Correctly rounded multiplication by arbitrary precision constants

Nicolas Brisebarre
Laboratoire LARAL, Universié Jean Monnet (Sairiitienne)
and Laboratoire LIP

Jean-Michel Muller
CNRS, Laboratoire LIP (CNRS/ENS Lyon/INRIA/Univ. Lyon 1),
Projet A€naire, 46 aée d’ltalie, 69364 Lyon Cedex 07,
FRANCE
Nicolas.Brisebarre@ens-lyon.fr, Jean-Michel.Muller@ens-lyon.fr

Abstract for short) is available on some current processors such as
the IBM Power PC or the Intel/HP Itanium. It evaluates an
We introduce an algorithm for multiplying a floating- expressioruz + b with one final rounding error only. This

point numberz by a constantC that is not exactly repre- makes it possible to perform correctly rounded division us-
sentable in floating-point arithmetic. Our algorithm uses a ing Newton-Raphson division [9, 3, 8]. Also, this makes
multiplication and a fused multiply and add instruction. We evaluation of scalar products and polynomials faster and,
give methods for checking whether, for a given valué’of generally, more accurate than with conventional (addition
and a given floating-point format, our algorithm returns a and multiplication) floating-point operations.
correctly rounded result for any. When it does not, our
methods give the valuasfor which it does not. 1 Some statistics

] Let n be the number of mantissa bits of the considered
Introduction FP format (usual values ofare24, 53, 64, 113). For small
values ofn, one can compute(Cpz) ando(Cz) for all
Many numerical algorithms require multiplications by possible values of the mantissa:af The obtained results
constants that are not exactly representable in floating-pointare given in Table 1, fof’ = 7. They show that the “naive”
(FP) arithmetic. Typical constants that are used [1, 4] method that consists in computingC;,z) often returns an
are m, 1/m, In(2), e, By/k! (Euler-McLaurin summa- incorrectly rounded result (in around % of the cases for
tion), cos(km/N) and sin(kw/N) (Fast Fourier Trans- p = 7).
forms). Some numerical integration formulas also naturally
involve multiplications by constants.
For approximating”z, whereC' is an infinite-precision
constant and: is an FP number, the desirable result would . .
be the best possible one, namelyCz), whereo(u) is u : we want to computé'z with correct rounding (asgum-
rounded to the nearest FP number. In practice one usuall))ng rounding to nea_rest_ even),_ whefeis a constant (i.e.,
defines a constauf},, equal to the FP number that is closest C IS known at compile time)C' is n_ot an FP number (ath-
to C, and actually computeS;a (i.e., what is returned is erwise the problem would be straightforward). We assume

o(Cprz)). The obtained result is frequently different from that a ZMA msttrucgo_n |sba_1vallakl):lg.f We ?ss.gtr)r)te that the
o(Cx) (see Section 1 for some statistics). operands are stored In a binary ormat Withit man-

Our goal here is to be able — at least for some constantdiSsas- We also assume that the two following FP numbers

and some FP formats — to retusiC'z) for all input FP are pre-computed:
numberse (provided no overflow or underflow occur), and _
. Ch, O(C)v
at a low cost (i.e., using a very few arithmetic operations Cr = o(C—Ch), (1)
only). To do that, we will usdused multiply and adéh-
structions. The fused multiply and add instruction (FMA whereo(t) stands for rounded to the nearest FP number.

The algorithm

Proportion of given constan€ and precisiom if all floating-point values

n | correctly rounded of z are such thafus — Cx| < 1/2ulp (ug). Itis worth be-
results ing noticed that without the use of a FMA instruction (that

51 0.93750 is, if Algorithm 1 was executed using ordinary FMUL and
6| 0.78125 FADD), except for a few very simple values of the constant
71 0.59375 C —e.g., powers o —, Algorithm 1 would fail to return a

RO correctly rounded result for all values of

16 | 0.86765

17 | 0.73558 Property 1

RO Definex¢, = 2/C and

24| 0.66805

1 =|C — (Ch + Cy)l ®)

Table 1. Proportion of input valuese for which
o(Cpz) = o(Cx) for C = = and various values of
the number of mantissa bits.

o If x < zeyethen|ug — Cx| < 1/2ulp (ug) + 7,
o If & > xcyethen|ug — Cx| < 1/2ulp (u2) + 77/,

where

In the sequel of the paper, we analyze the behavior of
the following algorithm. We aim at being able to know for
which values ofC' andn it will return a correctly rounded
result for anyx. When it does not, we wish to know for
which values oft it does not.

n = % ulp (Cezeuwt) + €1cut,
7 = ulp(Cy) + 2¢.

Proof.
Froml < C < 2andC}, = o(C), we deducéC'—C},| <
27" which gives (sinc& — C}, is not a power oR),

. .y . . .y . } o —2n—1
Algorithm 1 (Multiplication by C with a multiplication ler] < sulp(C—Cp) <2 :
2
and a FMA). From z, compute
Now, we have,
up = o(Cex),
uzs = o(Cha + uy) (2)
2 h 1) lug — Cz| < Jug — (Chz + uy)
The result to be returned is;. +(Crhz +ur) — (Cpx + Cyz))|
. . . +[(Ch + C)x — Cx 4)
When(is the exact reciprocal of an FP number, this algo- < Lulp(us) + [ur — Coz| + e1]2]
rithm coincides with an algorithm for division by a constant - P2 1u1 (T e
given in [2]. Obviously (provided no overflow/underflow < gulp(uz) + 3 ulp(Crz) + ezl
occur) if Algorithm 1 gives a correct result with a given
constantC' and a given input variable, it will work as well and; ulp (Cz) +e1|z| is less thar, ulp (Cyzeur) + €1 |zeut]
with a constan2?C and an input variablg?x, wherep and if |z] < zeyrand lessthan ulpCy)+2¢; if ey < x < 2. O
q are integers. Also, it is a power of2 or if C is exactly
representable (i.e(;; = 0), or if C — C}, is a power of2 If jug — Cx| is less than /2 ulp (u3), thenus is the FP

(so thatu, is exactly(C — Cy)x), it is straightforward to ~ number that is closest t8x. Hence our problem is to know
show thatuy, = o(Cz). Hencewithout loss of generality, if Cz can be at a distance larger than or equaj tdp (us)

we assume in the following that< z < 2 and1 < C < 2, from uy. From (4), this would imply tha€« would be at a
that C' is not exactly representable, and tH@t— C), is not distance less thaf ulp (Cyz) + e1]z| < 272"+ from the
a power of2. midpoint of two consecutive FP numbers (see Figure 1).

In Section 4, we give three methods. The first two ones If x < zthenCzx < 2, then the midpoint of two con-
either certify that Algorithm 1 always returns a correctly secutive FP numbers arouatt is of the formA /2", where
rounded result, or give a “bad case” (i.e., a numbdor Alis an odd integer betweéft+1 and2" ™' —1. If z > ey
whichuy # o(Cx)), or are not able to infer anything. The then the midpoint of two consecutive FP numbers around
third one is able to return all “bad cases”, or certify that Cz is of the formA/2"~. For the sake of clarity of the
there are none. These methods use the following propertyproofs we assume that, is not an FP number (i is an
that bounds the maximum possible distance betwgemd FP number, it suffices to separately check Algorithm 1 with
Cz in Algorithm 1. Of course, Algorithm 1 works for a x = xgy).

FP numbers

Domain where
Cz can be Uz
located

- If Cais here, then(Cz) = us

CanCz behere?

Figure 1. From (4), we know thaCx is within
1/2ulp (uz)+n (or) from the FP numbet», where

n is less thare=27+1, If we can show thaf’x cannot
be at a distance less than or equals#dor 7') from
the midpoint of two consecutive floating-point num-
bers, theru, will be the FP number that is closest to
Cz.

3 Areminder on continued fractions

41.1

p;S and they;s can be deduced from tlhg using the follow-
ing recurrences,

Po = Qao, q = a1,
p1 = aiap+ 1a Pn = Pn-10n + Pn—2,
9 = 1 An An—10n + Gn—2-

The major interest of the continued fractions lies in the fact

thatp, /¢, is the best rational approximation doamong all

rational numbers of denominator less than or equaj.to
We will use the following two results [5]

Theorem 1 Let (p;/q;);>1 be the convergents ef. For
any(p,q) € Z x N*, withq < ¢,+1, we have

|p_CKQ| Z |pn - a(Jn‘-

Theorem 2 Letp, g be nonzero integers, witked(p, q) =
1. If

1
< —_

Y
2¢>

q
thenp/q is a convergent odv.

’ p

4 Three methods for analyzing Algorithm 1
4.1 Method 1: use of Theorem 1
DefineX = 2" 'z and Xcyt = [2" @cw). X and Xyt

are integers betweer?~! 4 1 and2” — 1. We separate the
casest < eyt andx > xeyt.

If x < Zeut

We just recall here the elementary results that we need in _ _ _
the following. For more information on continued fractions, We want to know if there is an integet betweer2” + 1
see [5, 11, 10, 6]. and2"! — 1 such that

Let « be a real number. From, consider the two se- A
quencega;) and(r;) defined by: ‘Cfﬂ —on| <7 (6)
. N wheren is defined in Property 1. (6) is equivalent to
0 =)
20X — Al < 2™ 7
a; — LTzJ , (5) ‘ | n ()
_ B 1 Define (p;/q¢i)i>1 as the convergents @iC. Let k be the
Tit1 = ri—a; smallest integer such thaf,.; > Xcyu and defined =

Ipk — 2Cqi|. Theorem 1 implies that for anyl, X € Z,
If ois irrational, then these sequences are defined for anyWith 0 < X < Xey, [2CX — A] = 4. Therefore

i (i.e.,r; is never equal ta;), and the rational number 1. if § > 27y then|Cz—A/2"| < nis impossibleIn that

i 1
pf:aoJr
% ai +

1

az +
as +

1

. 1
=
a;

is called theith convergento a. If « is rational, then these

sequences finish for sonkg andpy. /g = a exactly. The

case, Algorithm 1 returns a correctly rounded result
foranyz < zey;

2. if § < 2™ thenwe try Algorithm 1 withy = ¢ 27"+,
If the obtained result is nat(yC), thenwe know that
Algorithm 1 fails for at least one valtie Otherwise,
we cannot infer anything.

1t is possible thaty be not between andzcyt. It will anyway be a

counterexample, i.e., anbit number for which Algorithm 1 fails.

41.2 Ifz > xeut candidate for generating a valué for which Algorithm 1

. . . does not work if there exist = mq andA = mp such that
We want to know if there is an integet between2™ + 1

n+1l _
and2 1 such that X< X <20 — 1,

. / o " H1< A<M -1,
——1<
‘ x on T n 8 222(1 _%|<61%+%ulp(0w).
wheren' is defined in Property 1. (8) is equivalent to This would mean
n—1 m m m 1
CX — Al < 2"ty 9) CQn_q1 - zninl € anl + 5 ulp (2Ce),

Define (p}/q;):>1 as the convergents . Let k' be the
smallest integer such thaf, , > 2", and define)’ =
Ip}, — Cqj.|. Theorem 1 implies that for an}, X € Z, n—1

2
with Xy < X < 27, |CX — A| > §'. Therefore [Ca—pl <erg+—

which would imply

ulp(C), (12)

1. if " > 2771y then|Cz—A/2"~1| < n'isimpossible. \herem* = [Xcu/q] is the smallest possible value of.
In that case, Algorithm 1 returns a correctly rounded Hence, if Condition (12) is not satisfied, convergeriy
result for anyz > ey cannot generate a bad case for Algorithm 1.

Now, if Condition (12) is satisfied, we have to check

H ! n—1,./ H i —
2.if o' < 2"y’ then we try Algorithm 1 withy = Algorithm 1 with all valuesX = mgq, with m* < m <

q,,27"T1, If the obtained result is not(yC), then on _ 1
we know that Algorithm 1 fails for at least one value L2 =1)/a].
Otherwise, we cannot infer anything.

422 Ifx < eyt

4.2 Method 2: use of Theorem 2 If
A 1
Again, we usex = 27— 1p and Xqy = pnilxcud, and ‘Cl‘ — 2n‘ < €1Zcut + 5 U|p(Ce$cut)
we separate the cases< z¢y andx > eyt
then
421 Ifz > zeut o0 — é < on €1%cut + % ulp(ngcut).
X X
If
‘C’x T <ex+ % ulp (Cyz) Therefore, since’ < X, if
1 1
then, e1Zcut + = Ulp (Coxoyt) < ————— 13
4 2n72 1<cut 2 p(J4 cut) > 2n+1Xcut ()
‘C — ’ < €+ U|p(C[I) (10)
X X then we can apply Theorem 2:|if'z — A/2"| < e 2cu +
Now. if % ulp (Cyxeyr) then A/ X is a convergent ofC.
In that case, we have to check the convergen&obf
22 tle, 4 22— 1ylp(20,) < 1, (11) denominator less than or equalX@,. A given convergent
p/q (with gcd(p,¢) = 1) is a candidate for generating a
then for anyX < 2" (i.e.,z < 2), value X for which Algorithm 1 does not work if there exist
X = mgqandA = mp such that
n—2 1
€1+ X ulp (Cpz) < Xz 91 < X < Xu

M1 < A<M

|CX

Hence, if (11) is satisfied, then (10) implies (from Theo- N)
-1 — 27| < €1Teut+ 3 ulp (Cezeut)-

rem 2) that4/X is a convergent of. This means that
if (11) is satisfied, to find the possible bad cases for Algo-)
rithm 1 it suffices to examine the convergentstobf de- This would mean
nominator less tha@™. We can quickly eliminate most of
them. A given convergeni/q (with gcdp,q) = 1) is a

mq mp 1
on—1_ on < €1%cut + 5 ulp (Cezeur),

which would imply Now, assume ulpC,) > 272"~1. We have,

2Cq — X X
on | q . p| (14) — u|p(Cg) + Cp—— o1 <u < U|p(Cg) + Cg
< — <€1Icut+ 5 U|p(C£Icut)>)
m 2 .
ie.,
wherem* = [2"~1/q] is the smallest possible value of —220ulp (Cy) + 2710 X
m. Hence, if (14) is not satisfied, convergent; cannot < w22 (15)

generate a bad case for Algorithm 1.

Now, if (14) is satisfied, we have to check Algorithm 1
with all valuesX = mgq, withm* < m < | Xcu/q].

This last result and (4) make it possible to deduce:

< 22n U|p (Cg) + 2n+1CgX

We look for the integers(, 2”1 < X < Xy, such that
there exists an integet, 2"~ < A < 2" — 1, with

Theorem 3 (Conditions onC' and n) Assumd < C < 2. Ch X +up — 24+1 ’ < 2ulp(Cy)
Letzey = 2/C, and Xeye = |27 tacu]. 2n—1 2n
olf X = 277lp > X, and 227tle + ie.,
22n=Lulp (2C) < 1 then Algorithm 1 will always re-
turn a correctly rounded result, except possiblyifis X Uy 2A+1

a multiple of the denominator of a convergenfy of 2 ulp (Cy) + 2ulp (Cy) T on+l ulp (Cy)
C for which|Cq — p| < e1q + Tt UIP (C);
Sinceu; /(2ulp (Cy)) is half an integer ang =~ X and
o if X =271z < Xcyandeyzeu+ 1/2Ulp (Coxeur) < 2A+1/ _ 2n ulp(Co)
1/(271Xqy) then Algorithm 1 will always re- i ulp(c,) 2'€ Inegers, we have
turn a correctly rounded result, except possibly
if X is a multiple of the denominator of a CrhX n Uuq B 2A+1
convergentp/q of 2C for which |2Cq—p| < 27ulp(Cy) 2ulp(Cp) 27*lulp(Cy)

W (Glxcut + 3 Ulp (Cexcut))

=0,+1/2.

Then, combining these three equations with inequalities

4.3 Method 3: refinement of Method 2 (15), we get the following three pairs of inequalities
When Method 2 fails to return an answer, we can use the 0 <2X(Ch+ Ce) = (2A+1) +2"ulp(Ce)
following method. < 2"l ulp (Cy),

We havelC' — Cj,| < 27, hence ulgCy) < 2727,

0§2X(Ch—|—og)—(2A+1)

431 Ifz < zeu < 2" ulp (Cy)
> £),

if ulp (C¢) < 27272 then we have

0<2X(Ch+Co) — (2A+1) + 2" ulp (Cy)

1 —2n—-1
|uz — Cz| < S ulp(uz) +2 : < 27 ulp (Cy).

For any integerd, the inequality Fory € R, let {y} be the fractional part of: {y} =

‘ 24 +1 1 y — |y]. These three inequalities can be rewritten as
Cr — ’
2n — 22n+1
{2X(C 4 Cp) +2™ulp (Cp)} < 2" ulp(Cy),
implies
1 1 {2X(Cn + Co)} < 2" ulp(Co),
20X —2A

— < - .
Isgm<ax:
{2X(Cp + Cp) + 2" ulp (Cp)} < 2" ulp (Cy).
(2A + 1)/X is a convergent o2C from Theorem 2. It

suffices then to check (as in Method 2) the convergents ofWe use an efficient algorithm due to V. lesfre [7] to deter-
2C of denominator less or equal £t mine the integer solution of each inequality.

4.3.2 |f:1; > .’I;cut

if ulp (Cy) < 2727~ then we have
1
lug — Cx| < 5 ulp (ug) + 272"

Therefore, for any integed, the inequality

2A+1 1
‘CI o1 | = 920
is equivalent to
1
|CX —2A-1| < TES < %

(2A+1)/X is necessarily a convergent©ffrom Theorem

Hence,

7.268364390 x 1017,
6.899839541 x 10717,

27L,,7
2n— 1"7/

Computing the convergents 2’ andC we find
pr 6134899525417045

g 1952799169684491

andd = 9.495905771 x 10~!7 > 27y (which means that
Algorithm 1 works forz < z¢y), and

@ _ 12055686754159438
q,, T674888557167847

2. It suffices then to check, as indicated in Method 2, the @ndd’ = 6.943873667 x 10~'7 > 2"~ 1y/(which means

convergents of’ of denominator less or equal 2§ — 1.
Now, assume ulpC,) = 272", We look for the integers

that Algorithm 1 works for: > x¢y). We therefore deduce:

X, Xeyr+1 < X < 2" 1, such that there exists an integer rpgqrem 4 (Correctly rounded multiplication by)

A, 2n1 < A <27 — 1, with

X 2441 1

Ch 271,—1 tu

on1 | < 5om
ie.,
2" X + ug 22" — 2T (24 4+ 1)| < 1.
Sinceu;2?", 2"*1C), X and2"t1 (24 + 1) € Z, we have
2" CL X 4 up 22" —2"(2A 4+ 1) = 0.

Then, combining this equation with inequalities (15), we

get the inequalities

1

OSX(Ch+Cg)—(2A+1)+2n+1

1
273
that is to say
1
o0
Here again, we use Lefre’s algorithm [7] to determine
the integersX solution of this inequality.

1
{X(Ch +Cp) + W} <

5 Examples

5.1 Example 1: multiplication by = in double pre-
cision

Consider the cas€ = 7/2 (which corresponds to mul-
tiplication by any number of the for2*7r), andn = 53

(double precision), and assume we use Method 1. We find:

Ch = 884279719003555/562949953421312,
Ce = 6.123233996--- x 10717,

€1 = 1.497384905--- x 10733,

Tout = 1.2732395447351626862 - - - ,

ulp (Cezcur) = 2710,

ulp (Ce) = 27106

Algorithm 1 always returns a correctly rounded result in
double precision withC' = 277, wherej is any integer,
provided no under/overflow occur.

Hence, in that case, multiplying bywith correct rounding
only require2 consecutive FMASs.

5.2 Example 2: multiplication by In(2) in double
precision

Consider the cas€' = 21n(2) (which corresponds to

multiplication by any number of the for2*/ In(2)), and
n = 53, and assume we use Method 2. We find:

C _ 6243314768165359

h - 4503599627370496

Cy = 4.638093628--- x 10~17,
Zeut = 1.442695-- -,

€1 = 1.141541688--- x 10733,
€1Zcut

+2ulp(Comeur) = 7.8099--- x 10733,
1/(2"t Xeyt) = 8.5437--- x 10733,

Sincee; zeut+1/2Ulp (Cozen) < 1/(27T Xew), to find the
possible bad cases for Algorithm 1 that are less thap it
suffices to check the convergents26f of denominator less
than or equal toX. These convergents are:

2, 3, 11/4, 25/9, 36/13, 61/22, 890/321, 2731/985,
25469/9186, 1097898/395983, 1123367/405169,
2221265/801152,16672222/6013233, 18893487/6814385,
35565709/12827618, 125590614/45297239,
161156323/58124857, 609059583/219671810,
1379275489/497468477, 1988335072/717140287,
5355945633/1931749051, 7344280705/2648889338,
27388787748/9878417065, 34733068453/12527306403,
62121856201/22405723468, 96854924654/34933029871,
449541554817/162137842952,
2794104253556/1007760087583,
3243645808373/1169897930535,
6037750061929/2177658018118,
39470146179947/14235846039243,
124448188601770/44885196135847,
163918334781717/59121042175090,
288366523383487/104006238310937,
6219615325834944/2243252046704767.

None of them satisfies condition (14). Therefore there arecase, we cannot infer anything in the case xz¢,. Hence,

no bad cases less thag,.. Processing the cagse> xqy is
similar and gives the same result, hence:

Theorem 5 (Correctly rounded multiplication by In(2))
Algorithm 1 always returns a correctly rounded result in
double precision witlC' = 27 In(2), wherej is any integer,
provided no under/overflow occur.

5.3 Example 3: multiplication by 1/7 in double
precision

Consider the cas€é = 4/7 andn = 53, and assume we
use Method 1. We find:

C _ 5734161139222659

h - 4503599627370496

Cy = —7.871470670--- x 10~17,

€1 = 4.288574513.-- x 10733,

Zeut = 1.570796---,

Coxcut = —1.236447722--- x 10716,

ulp(Cezeu) = 27105

2"y = 1.716990939--- x 10716,
/ _ 15486085235905811

Pk/ 4k = 6081371451248382 °

5 = 7.669955467 - x 10~17.

Consider the case < x¢y Sinced < 2™, there
can be bad cases for Algorithm 1. We try Algorithm 1
with X equal to the denominator opy/qx, that is,
6081371451248382, and we find that it does not return
o(eX) for that value. Hencethere is at least one value
of « for which Algorithm 1 does not work.

Method 3 certifies thal{ = 6081371451248382, i.e.,
6081371451248382 x 2+* are theonly FP values for which
Algorithm 1 fails.

5.4 Example 4: multiplication by v/2 in single pre-
cision

Consider the cas€ = /2, andn = 24 (which corre-

in the case&”’ = /2 andn = 24, Method 1 does not allow
us to know if the multiplication algorithm works for any
input FP number. In that case, Method 2 also fails. And
yet, Method 3 or exhaustive testing (which is possible since
n = 24 is reasonably small) show that Algorithm 1 always
works.

6 Implementation and results

As the reader will have guessed from the previous ex-
amples, using our Methods by paper and pencil calculation
is fastidious and error-prone. We have written Maple pro-
grams that implement Methods 1 and 2, and a GP/PARI
program that implements Method 3. They allow any user
to quickly check, for a given constaft and a given num-
bern of mantissa bits, if Algorithm 1 works for any, and
Method 3 gives all values af for which it does not work (if
there are such values). These programs can be downloaded
from the url

http://perso.ens-lyon.fr/jean-michel.
muller/MultConstant.html

These programs, along with some examples, are given in
the appendix. Table 2 presents some obtained results. They
show that implementing Method 1, Method&d Method 3
is necessary: Methods 1 and 2 do not return a result (either a
bad case, or the fact that Algorithm 1 always works) for the
same values of’ andn. For instance, in the cage = /2
andn = 53, we know thanks to Method 1 that the multipli-
cation algorithm always works, whereas Method 2 fails to
give an answer. On the contrary, in the cése= 1/1n(2)
andn = 24, Method 1 does not give an answer, whereas
Method 2 makes it possible to show that the algorithm al-
ways works. Method 3 always returns an answer, but is
more complicated to implement: this is not a problem for
getting in advance a result such as Theorem 4, for a general
constaniC. And yet, this might make methddifficult to

sponds to single precision), and assume we use Method limplement in a compiler, to decide at compile-time if we

We find:
Ch = 11863283/8388608,
Cy = 2.420323497--- x 1078,
€1 = 7.628067479--- x 1016,
Xeut = 11863283,
ulp (Cpmeut) = 2748,
2my = 4.790110735--- x 1078,
i/ QK = 22619537/7997214,
5 = 2.210478490--- x 1078,
on—ly/ = 2.769893477--- x 1078,
Pt Qe = 22619537/15994428,
5 = 2.210478490--- x 1078,

Since2™n > d and X = ¢, = 7997214 is not a bad
case, we cannot infer anything in the case: xqy. Also,
since2" 1y’ > § andX = qu = 15994428 is not a bad

can use our algorithm.

7 Conclusion

The three methods we have proposed allow one to check
whether correctly rounded multiplication by an “infinite
precision” constant” is feasible at a low cost (one mul-
tiplication and one FMA). For instance, in double preci-
sion arithmetic, we can multiply by or In(2) with correct
rounding. Interestingly enough, although it is always pos-
sible to buildad hocvalues ofC for which Algorithm 1
fails, for “general” values of”, our experiments show that
Algorithm 1 works for most values of.

2http://pari.math.u-bordeaux.fr/

C \ n H methodl method2 \ method3 ‘
Does not Does not AW (c)
T 8 work for work for unlessX =
226 226 226
T 24 unable unable AW
s 53 AW unable AW
T 64 unable AW AW (c)
T 113 AW AW AW (c)
1/m | 24 unable unable AW
Does not AW
1/7 | 53 work for unable unlessX =
6081371451248382 6081371451248382
1/m | 64 AW AW AW (c)
1/m | 113 unable unable AW
In2 24 AW AW AW (c)
In2 53 AW unable AW (c)
In2 64 AW unable AW (c)
In2 | 113 AW AW AW (c)
o5 | 24 unable AW AW (c)
= | 53 AW AW AW (c)
= | 64 unable unable AW
=4 | 113 unable unable AW
In10 | 24 unable AW AW (c)
In10 | 53 unable unable AW
In10 | 64 unable AW AW (c)
In10 | 113 AW AW AW (c)
w5 | 24 unable unable AW
= | b3 unable AW AW (c)
w5 | 64 unable AW AW (c)
s | 113 unable unable AW
cosg | 24 unable unable AW
cosg | 53 AW AW AW (c)
cosg | 64 AW unable AW
cosg | 113 unable AW AW (c)

Table 2. Some results obtained using methdd®
and 3. The results given for constant hold for all
value2+7C. “AW” means “always works” and “un-
able” means “the method is unable to conclude”. For

method 3, “(c)” means that we have needed to check

the convergents.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

M. Abramowitz and I. A. StegunHandbook of mathemat-
ical functions with formulas, graphs and mathematical ta-
bles Applied Math. Series 55. National Bureau of Stan-
dards, Washington, D.C., 1964.

N. Brisebarre, J.-M. Muller, and S. Raina. Accelerating
correctly rounded floating-point division when the divisor
is known in advance.|EEE Transactions on Computers
53(8):1069-1072, Aug. 2004.

M. A. Cornea-Hasegan, R. A. Golliver, and P. Mark-
stein. Correctness proofs outline for newton-raphson based
floating-point divide and square root algorithms. In Koren
and Kornerup, editor®roceedings of the 14th IEEE Sympo-
sium on Computer Arithmetic (Adelaide, Australippges
96-105, Los Alamitos, CA, Apr. 1999. IEEE Computer So-
ciety Press.

B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. T.
Vetterling. Numerical recipes in C Cambridge University
Press, 2 edition, 1992.

G. H. Hardy and E. M. WrightAn introduction to the theory
of numbers Oxford University Press, 1979.

A. Y. Khinchin. Continued Fractions Dover, New York,
1997.

V. Lefevre. Developments in Reliable Computinchapter
An Algorithm That Computes a Lower Bound on the Dis-
tance Between a Segment afit] pages 203-212. Kluwer,
Dordrecht, Netherlands, 1999.

P. Markstein.IA-64 and Elementary Functions : Speed and
Precision Hewlett-Packard Professional Books. Prentice
Hall, 2000. ISBN: 0130183482.

P. W. Markstein. Computation of elementary functions on
the IBM risc system/6000 processolBM Journal of Re-
search and Developmerg4(1):111-119, Jan. 1990.

O. Perron. Die Lehre von den Kettenbruchen, 3. verb. und
erweiterte Aufl.Teubner, Stuttgart, 1954-57.

H. M. Stark.An Introduction to Number TheorMIT Press,
Cambridge, MA, 1981.

