < |1/βk,n−1| = ‖Tn−1(·/a)‖[−a,a],
the polynomial R(x) = Q(x)−Tn−1(x/a)/βk,n−1 = ∑n/2−1

j=0,
j �=(k−1)/2

c j x2 j+1 changes sign

between two consecutive extrema of Tn−1(x/a). Then, it has at least n−1 distinct
zeros in [−a, a] and, in particular, at least n−2 distinct zeros in [−a, 0)∪ (0, a].
Hence, the polynomial R(

√
x)/

√
x = ∑n/2−1

j=0,
j �=(k−1)/2

c j x j has at least n/2 − 1 distinct

zeros in (0,
√

a] : it is identically zero from Lemma 1.
We have just obtained that

P (x) = 1
βk,n−1

Tn−1

(
x
a

)
+ P (x) + P (−x)

2
.

Here again, we recall that |P (x)| < 1/|βk,n−1| for all x ∈ [−a, a]. Thus, it follows,
by substituting 1 and −1 to x

− 1
|βk,n−1| − 1

βk,n−1
Tn

(
1
a

)
<

P (1) + P (−1)
2

<
1

|βk,n−1| − 1
βk,n−1

Tn−1

(
1
a

)
and

− 1
|βk,n−1| − 1

βk,n−1
Tn−1

(
−1

a

)
<

P (−1) + P (1)
2

<
1

|βk,n−1| − 1
βk,n−1

Tn−1

(
−1

a

)

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

252 • N. Brisebarre et al.

As n is even, we have Tn−1(1/a) = −Tn−1(−1/a) = 1. Hence, we obtain

0 <
P (1) + P (−1)

2
< 0

which is the contradiction desired. �

APPENDIX 2

We now prove the following statement.

LEMMA 2. Let d , n ∈ N, let x0, . . . , xd , l0, . . . , ld , u0, . . . , ud ∈ R (resp. Q) such
that xi �= xj if i �= j , let � the set defined by

� =
{

(α0, . . . , αn) ∈ Rn+1 (resp. Qn+1) : li ≤
n∑

j=0

αj x j
i ≤ ui for i = 0, . . . , d

}
.

If d ≥ n, then � is a polytope (resp. rational polytope). If d < n, then either � is
empty or � is unbounded.

PROOF. The set � is obviously a polyhedron (respectively rational polyhe-
dron). So, if we want to prove that � is a polytope (respectively rational poly-
tope), it suffices to show that it is bounded.

First, we assume d ≥ n. Then, � is contained in the set �′ defined by

�′ =
{

(α0, . . . , αn) ∈ Rn+1 : li ≤
n∑

j=0

αj x j
i ≤ ui for i = 0, . . . , n

}
.

Let

ϕ : Rn+1 −→ Rn+1

(α0, . . . , αn) �→
(

n∑
j=0

αj x j
0 , . . . ,

n∑
j=0

αj x j
n

)

The linear application ϕ is an isomorphism for the matrix

⎛
⎜⎜⎜⎜⎝

1 x0 · · · xn
0

1 x1 · · · xn
1

...
...

...
1 xn · · · xn

n

⎞
⎟⎟⎟⎟⎠

is a nonsingular Vandermonde matrix since xi �= xj if i �= j . The linear appli-
cation ϕ−1, defined on a finite dimensional R-vector space, is continuous and
the set In = ∏n

i=0[li, ui] is a compact of Rn+1. Thus, the set �′ which is equal to
ϕ−1(In) is a compact of Rn+1, which implies that � is necessarily bounded.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 253

Now, we assume d < n and � non empty. Then, we notice that � is defined
by the inequalities

l0 −
n∑

j=d+1

αj x j
0 ≤

d∑
j=0

αj x j
0 ≤ u0 −

n∑
j=d+1

αj x j
0 ,

... ≤ ... ≤ ...

ld −
n∑

j=d+1

αj x j
d ≤

d∑
j=0

αj x j
d ≤ ud −

n∑
j=d+1

αj x j
d .

As xi �= xj if i �= j , the matrix

A =

⎛
⎜⎜⎜⎝

1 x0 · · · xd
0

1 x1 · · · xd
1

...
...

...
1 xd · · · xd

d

⎞
⎟⎟⎟⎠

is nonsingular. Hence, in particular, the polyhedron � contains the family of
vectors ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
A−1

⎛
⎜⎜⎜⎜⎝

u0 − ∑n
j=d+1 αj x j

0

u1 − ∑n
j=d+1 αj x j

1
...
ud − ∑n

j=d+1 αj x j
d

⎞
⎟⎟⎟⎟⎠ , (αd+1, . . . , αn) ∈ Zn−d

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

which proves that � can not be bounded.

APPENDIX 3. A WORKED EXAMPLE

Let us give the details of the first example of Table II. We focus on the degree-3
approximation to the cosine function in [0, π/4].

First, we determine (here using the numapprox package of Maple with Digits
equal to 10) the degree-3 minimax polynomial associated to cos on [0, π/4]. We
get

p = 0.9998864206+ (0.00469021603+ (−0.5303088665+0.06304636099x)x)x.

Then, ε = ‖ f − p‖[0,π/4] = 0.0001135879209. This means that such an approx-
imation is not good enough for single-precision implementation of the cosine
function. It can be of interest for some special purpose implementations. We
have

p̂ = 1
16

x3 − 17
32

x2 + 5
1024

x + 1 and ε̂ = ‖ f − p̂‖[0,π/4] = 0.0006939707.

Let us choose K = ε̂/2. Then, the approach that uses Chebyshev polynomials
gives

—3 possible values between 4095/4096 and 4097/4096 for the degree-0 term,
—22 possible values between −3/512 and 15/1024 for the degree-1 term,
—5 possible values between −9/16 and −1/2 for the degree-2 term,
—1 possible value equal to 1/16 for the degree-3 term.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

254 • N. Brisebarre et al.

Hence, the approach that uses Chebyshev polynomials provides 330 candi-
date polynomials. This is a reasonably small number the time necessary for the
exhaustive computation of the norms 5 is small6. There is no need to use the
approach based on polytopes; we use it anyway in the following to show how it
works.

First, we define a subinterval [A, B] of [0, π/4] with rational bounds. Let
A = 0, we choose a rational approximation B of π/4 such that B ≤ π/4 and its
numerator and denominator are small in order to speed up the computations.
The bigger the integers occuring in the data defining the polytope are, the
slower the computations are performed. Hence, let B = 7/9, which is a
convergent of the continued fraction expansion of π/4.

We choose a value of d equal to 4, that is, the polytope is built from five
rational points which are 0, 1

4 · 7
9 , 2

4 · 7
9 , 3

4 · 7
9 , 7

9 . Let a�
j = 2mj p�

j for j = 0, . . . , 3.
Therefore, we want the inequalities hereafter to be satisfied:

cos
(

7i
36

)
− K ≤

3∑
j=0

a�
j

2mj

(
7i
36

) j

≤ cos
(

7i
36

)
+ K for i = 0, . . . , 4. (7)

We still assume that K = ε̂/2. These inequalities define a polytope, but it is
not a rational one. Hence, we compute rational approximations of the lower
and upper bounds in 7: for i = 0, . . . , 4, we compute li and ui ∈ Q such that
li ≤ cos(7i

36) − K , cos(7i
36) + K ≤ ui. Here again, our target is to prevent the

increase of the size of the involved integers. Therefore, we can either compute
convergents of the li and ui or we can impose that, for each i, li and ui have
the same denominator as the

a�
j

2mj (7i
36) j for j = 0, . . . , 3. We choose the second

possibility, hence, for all i = 0, . . . , 4, we put

li =
⌈

Di

(
cos

(
7i
36

)
− K

)⌉
/Di and ui =

⌊
Di

(
cos

(
7i
36

)
+ K

)⌋
/Di

where Di is the least common multiple of the denominators of the
a�

j

2mj (7i
36) j for

j = 0, . . . , 3.
We obtain a rational polytope defined by AX ≤ B with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
−1 0 0 0
729 567 1764 1372

−729 −567 −1764 −1372
729 1134 7056 10976

−729 −1134 −7056 −10976
27 63 588 1372

−27 −63 −588 −1372
729 2268 28224 87808

−729 −2268 −28224 −87808

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎝

a�
0

a�
1

a�
2

a�
3

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4097
−4095
2930749
−2928678
2764059
−2761988
92341
−92266
2128473
−2126402

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6Around 1.5 second on a 2.53GHz Pentium 4 computer running Debian Linux with 256MB RAM.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

Computing Machine-Efficient Polynomial Approximations • 255

Table IV. Number of Points, and Computational Times (in C
and in Maple) for Various Choices of d and K in Example 1

Time [s]
d K T1 T2 # Polynomials
9 7.00 10−4 2.60 1.68 7
9 5.00 10−4 1.59 0.98 4
9 2.50 10−4 0.25 0.26 1
9 6.93 10−4 2.55 1.40 6

18 6.93 10−4 2.84 1.40 6
36 6.93 10−4 3.37 1.40 6
72 6.93 10−4 7.39 1.40 6

p� : (4095, 6, −34, 1)
2.44 10−4 (gain 1.5 bits)

Then, our current C implementation returns only one candidate
(4095, 6, −34, 1). We check that it satisfies condition (1). We therefore directly
obtain

p� = 1
16

x3 − 17
32

x2 + 3
512

x + 4095
4096

and ‖ f − p�‖[0,π/4] = 0.0002441406250.

In this example, the distance between f and p� is approximately 0.35 times
the distance between f and p̂. Using our approach saves around − log2(0.35) ≈
1.5 bits of accuracy.

Table IV gives some figures (number of points of the polytope, delay of com-
putation) depending on the choices of d and K in this example. Here again, T1
denotes the time in seconds for producing the candidate polynomials, and T2
denotes the time in seconds for computing the norms 5.

ACKNOWLEDGMENTS

We would like to thank the referees, who greatly helped to improve the quality of
the manuscript. We would also like to thank Nicolas Boullis and Serge Torres,
who greatly helped computing the examples, and Paul Feautrier and Cédric
Bastoul, whose expertise in polyhedric computations has been helpful.

REFERENCES

ANCOURT, C. AND IRIGOIN, F. 1991. Scanning polyhedra with do loops. In Proceedings of the 3rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’91).
ACM Press, New York, NY, 39–50.

BORWEIN, P. AND ERDÉLYI, T. 1995. Polynomials and Polynomials Inequalities. Graduate Texts in
Mathematics, 161. Springer-Verlag, New York, NY.

COLLARD, J.-F., FEAUTRIER, P., AND RISSET, T. 1995. Construction of do loops from systems of affine
constraints. Parall. Process. Lett. 5, 421–436.

CORNEA, M., HARRISON, J., AND TANG, P. T. P. 2002. Scientific Computing on Itanium-Based Systems.
Intel Press.

FEAUTRIER, P. 1988. Parametric integer programming. RAIRO Rech. Opér. 22, 3, 243–268.
FEAUTRIER, P. 2003. PIP/Piplib, a parametric integer linear programming solver. http://www.
prism.uvsq.fr/~cedb/bastools/piplib.html.

FOX, L. AND PARKER, I. B. 1972. Chebyshev Polynomials in Numerical Analysis. Oxford Mathe-
matical Handbooks. Oxford University Press, London, UK.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

256 • N. Brisebarre et al.

GRANLUND, T. 2002. GMP, the GNU multiple precision arithmetic library, version 4.1.2. http://
www.swox.com/gmp/.

HABSIEGER, L. AND SALVY, B. 1997. On integer Chebyshev polynomials. Math. Computat. 66, 218,
763–770.

HART, J. F., CHENEY, E. W., LAWSON, C. L., MAEHLY, H. J., MESZTENYI, C. K., RICE, J. R., THACHER, H. G.,
AND WITZGALL, C. 1968. Computer Approximations. John Wiley & Sons, New York, NY.

LE VERGE, H., VAN DONGEN, V., AND WILDE, D. K. 1994. Loop nest synthesis using the polyhedral
library. Tech. Rep. INRIA Research Report RR-2288, (May) INRIA.

MARKSTEIN, P. 2000. IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard
Professional Books. Prentice Hall.

MULLER, J.-M. 1997. Elementary Functions, Algorithms and Implementation. Birkhäuser,
Boston, MA.

PINEIRO, J., BRUGUERA, J., AND MULLER, J.-M. 2001. Faithful powering computation using table
look-up and a fused accumulation tree. In Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (Arith-15). Burgess and Ciminiera Eds. IEEE Computer Society Press, Los Alamitos,
CA, 40–58.

REMES, E. 1934. Sur un procédé convergent d’approximations successives pour déterminer les
polynômes d’approximation. C.R. Acad. Sci. Paris 198, 2063–2065.

RIVLIN, T. J. 1990. Chebyshev Polynomials. From Approximation Theory to Algebra 2nd Ed. Pure
and Applied Mathematics. John Wiley & Sons, New York, NY.

SCHRIJVER, A. 2003. Combinatorial optimization. Polyhedra and efficiency. Vol. A. Algorithms and
Combinatorics, 24. Springer-Verlag, Berlin, Germany.

STORY, S. AND TANG, P. T. P. 1999. New algorithms for improved transcendental functions on IA-
64. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic. Koren and Kornerup,
Eds. IEEE Computer Society Press, Los Alamitos, CA, 4–11.

TANG, P. T. P. 1989. Table-driven implementation of the exponential function in IEEE floating-
point arithmetic. ACM Trans. Math. Soft. 15, 2 (June), 144–157.

TANG, P. T. P. 1990. Table-driven implementation of the logarithm function in IEEE floating-point
arithmetic. ACM Trans. Math. Soft. 16, 4 (Dec.), 378–400.

TANG, P. T. P. 1991. Table lookup algorithms for elementary functions and their error analysis.
In Proceedings of the 10th IEEE Symposium on Computer Arithmetic. P. Kornerup and D. W.
Matula, Eds. IEEE Computer Society Press, Los Alamitos, CA, 232–236.

TANG, P. T. P. 1992. Table-driven implementation of the expm1 function in IEEE floating-point
arithmetic. ACM Trans. Math. Soft. 18, 2 (June), 211–222.

THE POLYLIB TEAM. 2004. Polylib, a library of polyhedral functions, version 5.20.0. http://icps.
u-strasbg.fr/polylib/.

THE SPACES PROJECT. 2004. MPFR, the multiple precision floating point reliable library, version
2.0.3. http://www.mpfr.org.

WEI, B., CAO, J., AND CHENG, J. 2001. High-performance architectures for elementary function
generation. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic (Arith-15).
Burgess and Ciminiera Eds. IEEE Computer Society Press, Los Alamitos, CA, 136–146.

Received April 2004; revised May 2005; accepted September 2005

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.

