
(M, p, k)-friendly points: a table-based method for trigonometric function evaluation

Nicolas Brisebarre
CNRS-Laboratoire LIP

(CNRS, ENS Lyon, Inria, UCBL)
Ecole Normale Supérieure de Lyon

46 Allée d’Italie
69364 Lyon Cedex 07, France

Email: Nicolas.Brisebarre@ens-lyon.fr

Miloš D. Ercegovac
4731H Boelter Hall

Computer Science Department
University of California at Los Angeles

Los Angeles, CA 90024, USA
Email: milos@cs.ucla.edu

Jean-Michel Muller
CNRS-Laboratoire LIP

(CNRS, ENS Lyon, Inria, UCBL)
Ecole Normale Supérieure de Lyon

46 Allée d’Italie
69364 Lyon Cedex 07, France

Email: Jean-Michel.Muller@ens-lyon.fr

Abstract—We present a new way of approximating the sine
and cosine functions by a few table look-ups and additions. It
consists in first reducing the input range to a very small interval
by using rotations with “(M,p, k) friendly angles”, proposed
in this work, and then by using a bipartite table method in
a small interval. An implementation of the method for 24-
bit case is described and compared with CORDIC. Roughly,
the proposed scheme offers a speedup of 2 compared with an
unfolded double-rotation radix-2 CORDIC.

I. INTRODUCTION

We propose and investigate a new way of reducing the
input argument, so that a bipartite method and networks of
redundant adders can be employed for evaluating trigono-
metric functions with a reasonably large precision. We have
illustrated the method applicability by describing a fully
combinational scheme for computing 24-bit cos and sin
functions.

A. The bipartite method

Sunderland et al. [1] considered approximating the sine of
a 12-bit number x less than π/2 using tables. They proposed
to split the binary representation of x into three 4-bit words,
and to approximate the sine of x = A + B + C, where
A < π/2, B < 2−4π/2 and C < 2−8π/2, using

sin(A+B + C) ≈ sin(A+B) + cos(A) sin(C). (1)

By doing that, instead of one table with 12 address bits
(i.e., with 212 elements), one needed two tables (one for
sin(A+B) and one for cos(A) sin(C)), each of them with
8 address bits only. In 1995, DasSarma and Matula [2]
introduced a new method for evaluation of reciprocals by
table look-up and addition, and used it to generate seed
values for computing reciprocals using the Newton–Raphson
iteration. They named it the bipartite method. Generalized
to other functions [3], [4], the bipartite method turned out,
when applied to the trigonometric functions, to be the same
as Sunderland et al. method.

Although the bipartite method is a fairly general method
of approximating functions by table lookup and addition, in
this section, we only focus on the problem of approximating

sin(θ) and cos(θ), where θ is a small (p− j)-bit value less
than 2−j :

θ = 0.0000 · · · 0θj+1θj+2θj+3 · · · θp, θi = 0, 1.

To simplify the presentation, assume that p − j is a
multiple of 3, say p − j = 3q (typical practical values are
p = 24 and q = 6), and write θ = ρ1 + ρ2 + ρ3, with

ρ1 =

j bits︷ ︸︸ ︷
0.0 · · · 0

q bits︷ ︸︸ ︷
θj+1 · · · θj+q,

ρ2 =

j bits︷ ︸︸ ︷
0.0 · · · 0

q bits︷ ︸︸ ︷
0 · · · · · · 0

q bits︷ ︸︸ ︷
θj+q+1 · · · θj+2q,

and

ρ3 =

j bits︷ ︸︸ ︷
0.0 · · · 0

q bits︷ ︸︸ ︷
0 · · · · · · 0

q bits︷ ︸︸ ︷
0 · · · · · · 0

q bits︷ ︸︸ ︷
θj+2q+1 · · · θp .

We have:

sin(θ) = sin(ρ1 + ρ2) cos(ρ3) + cos(ρ1 + ρ2) sin(ρ3)
≈ sin(ρ1 + ρ2) + cos(ρ1) sin(ρ3),

(2)
and

cos(θ) ≈ cos(ρ1 + ρ2)− sin(ρ1) sin(ρ3). (3)

Define four tables T1, T2, T3, and T4, each one with 2q
address bits, as

T1(ρ1, ρ2) = sin(ρ1 + ρ2),
T2(ρ1, ρ3) = cos(ρ1) sin(ρ3),
T3(ρ1, ρ2) = cos(ρ1 + ρ2),
T4(ρ1, ρ3) = − sin(ρ1) sin(ρ3).

(4)

Then, according to the bipartite method,

sin(θ) ≈ T1(ρ1, ρ2) + T2(ρ1, ρ3),
cos(θ) ≈ T3(ρ1, ρ2) + T4(ρ1, ρ3).

(5)

Elementary calculation shows that the error of the first
approximation is bounded by 3 · 2−3j−3q−1 + 2−3j−4q−1,
and the error of the second approximation is bounded by
2−2j−3q + 2−2j−4q−1 + 2−4j−4q−1. Of course, tables T1,

T2, T3, and T4 store their values with limited precision:
functions sin(ρ1 + ρ2), cos(ρ1) sin(ρ3), cos(ρ1 + ρ2), and
sin(ρ1) sin(ρ3) are rounded to some precision, and these
rounding errors must be added to the approximation errors
given above. For instance, if j = q = 6 and if each value in
the tables T1, T2, T3 and T4 is rounded to the nearest 28-bit
number, then the error on sin(θ) is bounded by 0.0313·2−24

and the error on cos(θ) is bounded by 0.047 · 2−24.
The major advantage of the bipartite method, compared

to a straightforward tabulation of sin(θ) and cos(θ) is that
instead of two tables with 3q address bits, we need four
tables with 2q address bits only. Also, no multiplication
is required: the bipartite method just uses tabulation and
addition.

However, unless j is large (that is, unless θ is small), we
cannot tackle large precisions (i.e., large values of p) with
this method. Variants have been suggested (see, e.g., [5]),
and yet, since the bipartite method is intrinsically a linear-
approximation method, it has an inherent limitation: to be
able to evaluate functions with large precisions, we need to
reduce the input arguments to very small values.

Recently, Matula and Panu suggested to “prescale” the
input value before using the bipartite algorithm to obtain
a single-precision ulp accurate reciprocal [6]. Concerning
trigonometric functions, a prescaling (i.e., a preliminary
multiplication by some value) would not help. However,
given an input value x, subtracting from x an adequately
chosen value x̂ could make it possible to use the bipartite
method for single-precision evaluation of sines and cosines.

This is what we address in Section II.

B. Canonical recoding

To simplify implementation of the proposed sin/cos com-
putation, we minimize the number of non-zero digits in
table entries by using the canonical recoding [7]. It has the
property that any n-bit integer D ∈ {0, . . . , 2n−1} in radix
2 can be recoded into its canonical form:

D = fnfn−1 · · · f0, fi = ±1 or 0,

such that the number of non-zero digits is n/3 on average.
Moreover, there can be no two consecutive non-zero digits,
so that the maximum number of nonzero digits is always
less than or equal to

⌈
n+1
2

⌉
. The canonical recoding is an

improvement of the Booth recoding [8] (where a string of v
consecutive 1s, starting in position u, is replaced by a pair
(1 · 2u+v, (−1)2u)).

From an input binary number dn−1dn−2 · · · d0, we obtain
its canonical representation fnfn−1 · · · f0 using the follow-
ing expressions [7], where fn = cn, with c0 = 0 and dn = 0:

ci+1 = b(di+1 + di + ci)/2c
fi = di + ci − 2ci+1

(6)

or, in a tabular form as shown Fig. 1.

ci di+1 di fi ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

Figure 1. Canonical recoding.

II. (M,p, k)-FRIENDLY POINTS AND ANGLES

Assume an input angle x between 0 and π/2. We wish to
evaluate sin(x) and cos(x). Ideally, we would like to write
x = x̂ + θ, where θ is small enough, so that sin(θ) and
cos(θ) are easily approximated, with high accuracy, using
the bipartite method, and where c = cos(x̂) and s = sin(x̂),
which would be tabulated, fit in a very small number of bits
only, so that multiplications by c and s are reduced to a very
small number of additions. We would then obtain cos(x) and
sin(x) as c · cos(θ) − s · sin(θ) and s · cos(θ) + c · sin(θ),
respectively. However, such values x̂ do not exist: one easily
shows that the only numbers whose sine and cosine fit in a
finite number of bits are the multiples of π/2.

Hence, we propose to do something slightly different.
We will look for numbers x̂ such that cos(x̂) and sin(x̂)
are of the form a · z and b · z, respectively, where a and
b are small integers (so that a multiplication by a and
b reduces to a very small number of additions—that can
be performed in carry save or borrow save), and so that
a multiplication by z = 1/

√
a2 + b2 can be performed

approximately, with a very good approximation, by a very
small number of additions or subtractions. More precisely,
if we aim at implementing precision-p arithmetic, we will
require that z could be rewritten

2e · 1.z1z2z3 · · · zpzp+1zp+2 · · · =
∑

zi2
e−i,

with zi = 0 or ±1 and z1 6= −1, where the number of
nonzero values zi for i ≤ p is less than some very small
bound k. Hence, multiplying by z with relative error less
than 2−p will require less than k additions/subtractions. An
adequate value of k is found by a trial-and-error process: if k
is too large, the multiplications by z will be costly, and if k is
too small, there won’t be many (M,p, k)-friendly points, so
that the largest distance between two consecutive (M,p, k)-
friendly points (which directly determines the accuracy of
the algorithm) will be too large.

Hence, we are interested in pairs of integers (a, b) that
satisfy the following definition.

Definition 1: A pair of integers (a, b) is an (M,p, k)-
friendly point if:

1) 0 ≤ a ≤M and 0 ≤ b ≤M ;
2) the number

z =
1√

a2 + b2

can be written

2e · 1.z1z2z3 · · · zpzp+1zp+2 · · · =
∑

zi2
e−i,

where e is an integer, zi ∈ {−1, 0, 1}, z1 6= −1, and
the number of terms zi such that 1 ≤ i ≤ p and zi 6= 0
is less than or equal to k.

An example of (M,p, k)-friendly point is the following.
Assume M = 255, p = 24, k = 7, and consider a = 72 and
b = 106. We have

z =
1√

a2 + b2
= 0.0000000111111111011100000011110 · · · ,

which can be recoded into its canonical form:

z = 0.0000001000000000100100000100010,

where “1” stands for the digit “−1”. A multiplication by z
reduces to 3 subtractions and one addition. Hence (a, b) is
a (255, 24, 7)-friendly point. Moreover, it is a (127, 24, 5)-
friendly point.

Definition 2: The number α, 0 ≤ α ≤ π/2 is an
(M,p, k)-friendly angle if either α = 0 or

α = arctan
b

a
,

where (a, b) is an (M,p, k)-friendly point.
For instance, Figure 2 presents the (M,p, k)-friendly

points, with M = 64, p = 24, and k = 7, and Figure 3
presents the (M,p, k)-friendly points, with M = 256,
p = 24, and k = 5.

Figure 2. The (M,p, k)-friendly points, with M = 63, p = 24,
and k = 7. The maximum distance between two consecutive angles is
0.0156237 · · · < 2−6.00011.

Figure 3. The (M,p, k)-friendly points, with M = 255, p = 24,
and k = 5. The maximum distance between two consecutive angles is
0.0130652 · · · < 2−6.258.

III. THE ALGORITHM

A. General sketch of the algorithm

Following the previous discussion, our algorithm, given an
input angle x and parameters p, k and M , with (M,p, k)-
friendly points precomputed and stored in a table, consists
of:

• looking up in a table, addressed by a few leading bits
of x, an (M,p, k)-friendly angle x̂ and the associated
values a, b, and z (in canonical form);

• computing, using the bipartite method, sin(θ) and
cos(θ), according to Eqs. (4) and (5), where θ = x− x̂;

• computing C = a cos(θ)− b sin(θ) and S = b cos(θ)+
a sin(θ) using a very few additions/subtractions—since
a and b are less than M , multiplying by a and b requires
at most 1

2 dlog2Me additions/subtractions, that can be
performed without carry propagation using redundant
(e.g., carry-save) arithmetic;

• finally, multiplying C and S by z by adding a very few
(at most k) multiples of C (S), using [k : 2] adders
followed by a carry-propagate adder (which may be
omitted if the results can be used in redundant form).

The efficiency of the method essentially relies on how
small θ can be for not-too-large values of the parameters
M and k. An asymptotic study when p grows remains to
be done, but we can see through some examples that it can
work well.

B. Choosing adequate parameters

Consider the case, exemplified by Figure 3, where M =
255, p = 24, and k = 5. First, we have generated all
(M,p, k)-friendly angles. Then, for any 7-bit number, less

than π/2:
x0.x1x2x3x4x5x6

we have stored in a table T0 the angle that is closest to
x0.x1x2x3x4x5x61. We will name T0(x0, x1, · · ·x6) that
closest value (in fact, we have also stored the corresponding
values of a, b, and 1/

√
a2 + b2 in canonical form). The first

and last entries of Table T0 are given in Figure 4. The largest
distance between x0.x1x2x3x4x5x61 and T0(x0, x1, · · ·x6)
is 2−7.82181. Therefore, for any number x = x0.x1x2 · · ·x24,
x will be at a distance less that

2−7 + 2−7.82181 < 2−6.353

from T0(x0, x1, · · ·x6). We will choose

x̂ = T0(x0, x1, · · ·x6),

so that the corresponding value of θ will have absolute value
less than 2−6.353: we can then use the bipartite method
shown above with k = q = 6 for evaluating cos(θ) and
sin(θ), where θ = x − x̂. The largest value of 1/

√
a2 + b2

stored in the table is around 0.01562.

C. Error bounds

Let us assume that M = 255, p = 24, and k = 5, and let
us assume that we use the bipartite algorithm, with (as we
did in the introduction) j = q = 6. From the error of the
bipartite algorithm (0.047 ·2−24 for cos θ, and 0.0313 ·2−24

for sin θ) one easily deduces that if a and b are the values
selected in Table T0, and if z = 1/

√
a2 + b2, the difference

between the exact and the computed value of cos(x) or
sin(x) is upper-bounded by

2−25 + h(a, b, z),

where the 2−25 comes from the last rounding, and

h(a, b, z) = 0.047 · 2−24 · z · (a+ b)+ (a+ b · 2−6) · 2−24 · z.

The largest value of h(a, b, z) for the 100 entries of the table
is less than 1.049 × 2−24, so that the total (absolute) error
of the algorithm is less than 1.549× 2−24.

D. Critical path

Assuming M = 255, p = 24, and k = 5, we have on the
critical path:

• lookup in a 7-address bit table (that contains 100
elements), to obtain x̂, a, and b;

• computation of θ = x̂− x;
• bipartite method for sin(θ) and cos(θ): 1 table lookup

in a 12-address-bit table followed by an addition;
• multiplication by a (and b: done in parallel), followed

by one addition (e.g., for a cos(θ)− b sin(θ)). This can
be done with 4 carry save additions in the critical path
followed by one carry-propagate addition;

• final multiplication by z: 3 carry-save additions fol-
lowed by one carry-propagate addition.

In the proposed implementation, we consider variants in the
reductions and use of redundant representations until the end
of computation thus avoiding carry-propagate additions until
the end of the algorithm.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

An implementation of the method is shown in Fig. 5.
It consists of several modules which we now describe
in some detail. The modules correspond to the steps of
the algorithm. The argument is x = x0.x1 . . . x24. The
outputs are SIN = sin(x) and COS = cos(x): 24 bits,
rounded. For (M,p, k) = (255, 24, 5), the main modules
are characterized as follows.

T0

a

b

x

BT

CS

OUT

z
x̂

cos(x) sin(x)

(Θ)cos (Θ)sin

C = (CC, CS)

xT

T
3 T

4

T
1

T
2

S = (SC, SS)

Figure 5. Overall block diagram.

Module T0: A look-up table (Fig. 6), requiring 100
words, is addressed by the 7-bit truncated argument xT =
(x0, x1, . . . , x6). The memory stores: a, b (8-bit wide, stored
recoded to radix-4 with digit set {-2,-1,0,1,2} using a total
of 2+4×3= 14 bits for each), the angle x̂ (24 bits), and
z represented with five fields F0, F1, F2, F3, F4, each
field (except the first one) consisting of a sign and an
index of 4 bits, for a total of 2 + 4×5 =22 bits. The
index with value j indicates the position of a non-zero
zj bit. Consequently, a field Fi defines a signed multiple
Mi = C × 2−j , for i = 0, 1, 2, 3, 4, generated in Module
OUT with barrel shifters and complementers. Each field has
an offset 2−offset so that the shifts within a field are relative
to the offset. For example, field F0 covers positions 6, 7, and
8. Consequently, its offset is 6 and relative shifts within the
field are 0, 1, and 2. The offsets for fields F1, F2, F3, F4

x0x1 · · ·xt a b x̂ |x̂− x0x1 · · ·xt1| z

0 128 1 .7812341e− 2 .159e− 6 0.0000001000000000000001000000000
1 128 3 .2343321e− 1 .429e− 5 0.0000001000000000001001000000001

10 130 5 .3844259e− 1 .620e− 3 0.0000001000001000010000000010100
11 255 14 .5484690e− 1 .159e− 3 0.0000000100000000101000100001000

100 204 14 .6852002e− 1 .179e− 2 0.0000000101000000100000000100010
101 255 22 .8606141e− 1 .124e− 3 0.0000000100000000000100101000000
110 226 23 .1014207 .142e− 3 0.0000000100100000100000100000001
111 127 15 .1175656 .378e− 3 0.000000100000000010001000001010

1000 255 34 .1325515 .261e− 3 0.00000001000000010100000000100100
1001 126 19 .1496660 .123e− 2 0.000000100000001001010000000001
1010 245 40 .1618374 .223e− 2 0.0000000100001000000000001010010
1011 247 45 .1802098 .522e− 3 0.0000000100000101000010000000001
1100 251 50 .1966293 .132e− 2 0.0000000100000000000100101000000
1101 125 27 .2127318 .179e− 2 0.000000100000000010001000001010
1110 247 57 .2267988 .236e− 3 0.0000000100000010100010001000000
1111 221 55 .2439137 .173e− 2 0.0000000100100000010001000001000

10000 231 62 .2622183 .441e− 2 0.0000000100010010000000100000001
10001 246 69 .2734610 .235e− 4 0.0000000100000000100000100010001
10010 162 48 .2880554 .101e− 2 0.0000001010000100001000000001000
· · · · · · · · · · · · · · · · · ·

1010010 38 131 1.288468 .594e− 3 0.0000001000100000100010000000010
1010011 67 247 1.305915 .123e− 2 0.0000000100000000000101010000001
1010100 63 248 1.322026 .171e− 2 0.0000000100000000001000001000010
1010101 60 249 1.334340 .160e− 2 0.00000001000000000010000010001010
1010110 56 252 1.352127 .565e− 3 0.00000001000000100010000100100000
1010111 53 253 1.364296 .289e− 2 0.00000001000000101000100001000000
1011000 44 237 1.387232 .442e− 2 0.0000000100010000001000001010000
1011001 39 224 1.398417 .204e− 4 0.0000000100100000010001000100000
1011010 39 251 1.416650 .259e− 2 0.0000000100000010000000010001010
1011011 35 246 1.429468 .219e− 3 0.0000000100001000010000000010100
1011100 32 254 1.445472 .160e− 3 0.00000001000000000000001000000000
1011101 25 227 1.461106 .169e− 3 0.0000000100100001000010000100000
1011110 24 255 1.476955 .393e− 3 0.00000001000000000010000010001010
1011111 19 254 1.496132 .394e− 2 0.0000000100000001010101000000000
1100000 16 255 1.508133 .321e− 3 0.0000000100000000100000000010001
1100001 3 64 1.523956 .518e− 3 0.000001000000000100100000100010
1100010 2 64 1.539556 .494e− 3 0.000001000000000010000000000101
1100011 2 126 1.554925 .237e− 3 0.000000100000100000010000010001
1100100 0 254 1.570796 .484e− 3 0.0000000100000010000001000000100

Figure 4. The first and last values of Table T0, for M = 255, p = 24, and k = 5. There are 100 entries in the table. For each entry
(x0, x1, x2, x3, x4, x5, x6), the distance between x̂ and x0.x1x2 · · ·x61 is less than 2−7.82181.

are 9, 11, 15, and 18, respectively. Shift value j selects a
multiplicand shifted right j places using a barrel shifter. The
offsets are done by wiring. Note that any field can represent
any bit position, i.e., the order is irrelevant. This is used
to minimize the width of the fields. We illustrate the z
fields (before encoding) for the first 5 words of Table T0
in Fig. 7. The field value (0,0), (0,j), and (1,j) indicate that
no multiple, a positive multiple, or a negative multiple is
selected, respectively.

The total width of T0 word is 2×14+24+22 = 64 bits and
the size of the memory is 27 × 26 = 8K bits. The effective

use is less since only 100 out of 128 words are needed.

Table T0

x0 ... x6

a b zx̂

7

(2+4x3) 2414 14

(2+4x(1,4))

22

Figure 6. Table T0.

Address F0 F1 F2 F3 F4

0 (0, 7) (1, 22) (0, 0) (0, 0) (0, 0)
1 (0, 7) (1, 22) (1, 19) (0, 31) (0, 0)
2 (0, 7) (1, 13) (1, 18) (0, 27) (0, 29)
3 (0, 8) (1, 17) (1, 19) (1, 23) (0, 28)
4 (0, 8) (0, 17) (0, 10) (0, 26) (0, 30)

Figure 7. Illustration of fields. (The fields store binary encodings relative
to offsets.)

Module BT : It consists of four (212×28−bit) tables, for
a total of 16K×28 bits, which are used to produce sin(θ) =
(T1, T2) and cos(θ) = (T3, T4) in redundant form according
to Eqs. (4, 5). This is shown in Fig. 8. Leaving the outputs
in redundant form reduces the overall delay at expense of
doubling the number of rows to be reduced in Module CS.
Alternatively, two CPAs can be used to produce sin(θ) and
cos(θ) in conventional form. A direct table lookup would
require two tables of 224 × 28 bits for a total of 32M × 28
bits which is 211 times larger than the tables in the proposed
method.

T
1

T
2

T3 T
4

6 6 6

28 28 28 28

ρ1 ρ2 ρ3

(θ)sin (θ)cos

x

θ = x - x̂

x̂24 24

T
1

T
2

T
3

T
4

Figure 8. Module BT : Bipartite tables Table T1, T2, T3, T4.

Module CS: It produces

C = a cos(θ)− b sin(θ)
= (T3, T4)× a− (T1, T2)× b = (CC , CS)

S = b cos(θ) + a sin(θ)
= (T3, T4)× b+ (T1, T2)× a = (SC , SS)

in redundant form where index C and S denotes carry and
sum bit-vectors. The short operands a, b are stored in T0, re-
coded in 5 radix-4 digits {-2,-1,0,1,2}. Module BT produces
cos(θ) and sin(θ) in redundant form (T3, T4) and (T1, T2),
respectively. The multiplication a cos(θ) = (T3, T4) × a
is performed as reductions by two [5:2] adders in parallel
followed by a [4:2] adder. Similarly, for s

¯
in(θ), c

¯
os(θ), and

a sin(θ). Then the outputs C = (CC , CS) and S = (SC , SS)

in redundant form are obtained with another [4:2] adder,
respectively. The overall scheme of the module is shown in
Fig. 9.

2+4x3 (θ)sin(θ)cos

a (recoded)

28

28

28

28

2 x

[5:2]

[4:2]

2 x

[5:2]

[4:2]

[4:2]

CC

2 x

[5:2]

[4:2]

2 x

[5:2]

[4:2]

[4:2]

b (recoded)

2+4x3

CS SC SS

Figure 9. Module CS: Computation of C = (CC , CS) and S =
(SC , SS) .

Module OUT : This module produces the final results
cos(x) = C × z and sin(x) = S × z, rounded to 24 bits.
Instead of performing multiplications of C and S by z by
multipliers, we propose to use reduction networks on up
to five shifted/negated multiples of C and S, respectively.
The shift distances are stored in T0 as fields F0, . . . , F4.
Multiples of C (S) to two bit-vectors, followed by fast
carry propagate adders (CPA). The inputs are in redundant
form, produced by Module CS as C = (CC , CS) and
S = (SC , SS). So we perform CC × z and CS× z to obtain
redundant output of cos(x) as shown in Fig 10. There are
four blocks identical to the block shown in the figure. Each
block consists of one 2-stage barrel shifter BS2 that shifts
(with respect to the wired-in offset) 0,1, or 2 positions to
the right. The four remaining barrel-shifters BS2, . . . , BS4
are four-stage shifters, shifting 0, 1, ..., up to 15 positions
relative to the offset of a field. The barrel shifters consists
of 2-input multiplexers for each position in each stage.
These are controlled directly (no decoding) by the index
bits in the corresponding field. If a field indicates a negative
shifted multiple, the corresponding complementer CMPL
is activated and the related LSB carries are inserted into the
reduction network. The reduction is performed using [5:2]
adders, followed by a [4:2] adder. If the result is needed in
a conventional form, a CPA is used.

We now estimate the delay of the implementation. Fol-
lowing the path through the main modules, we have

BS2+
CMPL

[4:2]

BS4+
CMPL

BS4+
CMPL

BS4+
CMPL

BS4+
CMPL

F0

2

F1

(1,4)

F2

(1,4)

F3

(1,4)

(F0,F1,F2,F3,F4)

(1,4)

[5:2] cin

cin

BLOCK

CPA cin

24

24

cos(x)

(sign bits

of Fi’s)

(sign bits

of Fi’s)

(sign bits

of Fi’s)

CS

CC

CS *z

Figure 10. Computation of cos(x). BSv denotes v-level barrel shifter.
(Similar block computes sin(x)).

TCOS−SIN ≈ tT0
+ tBT + tCS + tOUT + tCPA

≈ tROM (27) + tROM (212)
+(tmgen + tbuff + t5:2 + 2× t4:2)
+(tbuff + 4× tmux2 + tXOR + t5:2 + t4:2)
+tCPA

An optimized [5:2] adder has a critical path equivalent
4tXOR ≈ 2tFA [9]. A [4:2] adder has a critical delay
of about 3tXOR ≈ 1.5tFA. We assume that tbuff , tmgen

and tmux2 are roughly 0.5tFA, tROM (27) ≈ tFA, and
tROM (212) ≈ 2tFA. The carry-propagate adder of parallel-
prefix type over 24 bits is estimated to have a delay of 4tFA.
Then we get

TCOS−SIN ≈ tFA(1 + 2 + 0.5 + 0.5 + 2 + 2× 1.5
+0.5 + 4× 0.5 + 0.5 + 2 + 1.5) + 4

= 19.5tFA

A rough comparison with a fully-unfolded CORDIC
scheme [10] for computing cos and sin functions, using
double rotations, and having a stage delay of about 2TFA,
indicates that the proposed method is roughly twice as fast
for 24-bit case. We make no comments on relative cost at
this time.

V. SUMMARY AND FUTURE WORK

We have introduced a new way of reducing the input
argument, so that a bipartite method can be employed for
evaluating trigonometric functions with a reasonably large
precision. We have investigated its properties in special
cases. We have illustrated the methods applicability by
describing a fully combinational scheme for computing 24-
bit cos and sin functions. The method can be implemented in
several alternative ways to achieve desired delay-cost trade-
offs. More detailed implementations and their realizations

in particular technologies remain to be done. A preliminary
rough comparison with a CORDIC approach indicates a
potential speedup of 2. In general, we would like to be
able to predict values of M and k, as well as number
of bits of address for the first table T0, that will be of
interest for a given precision p. This requires solving several
theoretical problems such as predicting the gap between
two consecutive friendly angles, which is linked to the
probability that a p-bit chain can be recoded into canonical
form with at most k nonzero digits. We plan to address these
problems in the near future.

REFERENCES

[1] D. A. Sunderland, R. A. Strauch, S. W. Wharfield, H. T. Peter-
son, and C. R. Cole, “CMOS/SOS frequency synthesizer LSI
circuit for spread spectrum communications,” IEEE Journal of
Solid State Circuits, vol. SC-19, no. 4, pp. 497–506, 1984.

[2] D. D. Sarma and D. W. Matula, “Faithful bipartite ROM
reciprocal tables,” in Proceedings of the 12th IEEE Symposium
on Computer Arithmetic (ARITH-12), Knowles and McAllister,
Eds. IEEE Computer Society Press, Los Alamitos, CA, Jun.
1995, pp. 17–28.

[3] M. J. Schulte and J. Stine, “Symmetric bipartite tables for accu-
rate function approximation,” in Proceedings of the 13th IEEE
Symposium on Computer Arithmetic, I. T. Lang, J. Muller, and
N. Takagi, Eds. IEEE Computer Society Press, Los Alamitos,
CA, 1997.

[4] M. J. Schulte and J. E. Stine, “Accurate function evaluation
by symmetric table lookup and addition,” in Proceedings of
the IEEE International Conference on Application-Specific
Systems, Architectures and Processors (Zurich, Switzerland),
Thiele, Fortes, Vissers, Taylor, Noll, and Teich, Eds. IEEE
Computer Society Press, Los Alamitos, CA, 1997, pp. 144–
153.

[5] F. de Dinechin and A. Tisserand, “Multipartite table methods,”
IEEE Transactions on Computers, vol. 54, no. 3, pp. 319–330,
Mar. 2005.

[6] D. W. Matula and M. T. Panu, “A prescale-lookup-postscale
additive procedure for obtaining a single precision ulp accurate
reciprocal,” in IEEE Symposium on Computer Arithmetic,
2011, pp. 177–183.

[7] G. W. Reitwiesner, Binary arithmetic, ser. Advances in Com-
puters, 1960, vol. 1, pp. 231–308.

[8] A. D. Booth, “A signed binary multiplication technique,” Quar-
terly Journal of Mechanics and Applied Mathematics, vol. 4,
no. 2, pp. 236–240, 1951, reprinted in E. E. Swartzlander,
Computer Arithmetic, Vol. 1, IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[9] R. Menon, and D. Radhakrishnan,”High performance 5 : 2
compressor architectures”, IEE Proceedings - Circuits, Devices
and Systems, 153(5):447-452, 2006.

[10] J. Duprat and J.-M. Muller, ”The CORDIC algorithm: New
results for fast VLSI implementation.” IEEE Trans. Computers,
42(2):168-78,1993.

