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Abstract: This article presents dedicated hardware arithmetic op-

erators for function evaluation. The proposed solution uses polyno-

mial approximations with sparse coefficients which leads to efficient

hardware implementations. Up to 2× faster and 8× smaller oper-

ators are reported compared to standard implementations.

Introduction: Polynomial approximations are widely used in digital systems for func-

tion evaluation (e.g. 1/x,
√

x, sin, cos, exp, log). In some digital signal processing

applications, such as frequency demodulation, low-degree polynomials are often used

for evaluating reciprocals. In hardware implementation of polynomial approxima-

tions, the size of the multipliers is a major concern. Several solutions have been in-

vestigated to limit their size: argument reduction and series expansions in [1], small

table and a modified multiplication in [2], or the multipartite tables method [3, 4].

In this work we focus on polynomial approximations with sparse coefficients (i.e.

the multiplier operand can be written so that it contains predefined strings of bits

stuck at 0). Sparse coefficients allow us to replace the complete reduction tree of

the multipliers by smaller ones. This letter is an improved and extended version of

the paper presented in [5] and uses a new recursive coefficient filtering.

Background: When evaluating a function f on a real interval [a, b], one usually uses

polynomial approximations, such as minimax approximations which minimize the

distance

||p− f ||∞,[a,b] = sup
a≤x≤b

|p(x)− f(x)|,

where p ∈ Rd[X], the set of polynomials with real coefficients and degree at most

d. Minimax approximations, that can be computed thanks to an algorithm due
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to Remez have a major drawback: in most cases, their coefficients are not exactly

representable using a finite number of bits. In [6], the authors propose an efficient

method for computing a polynomial which minimizes the distance ||p − f ||∞,[a,b]

among the polynomials p ∈ Rd[X] that fulfill some given constraints on the format

of the coefficients. The result polynomials q are of the form:

q(x) =
q0

2m0
+

q1

2m1
x +

q2

2m2
x2 + . . . +

qd

2md
xd.

The degree d and the integer sequence m0, . . . ,md are input parameters of the

method. The coefficients are such that qi ∈ Z. The method presented in [6] provides

result polynomials q such that ||q− f ||∞,[a,b] is minimal among the polynomials that

fulfill the constraints. Those polynomials can be represented as the integer points

of a polytope (cf. [6]) and efficient scanning of all the polytope points is performed

using linear programming tools.

Here, we look for polynomials with sparse coefficients, i.e. there are several bits

predefined to 0 as illustrated in Figure 1. Each coefficient qi/2
mi is decomposed into

k chunks ci,j with j ∈ {1, . . . , k}. The chunks are small signed sj-bit integers. The

number of useful bits in coefficients is S =
∑k

j=1 sj. The weight of the chunk ci,j

is the value 2wj as illustrated on Figure 1. Notice that the size and the weight of

the chunks are the same for all the coefficients. The value of a coefficient numerator

is then qi =
∑k

j=1 ci,j × 2wj . For a given number of chunks k, there are several

possible sparse decompositions (the values sj and wj) with non-overlapping chunks.

Polynomials with sparse coefficients are interesting for circuit implementation as

soon as the number of nonzero bits is much smaller than the total format width.

This corresponds to:

d∑
i=0

k∑
j=1

sj = (d + 1)× S <<

d∑
i=0

mi.

Finding Sparse-Coefficient Polynomials: In [5], we proposed two methods to find

such sparse-coefficient polynomials. The first method is a very simple filter applied
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to results from [6]. For each candidate polynomial, the filter verifies that all its co-

efficients can be represented using the target sparse format. This solution is limited

to degree-2 polynomials in practice (huge memory requirements and computation

times).

The second proposed solution uses a new polytope formulation. Instead of having

a d + 1-dimensional polytope, each coefficient introduces k chunks, then the dimen-

sion of the polytope is k × (d + 1). Using this solution, up to degree-3 polynomials

can be reached.

Our new solution is based on a recursive coefficient filtering strategy. As in the

first solution proposed in [5], we build a d + 1-dimensional polytope but we do not

scan all its integer points. For each possible sparse decomposition (i.e. the values

sj and wj), we scan only the integer points that fit this decomposition. This last

scanning is recursively performed: if coefficient qi can be decomposed into the sparse

format then the next dimension corresponding to qi+1 is checked. If not, we scan

another decomposition. This new solution leads to efficient programs up to degree-5

polynomials and 6 chunks.

FPGA Implementation Results: Implementations have been done on Xilinx XC3S400-

5 FPGAs using ISE7.1i tools. The reported area (number of slices) and delay (ns)

are post-P&R values with standard effort.

Approximations to the cosine function on [0, π/4] with 24-bit format for input

and output, with a degree-4 polynomial have been implemented. The number of

chunks is 2 ≤ k ≤ 6 and number of useful bits in the coefficients is 7 ≤ S ≤ 12.

The obtained operators are compared to the reference implementation with 24-bit

full-width standard multiplication. Figure 2 summarizes the results while Table 1

presents the decompositions for which we get an absolute accuracy larger than 18.5

bits. The column named “acc.” is the accuracy expressed in number of correct bits.

The last line of this table presents the result for the reference solution.
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The results show that significant area and speed improvements are possible using

our method. For instance, a 19-bit accuracy for the cosine function on [0, π/4]

can be reached using 6 chunks and only 12 useful bits (S) compared to the 24-bit

format. The corresponding decomposition is defined by s6...1 = (3, 2, 2, 2, 1, 2) and

w6...1 = (4, 9, 12, 15, 18, 22). It corresponds to an operator that requires 39 slices and

a delay of 7.3 ns while the standard solution (last line of Table 1) requires 332 slices

and 16.2 ns. Hence, our method provides an 8× area reduction and a 2× speed

improvement. Notice that due to the huge impact of multipliers on the circuit area,

a 2× reduction on the number of useful bits leads to an 8× area reduction.

Conclusion: This letter presents a new solution for the design of hardware operators

dedicated to function evaluation. It uses polynomial approximations with sparse

coefficients. The proposed solution improves the results from [5] using an efficient

recursive filtering of the polynomial coefficients that are viewed as points of rational

polytopes. The results obtained using this solution lead to up to 2× faster and 8×

smaller results have been reported compared to standard implementations.
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Figure captions:

Fig. 1: 2 and 3-Chunk Decompositions

Fig. 2: FPGA Implementation results for cos on [0, π/4]

Table captions:

Tab. 1: Results for cos on [0, π/4]
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S k acc. sj wj area delay

9 6 18.5 1,2,1,2,1,2 8,10,13,15,18,22 43 7.8
10 5 18.5 1,2,1,4,2 8,10,13,15,22 66 11.1
10 6 18.7 1,3,2,1,1,2 6,8,13,16,18,22 41 8.6
11 3 18.5 8,1,2 8,18,22 43 7.7
11 4 18.7 5,3,1,2 6,13,18,22 41 8.1
11 5 18.7 1,5,2,1,2 4,9,15,18,22 39 7.8
11 6 18.9 2,3,2,1,1,2 3,8,13,16,18,22 38 7.7
12 3 18.5 1,9,2 8,10,22 123 14.9
12 4 18.8 2,7,1,2, 4,9,18,22 39 8.2
12 5 18.9 2,3,2,3,2 3,8,13,16,22 48 9.4
12 6 19.0 3,2,2,2,1,2 4,9,12,15,18,22 39 7.3
24 - 19.0 24 0 332 16.2

Table 1
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