
Sparse-Coefficient Polynomial Approximations for
Hardware Implementations

Nicolas Brisebarrea,b, Jean-Michel Mullera and Arnaud Tisseranda

aArénaire project (CNRS–ENS Lyon–INRIA–UCBL)
Laboratoire de l’Informatique du Parallélisme (LIP)

Ecole Normale Supérieure de Lyon (ENS Lyon)
46 allée d’Italie.

F–69364 Lyon Cedex 07, France
E-mail: {firstame.lastname}@ens-lyon.fr

bLArAl
Université J. Monnet

23, rue du Dr P. Michelon
F–42023 St-Étienne Cedex, France

Abstract— This paper presents a method for automatic gener-
ation of best polynomial approximations dedicated to hardware
implementation. The generated polynomial approximations lead
to high-speed and small hardware operators because of the
use of sparse coefficients (i.e. we include fixed strings of zeros
in the binary representation of the coefficients). Two different
solutions have been investigated for the generation of the sparse-
coefficient polynomial approximations. Our first results show
up to 47% smaller coefficients compared to standard minimax
approximations for comparable accuracy.

INTRODUCTION

Polynomial approximations are widely used in digital sys-
tems. For instance, elementary functions (i.e. sine, cosine,
exponential, logarithm, arctangent, etc) are often evaluated
using polynomials. A presentation of elementary function
algorithms that use polynomial approximation can be found
in [1]. In some digital signal processing applications, such
as frequency demodulation, low degree polynomials are often
used for evaluating reciprocals. Other algebraic functions, such
as square root or square root reciprocal can be efficiently
approximated using polynomials.

In hardware implementation of polynomial approximations,
the size of the multipliers is a major concern. Several solutions
have been investigated to limit their size. For instance, in [2] a
method based on argument reduction and series expansions, is
used for the evaluation of reciprocals, square roots, reciprocal
square roots, and some elementary functions using small
multipliers and tables. A method based on a small table and
a modified multiplication is presented in [3]. In [4] a method
based on a degree-2 polynomial and a specialized squaring unit
is proposed. That solution leads to 50% area savings compared
to standard methods. Table and add methods, such as the
multipartite table method [5], [6], [7], have been introduced
to avoid the use of multipliers. Those methods are limited to
moderate precision and use large silicon area for each function
being evaluated.

In this work we focus on “small” multiplications with
sparse coefficients (i.e. the multiplier operand can be written
using fixed strings of bits stuck at 0) for the polynomial
approximations. The sparse coefficients allow to replace the
complete reduction tree of the multipliers by smaller ones.
This leads to smaller and faster circuits.

This paper is organized as follows. A method [8] for gen-
erating polynomial approximation with exactly representable
coefficients is summarized in Section I. The two proposed
methods for generating sparse-coefficient polynomial approx-
imations are presented in Section II. The first results of the
proposed method are presented in Section III.

I. POLYNOMIAL APPROXIMATION WITH EXACTLY

REPRESENTABLE COEFFICIENTS

When implementing a given function f on a given real
compact interval [a, b], one usually uses polynomial approxi-
mations, such as minimax approximations which minimize the
distance

||p − f ||∞,[a,b] = sup
a≤x≤b

|p(x) − f(x)|,

where p ∈ Rd[X], the vector space of polynomials with real
coefficients and degree at most d, d being a given integer.
Minimax approximations, that can be computed thanks to an
algorithm due to Remez [9], have a major drawback: in most
cases, their coefficients are not exactly representable with a
finite number of bits. In [8], the authors propose an efficient
method for computing a polynomial which minimizes the
distance ||p − f ||∞,[a,b] among the polynomials p ∈ Rd[X]
that fulfill some given constraints on the size in bits of their
coefficients.

More precisely, let m0, . . . ,md be a finite sequence of
integers. Let

Pm
d =

{
q(x); ai ∈ Z,∀i = 0, . . . , d,

5320780386221/04/$20.00 ©2004 IEEE

➠ ➡

where

q(x) =
a0

2m0
+

a1

2m1
x + · · · +

ad

2md
xd

}
.

We look for for a polynomial p ∈ Pm
d which minimizes

||q − f ||∞,[a,b] where q is any polynomial of Pm
d . The key

idea is to construct a rational polytope P of R
d+1, which

the numerators of the coefficients of p belong to, such that
P contains a number as small as possible of points of Z

d+1.
Once this polytope is built, we perform an exhaustive search
by computing the norms∥∥∥ a0

2m0
+

a1

2m1
x + . . .

ad

2md
xd − f

∥∥∥
∞,[a,b]

with (a0, a1, . . . , ad) ∈ P∩Z
d+1. We use linear programming

tools to efficiently run through all the points of P ∩ Z
d+1.

This method is flexible since it also applies if some other
constraints (such as requiring some coefficients to be equal to
some predefined constants, or minimizing relative error instead
of absolute error) are required.

This method is implemented in the machine-efficient poly-
nomial library (MEPLib [10]) by the authors (C library under
LGPL license). This library generates polynomial approxima-
tions with exactly representable coefficients with respect to
arbitrary precision requirements.

II. SPARSE-COEFFICIENT POLYNOMIAL APPROXIMATIONS

In this work, we deal with polynomial approximations
in Pm

d with sparse coefficients. This means that in all the
coefficients, there are several bits fixed to 0 such as coefficient
examples presented in Figure 1. Our method generates the best
possible approximations of f among the polynomials of Pm

d

with sparse coefficients. The presented method ensures that
all generated polynomials p are such that ||p − f ||∞,[a,b] is
minimal with p in Pm

d with sparse coefficients.

00...a)

b)

w =0

w =0
0...00 0...

s i,2 s

w

ss s

ww

c c

c c c

mi

i,1

i,2 i,1

i,1
i,2

i,1

i,1i,2

i,2

i,3

i,3

i,1i,2i,3

00

Fig. 1. Kinds of target coefficients. The grey areas are only composed of
0s. Cases a and b show respectively 2 and 3 chunks coefficients.

Each numerator ai of the polynomial coefficient is a mi-
bit integer (with i ∈ {0, 1, . . . , d}). The sparse-coefficient

formulation splits the value ai into k chunks ci,j . The chunks
are small signed integers. The size of the different chunks are
the values si,j with j ∈ {1, . . . , k}. The weight of the chunk
ci,j is the value 2wi,j as illustrated on Figure 1. The weight
of the least significant chunk is wi,1 = 0. The value of a
coefficient ai is then:

ai =
k∑

j=1

ci,j × 2wi,j .

The goal of this sparse-coefficient formulation is to find
polynomials with all coefficients having a number of nonzero
bits smaller than

∑d
i=0 mi.

d∑
i=0

k∑
j=1

si,j <<

d∑
i=0

mi.

We have to modify the method presented in Section I. We
investigated two different solutions. The first one is based on
filtering the results from Section I. The second one is based
on formulation of a new polytope.

A. Filtering

The results produced by MEPLib can be filtered. For each
candidate polynomial, the filter verifies that all its coefficients
can be represented using the target sparse format.

First of all, the list of the possible coefficients is built from
the specifications of the target format. Let us consider a small
example. On a 7-bit format, we consider 3 chunks with the
following sizes and weights:

chunk ci,3 ci,2 ci,1

size si,3 = 1 si,2 = 1 si,1 = 1
weight wi,j = 6 wi,j = 3 wi,j = 0

Based on this format the list of the possible coefficients
greater than 0 is:

0, 1, 7, 8, 9, 55, 56, 57, 63, 64, 65, 71, 72, 73.

The algorithm scans for each candidate polynomial if all its
coefficient are in the list. If yes the polynomial is a sparse-
coefficient polynomial. If not, the polynomial is discarded.

Among all sparse-coefficient polynomials filtered out by
our method, the result is the polynomial with the smallest
approximation error (this sorting is done using Maple).

B. New Polytope Formulation

Some additional constraints are required to handle this
sparse-coefficient formulation. Indeed, we now have to build
a rational polytope of R

k(d+1) which the ci,j belong to. In
this new polytope formulation the ci,j are limited to si,j-bit
integers. I.e., for all possible values of i and j, we have:

|ci,j | ≤ 2si,j − 1.

The algorithm incrementally scans values for k and si,j with
respect to an arbitrary accuracy target. At each iteration the
accuracy of the best generated polynomials is verified. In case

533

➡ ➡

of a not precise enough result the values of k and si,j are
incremented.

Some other constraints should be verified (non-overlapping
of the chunks, non-overflow of the chunk with respect to the
mi-bit words. . .). Those constraints are verified before the first
production of polytope to avoid a memory increase. Those
constraints are not useful to the polytope scanning but only to
verify that the polytope represents a well formed polynomial.

C. Comparison of the Two Solutions

The two methods have been implemented. Our first results
show that the current implementation of the second one
(the new polytope formulation) leads to polytopes defined
by higher dimension matrices and requires significantly more
memory than the first one (filtering).

III. EXAMPLES

All the following examples have been tested on a 15-
bit format and degree-2 polynomials. The target format is
composed of 4 chunks (chunk number 4 is the most significant,
and chunk number 1 is the least significant). All the following
examples have been tested using the first method (filtering).

For each function, we compare the accuracy of the best
sparse-coefficient polynomial with the accuracy of the min-
imax polynomial given Remez’s algorithm (computed using
Maple). This gives an idea of the “degradation” of the accuracy
compared to the best theoretical polynomial (but with not
representable coefficients).

A. Cosine Function

The cos function is approximated on the interval [0, π/4].
The upper bound π/4 is approximated using the value
351/452.

The Remez algorithm gives the best polynomial (with real
coefficients) with 10.01 bits of accuracy (this is the reference
accuracy).

Our method returns the best sparse-coefficient polynomial
with the following format:

chunk 4 3 2 1
size 2 3 2 1

weight 14 8 5 0

For this target format (illustrated on Figure 2), our method
returns only 1 polynomial with an approximation error of 9.93
bits (which is very close to the best possible one). This leads
to a 47% size reduction of the coefficient useful width. The
corresponding best sparse-coefficient polynomial is:

p =
32799
32768

− 609
32768

x − 14881
32768

x2.

0123456789101112131415

Fig. 2. Target format for cos function.

If we allow larger chunks, the accuracy improves but only
in a very small amount. For instance, with respect to the target
format:

chunk 4 3 2 1
size 3 3 3 3

weight 13 8 4 0

our method returns 134 sparse-coefficient polynomials. The
best one has an approximation error up to 9.96 bits. This leads
to a 20% size reduction of the coefficient useful width. The
corresponding best sparse-coefficient polynomial is:

p =
32800
32768

− 607
32768

x − 14887
32768

x2.

B. Sine Function

The sin function is approximated on the interval [0, π/4].
The Remez algorithm gives the best polynomial with 8.76

bits of accuracy.
Our method returns the best sparse-coefficient polynomial

with the following format:

chunk 4 3 2 1
size 1 2 4 4

weight 15 11 5 0

For this target format (illustrated on Figure 3), our method
returns 62 polynomials with an approximation error up to 8.75
bits. This leads to a 27% size reduction of the coefficient useful
width. The corresponding best sparse-coefficient polynomial
is:

p = − 75
32768

+
34538
32768

x − 6169
32768

x2.

0123456789101112131415

Fig. 3. Target format for sin function.

C. Exponential Function

The function exp is approximated on the interval [0, 1/2].
The Remez algorithm gives the best polynomial with 10.21

bits of accuracy.
Our method returns the best sparse-coefficient polynomial

with the following format:

chunk 4 3 2 1
size 2 3 4 3

weight 14 10 5 0

For this target format (illustrated on Figure 4), our method
returns 1 polynomial with an approximation error of 10.17
bits (which is very close to the best possible one). This leads
to a 20% size reduction of the coefficient useful width. The
corresponding best sparse-coefficient polynomial is:

p =
32793
32768

+
31836
32768

x +
21146
32768

x2.

534

➡ ➡

0123456789101112131415

Fig. 4. Target format for exp function.

D. Reciprocal Square Root Function

The function 1√
1+x

is approximated on the interval [0, 1/4].
The Remez algorithm gives the best polynomial (with real

coefficients) with 13.25 bits of accuracy.
Our method returns the best sparse-coefficient polynomial

with the following format:

chunk 4 3 2 1
size 3 1 3 2

weight 13 10 6 0

For this target format (illustrated on Figure 5), our method
returns 1 polynomial with an approximation error of 13.20
bits (which is very close to the best possible one). This leads
to a 40% size reduction of the coefficient useful width. The
corresponding best sparse-coefficient polynomial is:

p =
32765
32768

− 16131
32768

x +
9277
32768

x2.

0123456789101112131415

Fig. 5. Target format for 1√
1+x

function.

IV. CONCLUSION AND FUTURE PROSPECTS

Solutions for generating sparse-coefficient polynomial ap-
proximations have been investigated. The proposed methods
produce coefficients with up to 47% of bits stuck at 0 with
fixed positions (with an average value around 30%). These
results will lead to smaller and faster circuits.

In a near future, we plan to work on the polytope scan-
ning algorithms in order to reduce the memory requirements.
We also plan to generate VHDL descriptions of polynomial
evaluation circuits using our method.

ACKNOWLEDGMENT

The authors would like to thank the “Ministère Français de
la Recherche” for his financial support (grant ACI-NIM-2004-
212 “ACI Nouvelles Interfaces des Mathématiques”).

REFERENCES

[1] J.-M. Muller. Elementary Functions: Algorithms and Implementation.
Birkhäuser, Boston, 1997.

[2] M.D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand. Reciprocation,
square root, inverse square root, and some elementary functions using
small multipliers. IEEE Transactions on Computers, 49(7):627–637,
July 2000.

[3] N. Takagi. Powering by a table look-up and a multiplication with
operand modification. IEEE Transactions on Computers, 47(11):1216–
1222, 1998.

[4] J. A. Pineiro, J. D. Bruguera, and J.-M. Muller. Faithful powering
computation using table look-up and a fused accumulation tree. In
Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
pages 40–47. IEEE Computer Society, 2001.

[5] D. A. Sunderland, R. A. Strauch, S. S. Wharfield, H. T. Peterson,
and C. R. Role. CMOS/SOS frequency synthesizer LSI circuit for
spread spectrum communications. IEEE Journal of Solid State Circuit,
19(4):497–506, August 1984.

[6] M. Schulte and J. Stine. Approximating elementary functions with
symmetric bipartite tables. IEEE Transactions on Computers, 48(8):842–
847, August 1999.

[7] F. de Dinechin and A. Tisserand. Some improvements on multipartite
tables methods. In N. Burgess and L. Ciminiera, editors, 15th Interna-
tional Symposium on Computer Arithmetic ARITH15, pages 128–135,
Vail, Colorado, June 2001. IEEE.

[8] N. Brisebarre, J.-M. Muller, and A.Tisserand. Computing machine-
efficient polynomial approximations. submitted, 2004.

[9] E. Remes. Sur un procédé convergent d’approximations successives
pour déterminer les polynômes d’approximation. C.R. Acad. Sci. Paris,
198:2063–2065, 1934.

[10] N. Brisebarre, F. Hennecart, J.-M. Muller, A. Tisserand, and S. Torres.
MEPLib. http://lipforge.ens-lyon.fr/, 2004.

535

➡ ➠

