
Integer and Floating-Point Constant Multipliers for FPGAs

Nicolas Brisebarre, Florent de Dinechin, Jean-Michel Muller∗

LIP (CNRS/INRIA/ENS-Lyon/UCBL)
Université de Lyon

{Nicolas.Brisebarre, Florent.de.Dinechin, Jean-Michel.Muller}@ens-lyon.fr

Abstract

Reconfigurable circuits now have a capacity that allows
them to be used as floating-point accelerators. They offer
massive parallelism, but also the opportunity to design op-
timised floating-point hardware operators not available in
microprocessors. Multiplication by a constant is an impor-
tant example of such an operator. This article presents an
architecture generator for the correctly rounded multipli-
cation of a floating-point number by a constant. This con-
stant can be a floating-point value, but also an arbitrary
irrational number. The multiplication of the significands
is an instance of the well-studied problem of constant inte-
ger multiplication, for which improvement to existing algo-
rithms are also proposed and evaluated.

1 Introduction

FPGAs (for field-programmable gate arrays) are high-
density VLSI chips which can be programmed to efficiently
emulate arbitrary logic circuits. Where a microprocessor is
programmed at the granularity of instructions operating on
32 or 64-bit data words, FPGAs are programmed at the bit
and register level. This finer grain comes at a cost: a cir-
cuit implemented in an FPGA is typically ten times slower
than the same circuit implemented as an ASIC (application-
specific integrated circuit). Despite this intrinsic perfor-
mance gap between FPGAs and ASIC, the former are often
used as a replacement of the latter for applications which
don’t justify the non-recurring costs of an ASIC, or which
have to adapt to evolving standards.

FPGAs have also been used as configurable accelerators
in computing systems. They typically excel in computa-
tions which exhibit massive parallelism and require opera-
tions absent from the processor’s instruction set.

∗This work was partly supported by the XtremeData university pro-
gramme, the ANR EVAFlo project and the Egide Brâncuşi programme
14914RL.

The FloPoCo project1 is an open-source C++ framework
for the implementation of such non-standard operations,
with a focus on floating-point [4]. This article is a survey of
the issue of multiplication by a constant in this context.

State of the art and contributions

Multiplication by a constant is a pervasive operation. It of-
ten occurs in scientific computing codes, and is at the core
of many signal-processing filters. It is also useful to build
larger operators: previously published architectures for ex-
ponential, logarithm and trigonometric functions [8, 7] all
involve multiplication by a constant. A single unoptimised
multiplication by 4/π may account for about one third the
area of a dual sine/cosine operator [7].

The present article essentially reconciles two research di-
rections that were so far treated separately: on the one side,
the optimisation of multiplication by an integer constant,
addressed in Section 2, and on the other side the issue of
correct rounding of multiplication or division by an arbi-
trary precision constant, addressed in Section 4.

Integer constant multiplication has been well studied,
with many good heuristics published [3, 6, 13, 5, 1, 15].
Its theoretical complexity is still an open question: it was
only recently proven sub-linear, although using an approach
which is useless in practice [9, 15]. Our contribution in this
domain is essentially a refinement of the objective function:
where all previous works to our knowledge try to minimise
the number of additions, we remark that these additions,
measured in terms of full adder cells, have different sizes
(up to a factor 4 for the large multiplier by 4/π of [7]), hence
variable cost in reconfigurable logic. Trying to minimise the
number of full adders, and looking for low-latency and easy
to pipeline architectures, we suggest a surprisingly simple
algorithm that, for constants up to 64 bits, outperforms the
best known algorithms in terms of FPGA area usage and
latency. Boullis and Tisserand [1] also tried to minimise
adder size, but as a post-processing step, after an algorithm
minimising the number of additions.

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo

Section 3 describes a multiplier by a floating-point con-
stant of arbitrary size. The architecture is a straightforward
specialisation of the usual floating-point multiplier. It is ac-
tually slightly simpler, because the normalisation of the re-
sult can be removed from the critical path.

Finally, Section 4 deals with the correct rounding of the
multiplication by an arbitrary real constant. Previous work
on the subject [2] has shown that this correct rounding re-
quires a floating-point approximation of the constant whose
typical size is twice the mantissa size of the input. This size
actually depends on the real constant, and may be computed
using a simple continued fractions algorithm. The other
contribution of [2] is the proof of an algorithm which con-
sists of two dependent fused-multiply-and-add operations.
In the FPGA, the implementation will be much simpler,
since it will suffice to instantiate a large enough FP constant
multiplier. Of course, a multiplier by an arbitrary constant
is also capable of computing the division by an arbitrary
constant [14].

All these architectures are implemented in the FloPoCo
framework.

2 Multiplication by an integer constant

Several recent papers [1, 9, 15] will provide the inter-
ested reader with a state of the art on this subject. Specific
to FPGAs, the KCM algorithm [3] is also of interest, but it
has been shown to always lead to larger architectures [5].

Let C be a positive integer constant, written in binary on
k bits:

C =
k∑

i=0

ci2i with ci ∈ {0, 1}.

Let X a p-bit integer. The product is written CX =∑k
i=0 2iciX , and by only considering the non-zero ci, it is

expressed as a sum of 2iX . For instance, 17X = X+24X .
In the following, we will note this using the shift operator
<<, which has higher priority than + and −. For instance
17X = X +X<<4.

If we allow the digits of the constant to be negative
(ci ∈ {−1, 0, 1}) we obtain a redundant representation, for
instance 15 = 01111 = 10001 (16− 1 written in signed bi-
nary). Among the representations of a given constant C,
we may pick up one that minimises the number of non-
zero bits, hence of additions/subtractions. The well-known
canonical signed digits recoding (or CSD, also called Booth
recoding [10]) guarantees that at most k/2 bits are non-zero,
and in average k/3.

2.1 Parenthesing and architectures

The CSD recoding of a constant may be translated into
a rectangular architecture [5], an example of which is given

by Figure 1. This architecture corresponds to the following
parenthesing: 221X = X<<8+(−X<<5+(−X<<2+X)).

p0 p1 p2 p3 p4 p5 p6 p7

p8

p9

p10

p11

p12

p13

p14

p15

x0

x1

x2

x3

x4

x5

x6

x7

0

0

−X[0..7]

sign extension of −X

Figure 1. Linear multiplier of an 8-bit input by
221, using the recoding 100100101

We introduce in this article a binary tree adder structure,
constructed out of the CSD recoding of the constant as fol-
lows: non-zero bits are first grouped by 2, then by 4, etc.
For instance, 221X = (X<<8−X<<5) + (−X<<2 +X).
A larger example is shown on Figure 2. This new paren-
thesing reduces the critical path: for k non-zero bits, it is
now of dlog2 ke additions instead of k in the linear archi-
tecture of Figure 1.

Besides, shifts may also be reparenthesised: 221X =
(X << 3 − X)<< 5 + (−X << 2 + X). After doing this,
the leaves of the tree are now multiplications by small con-
stants: 3X, 5X, 7X, 9X... Such a smaller multiple will ap-
pear many times in a larger constant, but it may be com-
puted only once: thus the tree is now a DAG (direct acyclic
graph), and the number of additions is reduced.

Going from a tree to a DAG saves adders. Lefèvre
[13] has generalised this idea to an algorithm that min-
imises the number of adders: it looks for maximal repeat-
ing bit patterns in the CSD representation, and generates
them recursively. Lefèvre observed that the number of ad-
ditions, on randomly generated constants of k bits, grows as

0 0 0 0 0 0 0 0 00 + 0 + 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0+ + 0 0 + 0 + − 0 − + + 0 + 0 + + 0 + + + 0

5X5X17X5X−3X 3X9X 127X3X

39854788871587X

884279719003555X

558499X4751061X

−43X1859X 2181X 163X

1768559438007110

<<1

Figure 2. Binary DAG architecture for a mul-
tiplication by 1768559438007110 (the 50 first
bits of the mantissa of π).

O(k0.85). Here is an example of the sequence produced for
the same constant 1768559438007110. This example was
obtained thanks to the program rigo.c2 written by Rigo
and Lefèvre.

1: u0 = x
2: u3 = u0<< 19 + u0
3: u3 = u3<< 20
4: u3 = u3<< 4 + u3
5: u7 = u0<< 14 - u0
6: u6 = u7<< 6 + u0
7: u5 = u6<< 10 + u0
8: u1 = u5<< 16

9: u1 = u1 + u3
10: u7 = u0<< 21 - u0
11: u6 = u7<< 18 + u0
12: u5 = u6<< 4 - u0
13: u2 = u5<< 5 + u0
14: u2 = u2<< 1
15: u2 = u2<< 2 - u2
16: u1 = u1 + u2

This code translates to a much more compact DAG than the
one presented on Figure 2, because it looks for patterns in
the full constant instead of just exploiting them when they
accidentally appear, mostly at the leaves in our binary tree.

Still, Lefèvre’s method may produce suboptimal results
in our context. Firstly, it doesn’t try to balance the DAG to
minimise the latency. Secondly, it only minimises the num-
ber of additions, but not their actual hardware cost, which
depends on their size. Let us now formalise this last issue.

2.2 DAG definition and cost analysis

Each intermediate variable in a DAG holds the result
of the multiplication of X by an intermediate constant.
To make things clearer, let us name an intermediate vari-
able after this constant, for instance, V255 holds 255X , and
V1 = X .

In the Rigo/Lefèvre code, each of these intermediate
multiples is positive, and subtraction is allowed. Cost anal-
ysis is slightly simpler if we allow negative intermediate
constants, but no subtraction. We then need unary negation
to build negative constants. To minimise the use of nega-
tion, which has the same cost as addition on an FPGA, one
may always transform a DAG into one with only one nega-
tion computing V−1 = −X .

To sum up, a DAG is built out of the following primi-
tives:

Shift: Vz ← Vi<<s (z = 2si),
Neg: Vz ← −Vi (z = −i),

ShiftAdd: Vz ← Vi<<s+ Vj (z = 2si+ j).

Each variable is a single assignment one, and it is possible
to associate to it

• |Vz|, the maximal size in bits of the result it holds,

• cost(Vz), the number of full adder involved.

2http://www.vinc17.org/research/mulbyconst/

Other cost functions are possible (e.g. delay). A DAG
construction algorithm will maintain a list of the already
computed variables, indexed by the constants.

The size |Vz| is more or less the sum of the size of z and
the size of X . If z ≥ 0 then |Vz| = |X| + blog2(z − 1)c,
where the −1 accounts for powers of 2. If z < 0 then |z| =
1 + |X|+ blog2(−z − 1)c: one has to budget an additional
sign bit for sign extension. This bit will actually be useful
only for multiplying by X = 0, whose multiplication by a
negative constant is nevertheless nonnegative. This detail
is worth mentioning as it illustrates the asymmetry between
negative constants and positive ones.

Computing the costs is easy once the |Vz| have been
computed:

• cost(Vz ← Vi<<s) = 0. This is wiring only.

• cost(Vz ← −Vi) = |Vz|. Again, it is probably best to
use this primitive only to compute V−1 = −X .

• cost(Vz ← Vi<<s+ Vj) = |Vz| − s. The lower bits of
the result are those of Vj , so the actual addition is on
|Vz| − s bits only3.

This cost function describes relatively acurately the cost
of a combinatorial constant multiplier. It has to be extended
to the case of pipelined multipliers: one has to add the over-
head of the registers, essentially for the lower bits since a
registered adder has the same cost as a combinatorial one in
FPGAs. In principle, one pipeline stage may contain several
DAG levels, at least for the lower levels.

2.3 Implementation and results

FloPoCo implements this DAG structure and cost anal-
ysis. It outputs VHDL for any DAG, but currently builds
only the simple DAGs illustrated by Figure 1 and Figure 2,
both in time linear with k (instantly in practice). Interested
readers are invited to try it out.

Synthesis results are given in Table 1. These are FP
multipliers, but their area and delay are largely domi-
nated by the significand multiplication. For comparison,
two sequences produced by rigo.c, for the significands
of π/2× 250 and π/2 × 2107, were hand-translated into
FloPoCo DAGs. For the 50-bit constant, although the num-
ber of additions is smaller, the final area is larger, as many of
these additions are very large. This justifies the introduction

3There is one exception: if Vi and Vj do not overlap, i.e. if |Vj | < s,
then the addition is free if j is positive: the higher bits are those of Vi

and the lower bits those of Vj . If j is negative, one needs to sign-extend
Vj , and the cost is again |Vz | − s. This situation may only happen if the
size of the constant is at least twice that of X , which indeed happens in
several applications, for example the high-precision polynomial evaluation
[12] that motivated Lefèvre, and the trigonometric argument reduction of
[7].

of a new cost function, and illustrates that our binary DAG
approach provides very good implementations for constants
up to 64 bits. This should content a vast majority of appli-
cations.

Still, for the 107-bit constant, the final area is smaller,
which tends to show that the asymptotic cost of Lefèvre’s
approach is better than that of our binary DAG, which re-
main mostly linear. More work is needed to adapt Lefèvre’s
approach to our cost function.

3 Multiplication by a floating-point constant

For the needs of this article, an FP number is written
(−1)s ·2E ·1.F where 1.F ∈ [1, 2) is a significand andE is
a signed exponent. We shall note wE and wF the respective
sizes ofE and F , and F(wE , wF) the set of FP numbers in a
format defined by (wE , wF). We want to allow for different
values of wE and wF for the input X and the output R:

X = (−1)sX · 2EX · 1.FX ∈ F(wEX
, wFX

)
R = (−1)sR · 2ER · 1.FR ∈ F(wER

, wFR
)

In all the following, the real value of the constant will be
noted C, possibly an irrational number, and we define

C = (−1)sC · 2EC · 1.FC

the unique floating-point4 representation of C such that
1.FC ∈ [1, 2). Here FC may have an infinite binary rep-
resentation. We note Ck the approximation of C rounded to
the nearest on wFC

= k fraction bits:

Ck = (−1)sC · 2EC · 1.FCk
.

Finally, we also define the real number

1.Fcut =
2

1.FC
∈ [1, 2) .

We now describe a multiplier that computes the correct
rounding Rk of Ck ×X . Then, Section 4 will compute the
minimal k ensuring that ∀X ∈ F(wEX

, wFX
), Rk is the

correct rounding of C ×X .
Of course, if C is already a p-bit-significand FP number,

it will be k = p.
The architecture given by Figure 3, and implemented as

the FPConstMult class in FloPoCo, is essentially a simplifi-
cation of the standard FP multiplier. The main modification
is that rounding is simpler. In the standard multiplier, the
product of two significands, each in [1, 2), belongs to [1, 4).
Its normalisation and rounding is decided by looking at the
product. In a constant multiplier, it is possible to predict if

4As the exponent is constant, the point doesn’t actually float at all.

the result will be larger or smaller than 2 just by compar-
ing FX with Fcut – in practice, with Fcut truncated to wFX

bits. This is also slightly faster, as the rounding decision is
moved off the critical path.

Exponent computation consists in adding the constant
exponent, possibly augmented by 1 if FX > Fcut. Sign
computation is also straightforward. Exceptional case han-
dling is also slighly simpler. For instance, if the constant
has a negative exponent, one knows that an overflow will
never occur. Likewise, if it is positive or zero, underflow
(flush to zero) cannot happen.

shift/roundExn

Exexn

exn

+EC

×1, FC+1

shift right

wF

wFX

1

ER FR

FX

FX > Fcut?

wFC + wFX + 2
ov

ftz

2

2

Figure 3. Multiplier by an FP constant

4 Correct rounding of the multiplication by a
real constant

This section proposes a method for computing the min-
imal value of k = wFC

allowing for correct rounding
(noted ◦) of the product of any input X by C. First, for
a given k, we show how to build a predicate telling if there
exist values of X such that Rk = ◦(CkX) 6= ◦(CX). This
allows us to look for the minimal k verifying this predicate,
knowing that it is expected to be close to 2wFX

[2].

4.1 Looking for X such that ◦(CkX) 6= ◦(CX)

The FP multiplier guarantees the correct rounding of the
result of the multiplication by Ck, that is to say,

∀X ∈ F(wEX
, wFX

), |Rk − CkX|

≤ 1
2

ulp (CkX) ≤ 1
2

ulp (Rk),

in which “ulp(t)” (unit in the last place) is the weight of the
least significant bit of t.

FloPoCo linear (Fig. 1) FloPoCo binary DAG (Fig. 2) Lefèvre/Rigo

Precision of X and π/2 + LUTs delay + LUTs delay + LUTs delay

wEX = 8, wFX = wFR = 23, wFC = 50 19 435 30 ns 15 467 14 ns 12 645 16 ns

wEX = 11, wFX = wFR = 52, wFC = 107 38 2018 68 ns 26 1628 21 ns 22 1508 18 ns

Table 1. Synthesis results for floating-point multipliers (on Virtex4, speedgrade -12, using ISE 9.1)

Rk

FP numbers

be found

If CX is here, then ◦(CX) = Rk

Can CX be here?

2εa

Domain where
CX can

2εa

1
2

ulp (Rk)

Figure 4. If CX is at a distance greater than
1/2 ulp of Rk, then it is at a distance lesser
than 2εa from the middle of two consecutive
FP numbers.

Moreover, Ck is also the rounded-to-nearest value of C.
Let εa = |Ck − C|, we have

∀X ∈ F(wEX
, wFX

), |Rk−CX| ≤
1
2

ulp (Rk)+X ·εa.

We may assume, without any loss of generality, that X
and C belong to [1, 2), i.e. EX = EC = 0. Then we have

∀X ∈ F(wEX
, wFX

), 1 ≤ X < 2,

|Rk − CX| <
1
2

ulp (Rk) + 2εa (1)

If we can prove that for all X , |Rk−CX| ≤ 1
2 ulp (Rk),

thenRk will always be the closest FP number toCX , which
is the required property. As shown in Figure 4.1, if CX
satisfies to (1) and is at a distance greater than 1

2 ulp (Rk)
from Rk, it is necessarily at a distance lesser than 2εa from
the middle of two consecutive FP numbers. Such a point is
a rational number of the form (2A+ 1)/(2q), with 2wFR ≤
A ≤ 2wFR

+1 − 1 and q = 2wFR
+t, where t is equal to 1

if CX has the same exponent as X (if FX ≤ Fcut), and is
equal to 0 otherwise.

Therefore, to determine if an input X is such that Rk is
not the correct rounding of CX , one can check first if there

exists an approximation to CX by a rational number of the
form (2A+1)/(2q), such that |CX−(2A+1)/(2q)| ≤ 2εa.

The mathematical tool for solving this kind of rational
approximation issues is continued fractions [11]. Using
them, one can design several methods [2] that make it pos-
sible either to guarantee that CX will not be at a distance
lesser than 2εa from the middle of two consecutive FP num-
bers (hence one can guarantee that the correct rounding of
CX is always returned) or to compute all counter-examples,
that is to say values of X such that CkX rounded to nearest
is not the correct rounding of CX . In the latter case, one
can derive from each counter-example the value by which
we should increment k in order to get a correct rounding.

4.2 A predicate for k

We assume in the sequel that FX < Fcut (the case FX >
Fcut is similar). We then have CX ∈ [1, 2). Let MX be the
integer mantissa of X , i.e. MX = 2wFXX . We search for
the integers MX ∈ Z such that∣∣∣∣ MX

2wFX
C − 2A+ 1

2wFR
+1

∣∣∣∣ ≤ 2εa.

Depending on the relative values of wFR
and wFX

, we
face two situations:

4.2.1 Case where wFR
+ 1 ≥ wFX

We assume in this case that k = wFR
+wFX

+3. We search
for the integers MX ∈ Z such that∣∣MX2wFR

−wFX
+1C − 2A− 1

∣∣ ≤ 22+wFR εa.

Since εa = |Ck − C| ≤ 2−k−1, we have∣∣MX2wFR
−wFX

+1C − 2A− 1
∣∣ ≤ 2wFR

−k+1.

Note that 2wFR
−k+1 < 1/(2MX) iff 2wFR

−k+2MX <
1. As MX < 2wFX

+1 and 2wFR
+wFX

−k+3 ≤ 1 since we
assumed wFR

+ wFX
+ 3 = k, we have 2wFR

−k+1 <
1/(2MX) for all X ∈ [1, 2): we compute the continued
fraction expansion of 2wFR

−wFX
+1C that yields all the

candidate values X that may possibly satisfy ◦(CX) 6=
◦(CkX). For all such input X , we first check exhaustively
if those rounded values actually differ and we collect all
such X in a list L. Then, we compute the minimal value

η of
∣∣∣ MX

2
wFX

C − 2A+1

2
wFR

+1

∣∣∣ when X ranges the list L of all
counter-examples and we set k = max(wFR

+ wFX
+

3, d− log2(η)e + 1). The inequality k ≥ d− log2(η)e + 1
implies k > − log2(η) that yields 2εa ≤ 2−k < η, which
guarantees that all inputsX will satisfy ◦(CX) = ◦(CkX).

4.2.2 Case where wFR
+ 2 ≤ wFX

We assume in this case that k = 2wFX
+ 2. We search for

the integers MX ∈ Z such that∣∣MXC − (2A+ 1)2wFX
−wFR

−1
∣∣ ≤ 21+wFX εa.

Here, again, we use εa = |Ck − C| ≤ 2−k−1 to infer∣∣MXC − (2A+ 1)2wFX
−wFR

−1
∣∣ ≤ 2wFX

−k.

Here again, from the hypothesis 2wFX
+ 2 ≤ k,

we infer 2wFX
−k < 1/(2MX): the computation of the

continued fraction expansion of C provides a complete list
of values X candidate for satisfying ◦(CX) 6= ◦(CkX).
We check exhaustively if those rounded values actually
differ and we collect again all such X in a list L. Let
η be the minimal value of

∣∣∣ MX

2
wFX

C − 2A+1

2
wFR

+1

∣∣∣ when
X ranges the list L of all counter-examples. We set
k = max(wFR

+ wFX
+ 3, d− log2(η)e + 1). That value

of k will ensure that ◦(CX) = ◦(CkX) for all input X .

4.3 The price of correct rounding

To sum up, the price of correct rounding, for a multi-
plication by an irrational constant like π or log 2, will be a
typical doubling of the number of bits of the constant used
in significand multiplication. As the cost of such a multi-
plication is sublinear in the constant size [9], the price of
correct rounding should actually be less than this factor 2 in
area. The delay overhead will be much smaller, due to the
binary tree architecture. This is confirmed by the following
table, obtained using the binary DAG approach:

mult. by π/2, wFX
= 52 + LUTs delay

standard (wFC
= 52) 16 866 20 ns

correct rounding (wFC
= 107) 26 1628 21 ns

5 Conclusion and perspectives

One may argue that multiplication by a constant is too
anecdotical to justify so much effort. Yet it illustrates what
we believe is the future of floating-point on FPGAs: thanks
to their flexibility, they may accomodate non-standard opti-
mised operators, for example a correctly rounded multipli-
cation by an irrational constant. Such non-standard opera-
tors cannot be offered as off-the-shelf libraries, they have

to be optimised for each application-specific context. This
is the object of the FloPoCo project, an open C++ frame-
work for arithmetic operator generation. With this work,
FloPoCo builds multipliers by a constant which are both
small and fast for constants of usual sizes. However our
results suggest that there is still room for improvement.
To this purpose, the present article defines a pertinent de-
sign space and offers an open implementation of VHDL
generation for constant multiplier DAGs. Current work
also focusses on extending this framework to automatically
pipeline the generated operators.

References

[1] N. Boullis and A. Tisserand. Some optimizations of hard-
ware multiplication by constant matrices. IEEE Transac-
tions on Computers, 54(10):1271–1282, 2005.

[2] N. Brisebarre and J.-M. Muller. Correctly rounded multipli-
cation by arbitrary precision constants. IEEE Transactions
on Computers, 57(2):165–174, 2008.

[3] K. Chapman. Fast integer multipliers fit in FPGAs (EDN
1993 design idea winner). EDN magazine, May 1994.

[4] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and R. Tudo-
ran. When FPGAs are better at floating-point than micropro-
cessors. Technical Report ensl-00174627, École Normale
Supérieure de Lyon, 2007. http://prunel.ccsd.cnrs.fr/ensl-
00174627.

[5] F. de Dinechin and V. Lefèvre. Constant multipliers for FP-
GAs. In Parallel and Distributed Processing Techniques and
Applications, pages 167–173, 2000.

[6] A. Dempster and M. Macleod. Constant integer multiplica-
tion using minimum adders. Circuits, Devices and Systems,
IEE Proceedings, 141(5):407–413, 1994.

[7] J. Detrey and F. de Dinechin. Floating-point trigonomet-
ric functions for FPGAs. In Field-Programmable Logic and
Applications, pages 29–34. IEEE, 2007.

[8] J. Detrey, F. de Dinechin, and X. Pujol. Return of the hard-
ware floating-point elementary function. In 18th Symposium
on Computer Arithmetic, pages 161–168. IEEE, 2007.

[9] V. Dimitrov, L. Imbert, and A. Zakaluzny. Multiplication
by a constant is sublinear. In 18th Symposium on Computer
Arithmetic, pages 261–268. IEEE, 2007.

[10] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan
Kaufmann, 2003.

[11] A. Y. Khinchin. Continued Fractions. Dover, 1997.
[12] V. Lefèvre. An algorithm that computes a lower bound on

the distance between a segment and Z2. In Developments in
Reliable Computing, pages 203–212. Kluwer, 1999.

[13] V. Lefèvre. Multiplication by an integer constant. Tech-
nical Report RR1999-06, Laboratoire de l’Informatique du
Parallélisme, Lyon, France, 1999.

[14] J.-M. Muller, A. Tisserand, B. D. de Dinechin, and
C. Monat. Division by constant for the ST100 DSP mi-
croprocessor. In 17th Symposium on Computer Arithmetic,
pages 124–130. IEEE Computer Society, 2005.

[15] Y. Voronenko and M. Püschel. Multiplierless multiple con-
stant multiplication. ACM Trans. Algorithms, 3(2), 2007.

