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Abstract— After a brief reminder of Ercegovac’s E-method,
we introduce the notion of E-fraction (which is a fraction com-
putable, in a given interval, by the E-method). We characterize
the fractions that are E-fractions and give an algorithm for
checking whether a given function is approximable by an E-
fraction.

I. THE E-METHOD

We all know that, in general, rational approximations of
a given degree (say, the same for numerator and denomina-
tor) to a function are much more accurate than polynomial
approximations of the same degree. And yet, rational approxi-
mations are rather seldom used for approximating elementary
functions in the libraries of current use, because floating-point
division is much slower than floating-point multiplication.
The situation becomes quite different if we use the E-method.

The E-method, introduced in [2], [3], allows efficient so-
lution of diagonally dominant systems of linear equations on
simple and highly regular hardware. Since the evaluation of
polynomials and certain rational functions can be achieved by
solving the corresponding linear systems, the E-method is an
attractive general approach for function evaluation. Consider
evaluation of

R(x) =
pmxm + pm−1x

m−1 + · · · + p0

qkxk + qk−1xk−1 + · · · + q1x + 1
,

where the pis and qis are real numbers, and define n =
max{m, k}, pj = 0 for m + 1 ≤ j ≤ n, and qj = 0 for
k + 1 ≤ j ≤ n.

One can show that R(x) is equal to y0, where
[y0, y1, . . . , yn]t is the solution of the following linear sys-
tem:⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

The radix-2 E-method consists in solving this linear system
by using the following basic recursion (where A is the matrix
of the above linear system):

w(j) = 2 ×
[
w(j−1) − Ad(j−1)

]
(2)

i.e., for i = 1, . . . , n − 1,

w
(j)
i = 2 ×

[
w

(j−1)
i − qid

(j−1)
0 − d

(j−1)
i + d

(j−1)
i+1 x

]
,

and

w
(j)
0 = 2 ×

[
w

(j−1)
0 − d

(j−1)
0 + d

(j−1)
1 x

]
,

and

w(j)
n = 2 ×

[
w(j−1)

n − d(j−1)
n

]

with w(0) = [p0, p1, . . . , pn]t, where the values d
(j)
i ∈

{−1, 0, 1}. Define the number D
(j)
i = d

(0)
i .d

(1)
i d

(2)
i . . . d

(j)
i

(the d
(j)
i are the digits of a radix-2 signed-digit [1] represen-

tation of D
(j)
i ). One can show that if the sequence |w(j)

i | is
bounded, then D

(j)
i goes to yi as j goes to infinity.

The problem at step j is to find a selection function that
gives a value of the terms d

(j)
i from the terms w

(j)
i such that

the values w
(j+1)
i will remain bounded. In [3], the following

selection function (a form of rounding) is proposed

s(x) =
{

sign x × �|x + 1/2|� , if |x| ≤ 1
sign x × �|x|� , otherwise,

(3)

and applied to the following cases:

1) d
(j)
i = s(w(j)

i ), i.e., the selection requires non-
redundant w

(j)
i ;

2) d
(j)
i = s(ŵ(j)

i ), where ŵ
(j)
i is an approximation of w

(j)
i

(in practice, ŵ
(j)
i is deduced from a few digits of w

(j)
i

by the means of a rounding or a truncation)

Assume ⎧⎨
⎩

∀i, |pi| ≤ ξ,
∀i, |x| + |qi| ≤ α,

|w(j)
i − ŵ

(j)
i | ≤ ∆

2 .
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The E-method gives a correct result provided that the above
defined bounds ξ, α, and ∆ satisfy⎧⎪⎪⎨

⎪⎪⎩
ξ = 1

2 (1 + ∆),

0 < ∆ < 1,

α ≤ 1
4 (1 − ∆).

(4)

For instance, if ∆ = 1
2 , one can evaluate R(x) for |x| ≤ 1

16 ,
max |pi| ≤ 3

4 and max |qi| ≤ 1
16 . Those bounds may seem

quite restrictive, but in practice:
• if we only wish to evaluate polynomials (i.e., q1 = q2 =

· · · = qn = 0), there exist scaling techniques that make
it possible to evaluate any polynomial, in any domain;

• if we wish to evaluate rational functions, of course some
“scaling” is possible: we can multiply R(x) by a power
of 2, so that the pi are multiplied by the same power of
2. Also, multiplying x by 2j , one computes the same
function, with pi and qi multiplied by 2−ij , but we
cannot evaluate all rational functions. In the following,
we call E-fractions the functions that are computable
using the E-method (a more formal definition is given
in the next section).

II. E-FRACTIONS

Definition 1 ((n, p)-fractions): In the following, we call
(n, p)-fraction a rational function whose numerator is of
degree less than or equal to n, and whose denominator is
of degree less than or equal to p.

A. Motivation

As we have seen previously, there is a change of variables
that makes it possible to evaluate any polynomial in any
domain using the E-method. This is not true for rational
functions. And yet, using rational approximations of functions
could sometimes be more interesting than using polynomial
approximations. The reasons for that are the following:

• firstly, evaluating with the E-method (i.e., using iteration
(2)) an (n, n)-fraction is only slightly more expensive
than evaluating a degree-n polynomial;

• secondly, in practice, the best approximation to a given
function with an (n, p)-fraction is as accurate as the best
approximation with a polynomial of degree very close
to n + p. This is illustrated by Table I.

Definition 2: Let I be the interval [−a, a], and let ∆ be a
parameter, 0 < ∆ < 1.

R(x) =
p0 + p1x + · · · + pmxm

q0 + q1x + · · · + qkxk

is an E-fraction for interval I and parameter ∆ if there exists
another fraction

R′(x) =
p′0 + p′1x + · · · + p′mxm

1 + q′1x + · · · + q′kxk

such that

1) there exist two integers j1 and j0 such that

R(x) = 2j1R′ (2j0x
)
;

2) the coefficients of R′ satisfy{
|p′i| ≤ 1

2 (1 + ∆),

|q′i| + 2j0a ≤ 1
4 (1 − ∆),

for any i.
It is worth being noticed that the fraction R′ of Definition 2

is immediately computable by the E-method, with parameter
∆, in the interval [−2j0a, 2j0a]. Hence, Definition 2 defines
the rational functions that will be computable in interval I by
the E-method with a simple change of variable.

B. Characterization of E-fractions

The following result shows that almost all rational func-
tions will be computable, if interval I is small enough.

Theorem 1: Let

R(x) =
p0 + p1x + · · · + pmxm

q0 + q1x + · · · + qkxk

be a rational function, and let ∆ be a parameter, 0 < ∆ < 1.
If q0 �= 0 then there exists a > 0 such that R is an E-fraction
for interval I = [−a, a] and parameter ∆.
Proof. We will proceed by successive transformations of the
initial fraction. Assume a (momentarily) arbitrary value a >
0. First, define

ξ =
1
2
(1 + ∆),

and

α =
1
4
(1 − ∆).

TABLE I

FOR A GIVEN FUNCTION f AND DOMAIN, AND A GIVEN ERROR ε, nPOL

IS THE SMALLEST DEGREE OF A MINIMAX POLYNOMIAL THAT

APPROXIMATES f WITH ERROR ≤ ε, AND nFRAC IS THE SMALLEST

NUMERATOR AND DENOMINATOR DEGREE OF AN (n, n)−FRACTION

THAT APPROXIMATES f WITH ERROR ≤ ε.

function domain ε npol nfrac

exp(x) [0, 1] 10−10 8 4

exp(x) [−1/128, 1/128] 10−20 6 3

arctan(x) [−1, 1] 10−2 3 2

log(1 + x) [−1/4, 1/4] 2−24 7 3

sin(x) [0, π/4] 2−16 4 2

cos(x) [0, π/8] 2−53 9 5

log(1 + 2x) [−1/2, 1/2] 2−53 12 6
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1) we first divide all coefficients by the degree-0 coeffi-
cient of the denominator of R. This gives

R(1)(x) =
p
(1)
0 + p

(1)
1 x + · · · + p

(1)
m xm

1 + q
(1)
1 x + · · · + q

(1)
k xk

,

with, for any i, p
(1)
i = pi/q0 and q

(1)
i = qi/q0. This first

step is not really a “transformation”, since, obviously,
R(1)(x) = R(x). Being able to perform that step
requires that q0 be nonzero.

2) Let j0 be the largest integer such that∣∣2j0a
∣∣ ≤ α

2
,

and define, for any i,⎧⎨
⎩ p

(2)
i = 2−j0ip

(1)
i

q
(2)
i = 2−j0iq

(1)
i

The rational function

R(2)(x) =
p
(2)
0 + p

(2)
1 x + · · · + p

(2)
m xm

1 + q
(2)
1 x + · · · + q

(2)
k xk

satisfies
R(x) = R(2)

(
2j0x

)
.

Notice that

max
i=1,...,k

∣∣∣q(2)
i

∣∣∣ = max
i=1,...,k

2−j0i

∣∣∣∣ qi

q0

∣∣∣∣ .

3) Choose j1 equal to the smallest integer such that

max
i=1,...,m

∣∣∣∣∣p
(2)
i

2j1

∣∣∣∣∣ ≤ ξ,

and define, for any i,⎧⎨
⎩ p

(3)
i = p

(2)
i /2j1 ,

q
(3)
i = q

(2)
i .

Define R′ as

R′(x) =
p
(3)
0 + p

(3)
1 x + · · · + p

(3)
m xm

1 + q
(3)
1 x + · · · + q

(3)
k xk

.

This rational function satisfies

R(x) = 2j1R′ (2j0x
)
.

Therefore, if

max
i=1,...,k

2−j0i

∣∣∣∣ qi

q0

∣∣∣∣ ≤ α

2
(5)

then R is an E-fraction for interval [−a, a] and param-
eter ∆.
From the definition of j0, we have

2j0a ≤ α

2
< 2j0+1a,

therefore,
α

4a
< 2j0 ,

hence, for any i, ∣∣∣q(3)
i

∣∣∣ ≤ (
4a

α

)i
qi

q0
. (6)

Equation (6) shows that if a is small enough, all values∣∣∣q(3)
i

∣∣∣ will be less than α/2, so that R will be an E-fraction

for interval [−a, a] and parameter ∆. This ends the proof of
Theorem 1. �

When the problem at stake is to approximate functions for
which range reduction to a small interval is easily feasible,
Theorem 1 is immediately applicable. Examples are the
exponential, logarithm and trigonometric functions. Let us
examine an example with more details.

C. Application: exponential function in [−1, 1]

Let us consider rational approximations to the exponential
function in [−1, 1], with numerators and denominators of
degree 3. Let us choose ∆ = 1/2. Consider the (3, 3)-Pade
approximant to exp(x):

R(x) =
1 + 1/2 x + 1/10 x2 + 1/120 x3

1 − 1/2 x + 1/10 x2 − 1/120 x3
.

This rational fraction is not an E-fraction for interval [−1, 1]
and ∆ = 1/2. And yet, it is an E-fraction for interval
[−1/128, 1/128] and ∆ = 1/2. The corresponding fraction
transformation is

R(x) = 22R′(23x)

with

R′(x) =
1/4 + 1/64 x + 1/2560 x2 + 1/245760 x3

1 − 1/16 x + 1/640 x2 − 1/61440 x3
.

The approximation error is 1.78×10−20 which is quite good.
Getting a similar error in the same interval with a minimax
polynomial approximation would require a polynomial of
degree 6. Range reduction to [−1/128, 1/128] is done rather
easily, if we assume that the values exp(i/128) are pre-
computed and stored for i = −128, . . . , 128.

It is possible to get an even better rational approximation to
the exponential function, that is also an E-fraction for interval
[−1/128, 1/128] and ∆ = 1/2, by starting from the minimax
rational approximation of degree-3 numerator and denomina-
tor to exp(x) in [−1/128, 1/128]. The approximation error
becomes 2.75 × 10−22.

In the appendix, we give a Maple program that computes
the best rational approximation to a given function f in an
interval I = [−xmax,+xmax] and checks if the obtained
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approximation is an E-fraction. Using that program, we have
for instance obtained the following results:

• the best (3, 3)-fraction for sin(x) in I =
[−π/64, +π/64] is an E-fraction in I . The
approximation error is 1.83× 10−17, which corresponds
to around 57 bits of accuracy. Reaching the same
accuracy with a polynomial would require degree 6:
that would correspond to an operator twice as large;

• the best (2, 2)-fraction for log(1 + x) in I =
[− log(2)/256, + log(2)/256] is an E-fraction in I . The
approximation error is 1.56× 10−18, which corresponds
to around 59 bits of accuracy. Reaching the same accu-
racy with a polynomial would require degree 5.

CONCLUSION

We are able to determine if a rational function is an E-
fraction in a given domain. Using that, we are able to find
good rational approximations to most usual functions, that
can be evaluated using the E-method.
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Our Maple program
The following program computes the best rational ap-

proximation to a given function f in an interval I =
[−xmax,+xmax] and checks if the obtained approximation
is an E-fraction.

Efraction := proc(f,xmax,degnum,degden,Delta);
Digits := 45:
with(numapprox):
# computation of best rational approximation of f
# in [0,xmax]
# with degree degnum numerator
# and degree degden denominator
R := minimax(f(x),x=0..xmax,[degnum,degden],1,’err’);
# xmax is divided by the smallest value 2ˆkx
# such that xmax/2ˆkx is less than 1/8(1-Delta)
# the 1/8(1-Delta) is arbitrary
# it comes from xmax + max|qi| < 1/4(1-Delta)
# I have cut the 1/4(1-Delta) in two parts
kx := floor(log(xmax)/log(2.0));
boundx := (1/8)*(1-Delta);
xmaxnew := evalf(xmax/2ˆkx);
while xmaxnew > boundx do

xmaxnew := xmaxnew/2; kx := kx+1 od;
Rup := numer(R); Rdown := denom(R);
# we divide the coefficients by the degree-0
# coefficient of the denominator
for i from 0 to degnum do numerator[i] :=

coeff(Rup,x,i)/coeff(Rdown,x,0); od;
for i from 0 to degden do denominator[i] :=

coeff(Rdown,x,i)/coeff(Rdown,x,0); od;
# we take into account the scaling on x
for i from 0 to degnum do

numerator[i] := 2ˆ(kx*i)*numerator[i] od;
for i from 0 to degden do

denominator[i] := 2ˆ(kx*i)*denominator[i] od;
scalmaxnum := floor(log(abs(numerator[0]))/log(2.0));
for i from 1 to degnum do

tempmax := floor(log(abs(numerator[i]))/log(2.0));
if tempmax > scalmaxnum
then scalmaxnum := tempmax; fi

od;
twopscalmaxnum := 2ˆ(scalmaxnum+2);
for i from 0 to degnum do

numerator[i] := numerator[i]/twopscalmaxnum od;
OK := true;
boundqi := (1/8)*(1-Delta);
for i from 1 to degden do

if abs(denominator[i]) > boundqi then
OK := false fi od;

if OK then
printf("** The obtained approximation is

an E-fraction **\n");
printf("f(x) = 2ˆ%a R(2ˆ%ax), where R is\n",
scalmaxnum+2,-kx);
printf("Error: %a, which means %a bits of
accuracy\n",

err,evalf(-log(abs(err))/log(2.),2));
printf("Numerator: \n");

for i from 0 to degnum do printf("Degree %a : %a\n",
i,numerator[i]) od;

printf("Denominator: \n");
for i from 0 to degden do printf("Degree %a : %a\n",
i,denominator[i]) od;
else printf("** The obtained approximation is
NOT an E-fraction **\n"); fi

end;

An example using our program
> Efraction(x -> sin(x),Pi/64,3,3,1/2);
** The obtained approximation is an E-fraction **
f(x) = 2ˆ1 R(2ˆ0x), where R is
Error: .183078739413985291741196088010e-16,

which means 57. bits of accuracy
Numerator:
Degree 0 : .9153936970699046151929920426083131e-17
Degree 1 : .4999999999999817248496946178784821
Degree 2 : .9648050586288877689143893172480277e-3
Degree 3 : -.583409301613327113256598660327032e-1
Denominator:
Degree 0 : 1.000000000000000000000000000000000
Degree 1 : .1929610105344390635659656884237157e-2
Degree 2 : .4998480780014991850985908388598444e-1
Degree 3 : .3215169326520229484056893731331355e-3
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