
An Efficient Method for Evaluating Polynomial and Rational Function

Approximations

Nicolas Brisebarre1, Sylvain Chevillard1, Miloš D. Ercegovac2, Jean-Michel Muller1 and Serge Torres1

1 LIP - Arénaire (CNRS - ENS Lyon - INRIA - UCBL), École Normale Supérieure de Lyon,

46, allée d’Italie, F-69364 Lyon Cedex 07, France, firstname.lastname@ens-lyon.fr
2 Computer Science Department, 4732 Boelter Hall, University of California at Los Angeles,

Los Angeles, CA 90095, USA, milos@cs.ucla.edu

Abstract

In this paper we extend the domain of applicability of

the E-method [7, 8], as a hardware-oriented method for

evaluating elementary functions using polynomial and ra-

tional function approximations. The polynomials and ra-

tional functions are computed by solving a system of linear

equations using digit-serial iterations on simple and highly

regular hardware. For convergence, these systems must be

diagonally dominant. The E-method offers an efficient way

for the fixed-point evaluation of polynomials and rational

functions if their coefficients conform to the diagonal dom-

inance condition. Until now, there was no systematic ap-

proach to obtain good approximations to f over an inter-

val [a, b] by rational functions satisfying the constraints re-

quired by the E-method. In this paper, we present such an

approach which is based on linear programming and lattice

basis reduction. We also discuss a design and performance

characteristics of a corresponding implementation.

1. Introduction

Rational approximations are rather seldom used for ap-

proximating functions in the common math libraries, be-

cause division is much slower than multiplication. There are

no hardware-oriented methods for rational functions, with

the notable exceptions of the E-method [7, 8] or approaches

which use conventional arithmetic operations and table-

lookups [13]. The E-method, although intended for hard-

ware implementation, can be viewed as a general approach

for software implementations. However, the method, as

reviewed shortly, is not directly applicable to any rational

function.

The evaluation method (E-method), introduced in [7, 8],

maps a rational function (ratio of two polynomials) or a

polynomial to a system of linear equations which is then

solved using digit-by-digit approach on a simple and highly

regular hardware implementation. The method requires that

the resulting linear system is diagonally dominant which

poses a problem in using arbitrary rational functions. The

goal of the present work is to remove this limitation and

make the E-method an attractive general approach for func-

tion evaluation.

Let

Rµ,ν(x) =
Pµ(x)

Qν(x)
=

pµxµ + pµ−1x
µ−1 + · · ·+ p0

qνxν + qν−1xν−1 + · · ·+ q1x + 1

where the pis and qis are real numbers, and define n =
max{µ, ν}, pj = 0 for µ + 1 ≤ j ≤ n, and qj = 0 for

ν + 1 ≤ j ≤ n. According to the E-method Rµ,ν(x) is
mapped to a linear system L : A× y = b:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 −x 0 · · · 0
q1 1 −x 0 · · · 0
q2 0 1 −x · · · 0

. . .
. . .

. . .
.
.
.

. . .
. . .

. . . 0

.

.

.
. . .

. . . 0
1 −x

qn · · · 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

y0

y1

y2

.

.

.

.

.

.

.

.

.

yn−1

yn

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p0

p1

p2

.

.

.

.

.

.

.

.

.

pn−1

pn

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

so that y0 = Rµ,ν(x).
In the radix-2 case this linear system is solved digit-by-

digit, computing all solution components in parallel, by us-

ing the following residual recurrence where A is the matrix

of the system L and w’s are residuals:

w(j) = 2×
[
w(j−1) −Ad(j−1)

]

for j = 1, . . . ,m, where m is the precision of the result.

The individual components yi’s of the solution y are com-

puted using the following digit-recurrences:

w
(j)
i = 2×

[
w

(j−1)
i − qid

(j−1)
0 − d

(j−1)
i + d

(j−1)
i+1 x

]
, (1)

w
(j)
0 = 2×

[
w

(j−1)
0 − d

(j−1)
0 + d

(j−1)
1 x

]

and

w(j)
n = 2×

[
w(j−1)

n − d(j−1)
n − qnd

(j−1)
0

]

with w(0) = [p0, p1, . . . , pn]t and the values d
(j)
i ∈

{−1, 0, 1}. Let D
(j)
i = d

(0)
i .d

(1)
i d

(2)
i . . . d

(j)
i represent in

radix-2 signed-digit system the leftmost j digits of the so-

lution component yi. If the residuals |w
(j)
i | are bounded,

then D
(j)
i → yi as j → +∞. Digits d

(j)
i are selected so

that the residuals remain bounded. The digit selection can

be performed by rounding of the residuals [8, 9]:

d
(j)
i = S(w

(j)
i)

=

sign w
(j)
i ×

⌊∣∣∣w(j)
i

∣∣∣ + 1/2
⌋

, if

∣∣∣w(j)
i

∣∣∣ ≤ 1,

sign w
(j)
i ×

⌊∣∣∣w(j)
i

∣∣∣
⌋

, otherwise.

Moreover, this selection can be performed using a low-

precision estimate ŵ
(j)
i of w

(j)
i , obtained by truncating or

rounding redundant (i.e., carry-save or borrow-save) w
(j)
i .

Define the following bounds :

∀i, |pi| ≤ ξ,

∀i, |x|+ |qi| ≤ α,

|w
(j)
i − ŵ

(j)
i | ≤

∆
2 .

(2)

where ∆ is the size of the overlap between the selection

intervals where the choice of the digit is made.

The E-method requires that the above defined bounds

ξ, α, and ∆ satisfy

ξ = 1
2 (1 + ∆),

0 < ∆ < 1,

α ≤ 1
4 (1−∆).

(3)

For instance, if ∆ = 1
2 , one can evaluate R(x) for |x| ≤ 1

16 ,

max |pi| ≤
3
4 and max |qi| ≤

1
16 . Those bounds are restric-

tive, but in practice they present no difficulties for polyno-

mials since there are scaling techniques to achieve the re-

quired bounds. However, this is not the case for rational

functions in general. In certain cases a scaling can be found

but not for all rational functions. To remove this limita-

tion we propose to derive rational function approximations,

called simple E-fractions, which are products of a power of

2 by a fraction that satisfies the bounds (2) and (3). In [4],

we give a more general definition of E-fractions, where

some additional scaling is allowed.

In the following sections, we show how a general func-

tion can be approximated by a simple E-fraction. We de-

velop in Section 2 an algorithmic approach based on linear

programming and lattice basis reduction that provides us

with a simple E-fraction. In Section 3, we apply the method

of Section 2 to two examples. Then, we explain in Section 4

the design and the implementation of the method.

2. Effective computation of simple E-fractions

In this section we present our approach. We combine a

linear programming process that first gives us a simple E-

fraction with real coefficients with a lattice basis reduction

based method that makes it possible to compute, from the

real-coefficient simple E-fraction given by the first step, a

simple E-fraction with fixed-point or floating-point coeffi-

cients.

2.1. Linear programming step

Let f be a continuous function defined on [a, b]. Let

r, s ∈ N be given. The aim of this subsection is to compute

a (very) good rational fraction approximant F , with respect

to the infinite norm defined by ||g|| = supx∈[a, b] |g(x)|, of

f such that the degree of the numerator of F is less or equal

to r, the degree of the denominator of F is less or equal

to s, and the real coefficients of F (or F divided by some

fixed power of 2) satisfy the constraints imposed by the E-

method.

The first thing to do is to apply the classical Remez al-

gorithm [6] to get R⋆, the best possible rational approxi-

mant to f . Then we determine the least integer j such that

the coefficients of the numerator of R⋆ divided by 2j ful-

fill the first condition of (2). It gives us a decomposition

R⋆(x) = 2jR1(x). If the computed coefficients of R1 ful-

fill the constraints (2), then we directly go to subsection 2.2.

If not, we develop the following process.

We want to find ǫ > 0, as small as possible, such that F
is a simple E-fraction that satisfies |f(x)− F (x)| ≤ ǫ.

If F is given as F (x) =
P

r
j=0

p⋆
j xj

1+
P

s
j=1

q⋆
j
xj+1 , the constraints

of the method imply that its denominator is positive on

[a, b]. That is to say that we want to find ǫ, as small as pos-

sible, solution of the following problem: for all x ∈ [a, b],

∑r
j=0 p⋆

jx
j −

∑s
j=1(f(x)− ǫ)q⋆

j xj ≥ f(x)− ǫ,

−
∑r

j=0 p⋆
jx

j +
∑s

j=1(f(x) + ǫ)q⋆
j xj ≥ −f(x)− ǫ,

q⋆
j ≥ −α + min(|a|, |b|),−q⋆

j ≥ −α + min(|a|, |b|),∀j.

(4)

We get rid of the conditions |p⋆
j | ≤ ξ by dividing F by a

suitable power of 2.

We use linear programming to find an approximation of

the optimal ǫ. We first plug numerous points of [a, b] into

(4), this gives us a polyhedron P(ǫ), and we search for a

“fairly” small ǫ using the following iterative process.

We will use two variables denoted ǫl and ǫu. Let ǫR

denote the error given by Remez’ algorithm (that is to say

the best possible), we start the process with ǫl = ǫR and

ǫu = 2ǫR. In the sequel of this subsection, the value ǫl is

indeed a lower bound for the optimal value of ǫ whereas

ǫu is only a heuristic candidate for being an upper bound

for this optimal ǫ. We choose a parameter η that will be

used to monitor the accuracy of the error we output. We

have to be able to check if for a given ǫ, the corresponding

polyhedron P(ǫ) is empty or not, and if not, to return a

point of the polyhedron. We use a simplex-based algorithm,

implemented in Maple, to that end.

The iteration is the following:

• while the relative error |ǫl/ǫu − 1| ≤ η, do

1. as long as the polyhedron P(ǫu) is empty, update

the values: ǫl = ǫu and ǫu = 2ǫu;

2. (dichotomy) set ǫu = (ǫl + ǫu)/2. Repeat this

step until the polyhedron P(ǫu) is empty;

3. set temp = ǫl, ǫl = ǫu and ǫu = ǫu + (ǫu −
temp)/2. Go to step 2;

• return a point of the polyhedron.

The algorithm returns the real coefficients of a good ra-

tional approximation to f , which moreover is a simple E-

fraction.

2.2. Lattice basis reduction step

In order to implement practically the E-method, we need

to get rational fractions with fixed-point or floating-point

coefficients. In this subsection, we explain how to get a

good rational fraction with such coefficients from a ratio-

nal fraction with real coefficients. More precisely, given a

simple E-fraction of the form

F (x) =

∑r
j=0 p⋆

jx
j

1 +
∑s

j=1 q⋆
j xj+1

defined on a closed interval [a, b], our procedure will return

a simple E-fraction of the form

F̂ (x) =

∑r
j=0 pjx

j

1 +
∑s

j=1 qjxj+1

where pj and qj are fixed-point or floating-point numbers.

The method is heuristic: we do not provide a theoreti-

cal proof that the returned fraction will have a good quality

of approximation. We do not either have a proof that the

method will return a simple E-fraction. However, as will be

seen in Section 3, the method gives good results on practical

examples and if F is a simple E-fraction, F̂ will generally

be one as well.

2.2.1 Notations concerning fixed-point and floating-

point numbers

We assume the reader is familiar with fixed-point and

floating-point arithmetic (see [9] for details). We just want

here to define our notations. Fixed-point numbers and

floating-point numbers will be of the form m2e where m ∈
Z, with the following differences:

• for fixed-point numbers, e is implicit (decided at pro-

gramming time);

• for floating-point numbers, e is explicit (i.e., stored). A

floating-point number is of precision t if 2t−1 ≤ m <
2t − 1 (e.g. the binary representation of m requires t
bits exactly).

A different format can be used for each coefficient of the

desired fraction. For instance, the user may choose that:

• p0 is a fixed-point number with e = −10,

• p1 is a floating-point number with precision t = 25,

• q0 is a floating-point number with precision t = 17,

etc.

We assume that we are given the desired format for each

coefficient.

2.2.2 Formalization

We will keep in mind that, in general, F is an approximation

to a continuous function f on the interval [a, b]. We want

to get a rational fraction F̂ of the same form as F but with

floating-point (or fixed-point) coefficients and providing a

good approximation as well.

A coefficient that should be a fixed-point number leads

to a single unknown m. One that should be a floating-point

number with precision t leads to two unknowns m and e.

In [3], a method was presented that lets one find good

polynomial approximants with floating-point coefficients.

The procedure that we describe herein is just the adaptation

of this method to the case of rational fractions.

A heuristic trick is given in [3] to find an appropriate

value for e in the floating-point case. Basically, it consists

in assuming that pj will have the same order of magnitude

as p⋆
j (the same holds for qj and q⋆

j). Once e is correctly

guessed, the condition 2t−1 ≤ |m| < 2t may be forgotten

and the problem is reduced to a fixed-point one. See [3] for

practical details.

At this point, there just remain r + s + 1 unknown inte-

gers: one for each coefficient.

2.2.3 Determining the mantissas

From now on, we will suppose that the exponents have been

correctly guessed and we focus on solving the following

problem (P): given parameters ej and fj , find integers mj

and nj such that the following fraction is a good approxi-

mation of F (and f):

∑r
j=0 mj2

ej xj

1 +
∑s

j=1 nj2fj xj+1
.

To this end, we choose r + s + 1 points x1 < · · · <
xr+s+1 in the interval [a, b] and we express the fact that we

want our rational fraction to be close to the ideal one F at

these points:

∀i = 1 . . . r + s + 1,

∑r
j=0 mj2

ej xj
i

1 +
∑s

j=1 nj2fj xj+1
i

≃ F (xi).

This can be rewritten under the following form: ∀i =
1 . . . r + s + 1,

r∑

j=0

mj2
ej xj

i − F (xi)

s∑

j=1

nj2
fj xj+1

i

 ≃ F (xi).

Thus, we have a linear system of r+s+1 unknowns and

r + s + 1 equations. This system could be exactly solved

if mi and ni were real values and it would lead to F itself.

But we want the solution of the system to be composed by

integers. A method could be to replace each coefficient of

the exact solution by the closest integer. This is what the

authors of [3] called the naive method since it could lead to

a significant loss of accuracy. The method that we propose

will often give much better results.

Indeed, the system can be rewritten with vectors, empha-

sizing its linearity: we try to solve the following problem

where mi and ni are integers:

r∑

j=0

mj

2ej xj
1

...

2ej xj
r+s+1

−

s∑

j=1

nj

2ej xj+1
1 F (x1)

...

2ej xj+1
r+s+1F (xr+s+1)

 ≃

F (x1)
...

F (xr+s+1)

 .

In this equation, all the vectors are parameters and the

unknowns are the mj and nj . As expressed in [3] it is an

instance of a problem known as the closest vector problem

in a lattice. Indeed, a lattice is the mathematical structure

formed by all linear combinations with integer coefficients

of a family of linearly independent vectors. This is exactly

the structure that appears in our formalization. We are look-

ing for a point in the lattice that is as close as possible to the

vector (F (x1), . . . , F (xr+s+1))
t.

To formally measure how close two vectors in R
r+s+2

are, we need to set a norm. The choice of it is not crucial:

the discretization already introduced a method error with

respect to our original problem; the choice of a norm in

R
s+t+2 just introduces another one. Reasonable choices

are the infinite norm ‖(v1, . . . , vr+s+2)‖∞ = maxi |vi| and

the euclidean norm ‖(v1, . . . , vr+s+2)‖2 = (
∑

i v2
i)1/2. In

the sequel we will consider the euclidean norm but we could

use the infinite norm as well.

To find an approximation of the closest vector, we use

the same method as the authors of [3]: we use the LLL

algorithm [12] and Babai’s algorithm [2] that give us satis-

fying integer coefficients. The interested reader will find a

detailed description of this method in [3]. These algorithms

require the euclidean norm. Other (more costly) algorithms

exist for the infinite norm.

There remains one problem: how to choose the points?

The authors of [3] suggest to choose the points that would

lead to the best possible solution if the interpolation sys-

tem were solved exactly (e.g. with real coefficients). In our

case, every choice of points would lead to F itself. How-

ever, since we want our fraction F̂ to be close to f as well,

it could be a good idea to include the points x such that

F (x) = f(x): this way, f and F are simultaneously inter-

polated. Chebyshev’s points, a classical option, would also

be satisfying in general.

3. Some examples

In this section, we will look for fractions with fixed-point

coefficients on 24 bits: these coefficients will be of the form

i/224, −224 ≤ i ≤ 224.

Example 1. The function we consider is sinh over

[0, 1/8], approximated by a fraction with degree-3 numera-

tor and degree-4 denominator. This example is given in the

appendix of [8]. The parameters are ξ = 3/4 and α = 1/8.

The error provided by Remez’ algorithm is

6.3524...10−18 and the fraction obtained is a simple

E-fraction. Hence, we directly apply the approach

described in subsection 2.2. We obtain the follow-

ing simple E-fraction F (x) = ((2034138/224)x3 −
(99734/224)x2+x)/((−13065/224)x4+(16638/224)x3−
(762065/224)x2 − (99734/224)x + 1) that provides an

error of approximation equal to 9.0150...10−14, i.e., an

accuracy of 43 bits.

Example 2. Now, we deal with one example, inspired

by [11], where the rational approximant returned by Remez

algorithm does not satisfy diagonal dominance.

The function we consider is arctan. We want to ap-

proximate it over [0, tan(π/32)] with a fraction of the form

xR3,4(x
2) where R3,4 is a rational fraction with degree-3

numerator and degree-4 denominator. The parameters are

ξ = 5/8 and α = 3/8.

The error provided by Remez’ algorithm is

2.6322...10−27. Our linear programming-based

process returns a real-coefficient fraction that

leads to an error of 1.20690...10−13. The lattice-

based approach gives a solution R3,4(x) =
2((−1499350/224)x3 + (1673762/224)x2 −
(2796207/224)x+(8388608/224))/((−1443542/224)x4−
(617822/224)x3 − (7827/224)x2 − (9/224)x + 1) that

provides an error of 5.5442...10−12.

There is an important loss of accuracy in that example

and that kind of problems shall be addressed in our future

works. And yet, the accuracy given by this approximant is

37 bits, which is sufficient in many applications.

4. Design and implementation of the method

The E-method is suitable for hardware implementation

because the primitive modules are digit-vector multiplex-

ers, redundant adders of [3 : 2] or [4 : 2] type, and reg-

isters. The overall structure consists of n + 1 elementary

units (EU), interconnected digit-serially. As mentioned ear-

lier, the method computes one digit of each element of the

solution vector per iteration in the MSDF (Most Significant

Digit First) manner. The EUs operate concurrently. The

time to obtain the solution to t digits of precision is about t
cycles (iterations).

A general scheme for evaluation of rational functions is

shown in Figure 1, illustrated for n = 4. A bit-parallel bus

transmits x, p and q values in a broadcast mode. Note that

the initialization cycles could be shorter than the iteration

cycles.

The digit-serial outputs of EU can be converted into

digit-parallel form using an on-the-fly converter OFC [9].

The EUi (radix 2) implements the residual recurrence (1)

and the corresponding digit selection function

d
(j)
i = S(ŵ

(j)
i)

Its organization is shown in Figure 2.

It consists of a [4:2] adder, two multiple generators

which are implemented with multiplexers, and four regis-

ters. The output digit selection S is a simple gate network.

There are also four registers, storing qi and x, and a sum-

carry representation of the residual. Initally, ws
(0)
i ← pi

and wc
(0)
i ← 0 .

The cycle time of the elementary unit EU , in terms of a

OFC : on-the-fly

converterEU1

EU0

d (j)
0

x, p, q
bus

OFC R3,3(x)

EU3

EU2

digit-serial digit-parallel

Figure 1. Scheme for evaluating rational func-

tion R3,3(x) = P3(x)/Q3(x) (n = 4).

d (j-1)
2

REG

MG

REG

MG

MUX

REG

MUX

REG

[4:2] ADDER

SEL

x q1 0

ws wc

ws wc

d (j-1)
0 p1

d (j)
1d (j-1)

1

Reg

Figure 2. EU block diagram and organization

(i = 1).

full adder (complex gate) delay tFA, is estimated as follows

TEU = tBUFF + tMG + tS + t[4:2] + tREG

≈ (0.4 + 0.3 + 1 + 1.3 + 0.9)tFA = 3.9tFA

The cost in terms of area of a full adder AFA is estimated

as

AEU (t) = AS + 2ABUFF + (t + 2)[2AMG

+ AMUX + A[4:2] + 4AREG + AOFC]

≈ [5 + 2× 0.4 + (t + 2)(3× 0.45

+ 2.3 + 4× 0.6 + 2.1)]AFA

≈ 16 + 8tAFA

The cost is estimated as area occupied by modules us-

ing a full-adder AFA area as the unit. The areas of

primitive modules are [10]: Register AREG = 0.6AFA;

buffer ABUFF = 0.4AFA; MUX AMUX = 0.45AFA;

multiple generator MG AMG = 0.45AFA; [4:2] adder

A[4:2] = 2.3AFA; S AS = 5AFA, and on-the-fly con-

verters AOFC = 2AMUX + 2AREG = 2.1AFA.

5 Summary and future work

We have extended the domain of applicability of a

hardware-oriented method for evaluating elementary func-

tions using polynomial and rational function approxima-

tions. The polynomials and rational functions are computed

by solving a system of linear equations using digit-serial

iterations on simple and highly regular hardware. For con-

vergence, these systems must be diagonally dominant and,

consequently, the coefficients of rational functions must sat-

isfy certain conditions which limit direct applicability to

arbitrary rational functions. We discussed the approach in

obtaining suitable coefficients using an algorithmic process

combining linear programming and lattice basis reduction.

We also discussed design and implementation aspects.

We plan in a future work to improve the efficiency of the

linear programming step, both the algorithmic part (some

tricks described in [6] could be of use) and the software

implementation part (among other things, we would like to

avoid using Maple in order to ensure better reliability, time

and memory cost and diffusion). A reasonable target, for

small degrees (let say 4) of the numerator and denominator,

is to try to adapt the results of [5] and to combine them with

the results of this paper to obtain the best possible simple E-

fraction with fixed-point or floating-point coefficients. We

also wish to take into account all the possible scalings [4]

in order to improve our results when dealing with larger

intervals for instance.

6 Acknowledgements

This work was partially supported by the ACI grant GAAP

from the French Ministry of Education. This paper was written

while the first author was invited by the Center of Mathematics

and Applications of the Australian National University, which he

warmly thanks for the excellent welcome and conditions of work

provided.

References

[1] A. Avizienis. Signed-digit number representations for fast

parallel arithmetic. IRE Transactions on electronic com-

puters, 10: 389–400, 1961. Reprinted in E.E. Swartzlander,

Computer Arithmetic, Vol. 2, IEEE Computer Society Press

Tutorial, 1990.

[2] L. Babai, On Lovász’ lattice reduction and the nearest lattice

point problem. Combinatorica, An International Journal of

the János Bolyai Mathematical Society, vol. 6, n. 1, 1–13,

1986.

[3] N. Brisebarre and S. Chevillard. Efficient Polynomial L∞-

Approximations . 18th IEEE Symposium on Computer

Arithmetic (ARITH-18), Montpellier (France), p. 169-176,

June 2007.

[4] N. Brisebarre and J.-M. Muller. Functions approximable by

E-fractions. Proc. 38th Conference on signals, systems and

computers, Pacific Grove, California, U.S.A., p. 1341-1344,

Nov. 2004.

[5] N. Brisebarre, J.-M. Muller and A. Tisserand. Computing

machine-efficient polynomial approximations. ACM Trans.

Math. Software, Vol. 32, n. 2, 236-256.

[6] E. W. Cheney. Introdution to Approximation Theory, AMS

Chelsea Publishing, Providence, RI, 1998.

[7] M.D. Ercegovac. A general method for evaluation of func-

tions and computation in a digital computer. PhD thesis,

Dept. of Computer Science, University of Illinois, Urbana-

Champaign, 1975.

[8] M.D. Ercegovac. A general hardware-oriented method for

evaluation of functions and computations in a digital com-

puter. IEEE Trans. Comp., C-26(7):667–680, 1977.

[9] M.D. Ercegovac and T. Lang. Digital Arithmetic, Morgan

Kaufmann Publishers - an Imprint of Elsevier Science, San

Francisco, 2004.

[10] M.D. Ercegovac and J.-M. Muller. A Hardware-Oriented

Method for Evaluating Complex Polynomials. Proc . ASAP-

07, 2007.

[11] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K.

Mesztenyi, J. R. Rice, H. G. Thacher and C. Witzgall, Com-

puter Approximations, Robert E. Krieger Publishing Com-

pany, Florida, 1978.

[12] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring Poly-

nomials with Rational Coefficients, Math. Annalen, vol. 261,

515–534, 1982.

[13] I. Koren and O. Zinaty. Evaluating elementary functions in

a numerical coprocessor based on rational approximations.

IEEE Trans. Comp., 39(8):1030–37, 1990.

