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ABSTRACT
Performing numerical computations, yet being able to pro-
vide rigorous mathematical statements about the obtained
result, is required in many domains like global optimization,
ODE solving or integration. Taylor models, which associate
to a function a pair made of a Taylor approximation poly-
nomial and a rigorous remainder bound, are a widely used
rigorous computation tool. This approach benefits from the
advantages of numerical methods, but also gives the ability
to make reliable statements about the approximated function.
Despite the fact that approximation polynomials based on
interpolation at Chebyshev nodes offer a quasi-optimal ap-
proximation to a function, together with several other use-
ful features, an analogous to Taylor models, based on such
polynomials, has not been yet well-established in the field of
validated numerics.

This paper presents a preliminary work for obtaining such
interpolation polynomials together with validated interval
bounds for approximating univariate functions. We propose
two methods that make practical the use of this: one is based
on a representation in Newton basis and the other uses Cheby-
shev polynomial basis. We compare the quality of the ob-
tained remainders and the performance of the approaches to
the ones provided by Taylor models.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Interval arithmetic, Multiple pre-
cision arithmetic, Interpolation, Approximation

General Terms
Algorithms, Reliability

Keywords
Rigorous Computing, Validated Numerics, Interpolation Poly-
nomial, Chebyshev Polynomials, Taylor Models
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Computers are used nowadays to quickly give numerical
solutions to various global optimization, ODE solving or in-
tegration problems. However, traditional numeric methods
usually provide only approximate values for the solution.
Bounds for the approximation errors are only sometimes avail-
able, are not guaranteed to be accurate or are sometimes un-
reliable. In contrast, validated computing aims at providing
rigorously verified information about solutions, in order to
complete proofs, or to give rigorous mathematical statements
about the obtained result.

Interval arithmetic [21] is a classical tool to perform vali-
dated computations with floating-point arithmetic. Intervals
are well-suited to represent enclosures of real numbers on a
machine. However, they propagate only information about
function values, and fail to convey much information about
the other properties about the function itself. In particular,
when modeling functions with interval arithmetic, splitting
the domain in subintervals is usually required. For some
cases, known as "high dependency problems“ [5, 6, 12, 11]
the number of necessary subintervals becomes unfeasible.

Taylor models [19, 5, 6], introduced by Berz and his group
offer a remedy to this problem. They provide another way to
rigorously manipulate and evaluate functions using floating-
point arithmetic. They have been widely used for validated
computing for global optimization and range bounding [18,
5, 11, 6], solutions of ODEs [23], quadrature [4], etc.

A Taylor model (TM) of order n for a function f which is
supposed to be n + 1 times continuously differentiable over
an interval [a, b], is a rigorous polynomial approximation of
f . More specifically, it is a couple (P,∆) formed by a polyno-
mial P of degree n, and an interval part ∆, such that f(x) −
P (x) ∈∆,∀x ∈ [a, b]. Roughly speaking, the polynomial can
be seen as a Taylor expansion of the function at a given point.
The interval ∆ provides the validation of the approximation,
meaning that it provides an enclosure of all the approxima-
tion errors encountered (truncation, roundings).

A natural idea is to try to replace Taylor polynomials with
better approximations such as minimax approximation, Cheby-
shev truncated series or interpolation polynomials (also called
approximate Chebyshev truncated series when the points un-
der consideration are Chebyshev nodes) for instance. The
last two kind of approximations are of particular relevance
for replacing Taylor polynomials since the series they define
converge on domains better shaped for various usual appli-
cations than Taylor expansions (see, for instance, Section 2.7
of [9] for a more detailed account). Moreover, we can take
advantage of numerous powerful techniques for computing
these approximations. So far, the attempts for using these



better approximations, in the context of rigorous computing,
do not seem to have succeeded, see for example [19] for a
comparison of existing techniques.

In this work we propose two approaches for computing
models based on interpolation polynomials at Chebyshev no-
des, what we call “Chebyshev interpolation models” (CM).
The first method is based on Newton Basis and the second
on Chebyshev polynomial basis. We believe that bringing a
certified remainder to an approximate truncated Chebyshev
series and providing effective tools for working with such
models, opens the way to adapting to rigorous computing
many numerical algorithms based on Chebyshev interpola-
tion polynomials, for rigorous ODE solving, quadrature, etc.

The outline of the paper is the following. We first recall
or prove various definitions and results required by our ap-
proaches in Section 2. In Section 3, we present in more details
TMs and we discuss the use of better polynomial approxima-
tions. Then, we introduce the notion of “Chebyshev interpo-
lation models” in Section 4. The CMs are implemented using
multiple precision interval arithmetic in order to perform rig-
orous computing and yet, for the sake of clarity, we present
their implementation in exact arithmetic in Section 5. We give
some results and a comparison of our models with TMs in
Section 6. We end with a brief conclusion and a mention of
our future works on the subject.

2. SOME PRELIMINARY STATEMENTS
ABOUT INTERPOLATION AND CHEBY-
SHEV POLYNOMIALS

We first give a very short reminder on Chebyshev polyno-
mials. A detailed presentation can be found in [7, 29]. Then
we state some interpolation results that we use in the sequel.

2.1 Some basic facts about Chebyshev polyno-
mials

Over [−1, 1], Chebyshev polynomials can be defined as
Tn(x) = cos (n arccosx) , n ≥ 0. Since we consider functions
over any interval I = [a, b], we define in the following the

Chebyshev polynomials over I as T [a,b]
n (x) = Tn

“
2x−b−a

b−a

”
.

T
[a,b]
n+1 has n + 1 distinct real roots in [a, b], called “Cheby-

shev nodes” since they are of utmost interest for interpola-
tion:

x∗i =
a+ b

2
+
b− a

2
cos

„
(i+ 1/2)π

n+ 1

«
, i = 0, . . . , n. (1)

We now recall

LEMMA 2.1. The polynomial Wx∗(x) =
nQ

i=0

(x − x∗i ), is the

monic degree-n+1 polynomial that minimizes the supremum norm
over [a, b] of all monic polynomials in C[x] of degree at most n+ 1.
We have

Wx∗(x) =
(b− a)n+1

22n+1
T

[a,b]
n+1 (x)

and

max
x∈[a,b]

|Wx∗(x)| = (b− a)n+1

22n+1
.

2.2 Brief overview of interpolation results used
Let I = [a, b] be an interval. Let f be a function that is

at least n + 1 times continuously differentiable over I . Let

{yi, i = 0, . . . , n} be a set of n + 1 points in I . There exists
a unique polynomial P of degree ≤ n which interpolates f
at these points [10]: P (yi) = f(yi), i = 0, . . . , n, or if yi is
repeated k times, P (j)(yi) = f (j)(yi), j = 0, . . . , k − 1. If all
the points are distinct, this is called Lagrange interpolation.
In the extreme case that all the yi are equal, P is just the Taylor
polynomial of f at the considered point.

Several algorithms and interpolation formulae in various
basis exist for representing P , for example monomial basis,
Lagrange, Newton, Barycentric Lagrange, Chebyshev basis [10,
3, 31]. The numerical properties (stability) of these formulas
have been widely studied in the literature [17].

Let us consider the polynomial P in Newton basis: P (x) =
nP

i=0

ciNy,i(x), where Ny,0(x) = 1 and Ny,i =
i−1Q
j=0

(x− yj), i =

1, . . . , n. The coefficients ci are the divided-differences f [y0, . . . , yi]
of f at the points y0, . . . , yi. As mentioned above, if k points
coincide, it suffices to take the successive k − 1 derivatives
of f . Note that ci can be obtained thanks to the divided-
differences algorithm [15, 31]. Moreover, the error between
f and P is given [15, 31] by:

∀x ∈ I, f(x)− P (x) = f [y0, . . . , yn, x]Wy(x) (2)

with Wy(x) =
Qn

i=0(x − yi). By a repeated application of
Rolle’s theorem [10, 15, 31], we get: ∀x ∈ I, ∃ξ ∈ (a, b) s.t.

f(x)− P (x) =
1

(n+ 1)!
f (n+1)(ξ)Wy(x). (3)

In the sequel we denote the right member of this formula for
the error by ∆n(x, ξ). Lemma 2.1 suggests that a clever choice
of interpolation points seems to be the Chebyshev nodes (1),
which is indeed the case as mentioned in 3.2.2.

We will take advantage of the following lemma which gen-
eralizes Lemma 5.12 of [33]:

LEMMA 2.2. Under the assumptions on f and yi above, if f (n+1)

is increasing (resp. decreasing) over I , then f [y0, . . . , yn, x] is in-
creasing (resp. decreasing) over I .

PROOF. Assume that f (n+1) is increasing. We know (see
Chap. 4 of [31] for instance) that, for all x ∈ [a, b], we have

f [y0, . . . , yn, x] =

Z 1

0

Z t1

0

· · ·
Z tn

0

f (n+1)(y0 + t1(y1 − y0)

+ · · ·+ tn+1(x− yn))dt1 · · ·dtn+1.

Let x, y ∈ [a, b], x ≤ y, let Zn denote y0 + t1(y1 − y0) + · · ·+
tn(yn − yn−1)− tn+1yn, we notice that

f [y0, . . . , yn, y]− f [y0, . . . , yn, x] =

Z 1

0

Z t1

0

· · ·
Z tn

0“
f (n+1)(Zn + tn+1y)− f (n+1)(Zn + tn+1x)

”
dt1 · · ·dtn+1.

Since tn+1 ≥ 0, we have Zn + tn+1y ≥ Zn + tn+1x. As
f (n+1) is increasing, it follows that the integrand is nonnega-
tive, which implies f [y0, . . . , yn, y] ≥ f [y0, . . . , yn, x].

3. TAYLOR MODELS VS. USING BETTER
APPROXIMATIONS

3.1 Basic principles of Taylor models



Computing a TM consists in computing a polynomial to-
gether with an interval bound by applying simple rules re-
cursively on the structure of the function f . In fact, for func-
tions like trigonometric, exponential, logarithmic functions,
as well as operations like 1/x or the power function, all re-
ferred to in this article as basic functions (or as intrinsics in [18]),
bounds for the remainders can be easily computed. For com-
posite functions, TMs offer usually a much tighter bound
than the one directly computed for the whole function, for
example using automatic differentiation [1, 26, 21]. A mean-
ingful comparison for this phenomenon is provided in [11,
19]. Here we provide the reader with a quick overview of the
situation. Let u be a basic function defined on I and v a basic
function defined on J , an interval enclosing the image u(I).
Consider the Taylor expansion of a composite function v ◦ u
about x0 ∈ I . The Taylor remainder is given by the Lagrange
formula: for all x ∈ I , there exists ξ ∈ (a, b) such that

R(x) =
(v ◦ u)(n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

When bounding the remainder by means of automatic dif-
ferentiation, an intervalK enclosing the values of the n+1-th
derivative of this composite function (v ◦ u)(n+1)(I) is ob-
tained by performing many recursive operations involving
enclosures of u(i)(I) and v(i)(J) which finally may produce
a considerable overestimation in the remainder [11].

In contrast, TMs compute polynomials and interval bounds
directly for v and u, and then use algebraic rules for com-
puting a TM for the composition v ◦ u. Since both v and u
are basic functions, evaluating with interval arithmetic their
n + 1-th derivative can be done in a fast way using simple
formulae and does not lead to serious overestimation.

Morevoer, most of the functions we deal with have Tay-
lor series whose coefficients decrease. In particular, when the
functions are analytic over a sufficiently large domain (a disk
of radius > 1 suffices), the magnitude of the coefficients of
the underlying polynomial decreases exponentially (this is
a consequence of Cauchy’s integral formula). Hence when
performing the composition of two such models, the inter-
vals contributing to the final remainder become smaller for
monomials of higher degree. This leads to a reduced overes-
timation in the computed remainder.

In conclusion, we highlight that, in practice, it is signifi-
cantly more suitable to use a two-step procedure for han-
dling composite functions: first step consists in computing
models (P,∆) for all basic functions; second, apply algebraic
rules specifically designed for handling operations with these
mixed models instead of operations with the corresponding
functions.

3.2 Substituting tighter polynomial approxi-
mations to Taylor polynomials

It is well known that Taylor polynomials can be fairly poor
approximations to functions, except perhaps on very small
intervals. The idea of using better approximation polynomi-
als, for example Chebyshev truncated series, in the context
of validated computations was introduced in [14] under the
name ultra-arithmetic, which we first briefly present. Then,
we turn to a first introduction of the CMs and give the basic
principles which they rely on. We finally address the case of
minimax approximation. The case of truncated Chebyshev
series is mentioned in the conclusion of this paper.

3.2.1 A previous attempt
As explained in [19], in the setting of ultra-arithmetic, the

advantages of non-Taylor approximations cannot be explic-
itly maintained due to several drawbacks. It is noted in [19]
that the Taylor representation is a special case, because for
two functions f1 and f2, the Taylor representation of order
n, for the product f1 · f2 can be obtained merely from the
Taylor expansions of f1 and f2, simply by multiplying the
polynomials and discarding the orders n + 1 to 2n. On the
contrary, the Chebyshev truncated series of a product f1 · f2
can in general not be obtained from the Chebyshev represen-
tations of the factors f1 and f2, and no operation analogous
to TMs multiplication is given. Moreover, there is no sys-
tematic treatment of common basic functions. Finally, [19]
explains that the methods developed in ultra-arithmetic can
lead to an increase in the magnitude of the coefficients, which
will increase both the computational errors and the difficulty
of finding good interval enclosures of the polynomials in-
volved.

3.2.2 Chebyshev interpolation polynomial
A natural idea is to consider an interpolation polynomial

instead of a Taylor approximation: if the polynomial inter-
polates the function at Chebyshev nodes, such a polynomial,
which we call Chebyshev interpolation polynomial, can usu-
ally provide a near-optimal approximation of f . See e.g. [25]
which states an effective measure of this property.

Trefethen [32] uses the idea of representing the functions
by Chebyshev interpolation polynomials. He chooses their
expansion length in such a way as to maintain the accuracy
of the approximation obtained close to machine precision.
Moreover, the idea of using basic functions and then consider
an algebra on them is used. The developed software, Cheb-
fun was successfully used for numerically solving differential
equations, quadrature problems. However, the Chebfun sys-
tem does not provide any validation of the results obtained.
As mentioned in [32], the aim of this system are numerical
computations and no formal proof or safeguards are yet im-
plemented to guarantee a validated computation, although it
seems to be a future project.

3.2.3 Towards Chebyshev interpolation models
The interpolation polynomial itself is easy to compute and

a wide variety of methods and various basis representations
exist (we refer the reader to any numerical analysis book,
see [31] for instance, for its computation). Another advantage
of interpolation polynomials is that a closed formula, hence
an explicit bound, for the remainder exists, cf. (2) and (3).
Lemma 2.1 and Formula (3) induces that for a Chebyshev in-
terpolation polynomial of degree n, roughly speaking, com-
pared to a Taylor remainder, the interpolation error will be
scaled down by a factor of 2−n. For bounding the remainder,
the only remaining difficulty is to bound the term f (n+1)(ξ)
for ξ ∈ I . However, as briefly discussed above and in [11]
the advantage of using directly this formula for the remain-
der can not be effectively maintained if the interval bound is
obtained using automatic differentiation because of the over-
estimation. Hence in what follows we will try to adapt the
”basic bricks” approach used by TMs to one using interpola-
tion polynomials.

3.2.4 Minimax approximation
One might first try to directly use the minimax polyno-



mial which is the polynomial which minimizes the supre-
mum norm of the approximation error. In fact, such a poly-
nomial can be obtained only through an iterative procedure,
namely Remez algorithm, which can be considered too com-
putationally expensive in our context. But the main draw-
back is linked to the computation of the remainder: either
obtaining a certified remainder in such a procedure, raises a
significant dependency problem as discussed in [12, 11], or
the closed formula, due to Bernstein [13], does not bring any
improvement over Formula (3).

4. CHEBYSHEV INTERPOLATION MOD-
ELS

In the following we consider a Chebyshev Interpolation
model (CM) of degree n for a function f over an interval I ,
as a couple (P,∆), in the following sense: P is a polynomial
of degree n which is “closely related” to the Chebyshev in-
terpolation polynomial for f , ∆ is an interval enclosure for
the remainder f − P . Specifically, from the mathematical
point of view, for basic functions f , this polynomial P coin-
cides with the Chebyshev interpolation polynomial and the
computation of ∆ is detailed in 5.1.2. For composite func-
tions, we will use some algebraic rules defined in Section 5
in a similar manner to the TMs arithmetic. We insist that our
setting is multiple-precision interval arithmetic and all algo-
rithms chosen are adapted for and implemented specifically
for it. Since a thorough description of their implementation
is tedious we indicate some implementation hints in 4.2. Be-
fore doing this, we explain why we chose to use Newton and
Chebyshev bases for performing operations over CMs.

4.1 Choice of representation basis
When computing an interpolation polynomial P two key

choices are: the interpolating nodes (which are Chebyshev
nodes (1), in this paper), and the basis used for implementa-
tion.

In our case, however, a third essential requirement emerges:
one has to be able to find suitable algebraic rules for opera-
tions with models (P,∆) that will not lead to overestimation
of the remainder in the resulted model. This implies that ad-
dition, multiplication or composition of models made out of
polynomials P , together with an interval remainder bound,
has to be an effective process not only in terms of perfor-
mance and quality of the polynomial obtained, but also in
terms of quality of remainder. We note, that in what con-
cerns addition, the representation of P in any basis will suf-
fice, since this is a linear operator.

For multiplication, as discussed in 3.2.1, it has not been ob-
vious so far how to devise an efficient algorithm that, given
two functions f1 and f2 and their models (P1,∆1) and (P2,∆2),
where the polynomial part is obtained through an interpola-
tion process, is able to efficiently compute a model (P,∆) for
f1 · f2. Furthermore, composition rules f1 ◦ f2 were even
more difficult to obtain. On the contrary, these operations are
straightforward for TMs, which is one of their incontestable
advantages.

Consequently, we were led to searching for suitable basis
representations forP such that all these requirements are suc-
cessful. We eliminated a Lagrange basis representation for
P not only because of its poor numerical properties [17], but
also because of the n−1 terms containing each n−1 products
of x − x∗i . This leads to high overestimations on the interval
remainder when a composition operation was tried.

In what concerns using barycentric Lagrange basis versus
Newton basis, it is proved in [17] that the first has better nu-
merical properties. However, Newton basis also has good
numerical properties for certain orderings of points [17]. In
our case, barycentric Lagrange has the disadvantage that the
polynomial P is represented as 

nX
i=0

wi

x− x∗i
f(x∗i )

!
/

 
nX

i=0

wi

x− x∗i

!
.

It seems cumbersome to implement multiplication and com-
position of two models using this representation for P . We
note that when composition should be implemented, the re-
ciprocal 1/(x− x∗i ) should be designed. This leads to consid-
erable overestimations of the remainder.

We note that Newton basis can be seen as an "immediate
extension” to Taylor basis, so it is a natural try to make and
leads to an adaptation of TMs algorithms. In what follows
we consider the Newton basis at Chebyshev nodes taken in
decreasing order, as given by Formula (1). This order has
good numerical properties, see for example Section 5.3 [16].
In Section 5 we show how multiplications and composition
operations can be implemented.

As for Chebyshev basis, we were led to this choice mainly
because of the remarkable properties and success of numeri-
cal methods based on Chebyshev series expansions [9, 3].

Moreover, as we will see in Section 5.4, for most of the func-
tions we consider, the rapid decreasing of the coefficients in
the representations in the last two bases allow for small over-
estimation when handling CMs.

We now give some basic operations that will be used dur-
ing the operations on the models.

Operations with polynomials in Newton basis.
Consider two polynomials of degree n in Newton basis:

P (x) =
nP

i=0

piNx∗,i(x) and Q(x) =
nP

i=0

qiNx∗,i(x).

Addition. Adding two polynomials in Newton basis is straight-

forward: P (x) +Q(x) =
nP

i=0

(pi + qi)Nx∗,i(x)

Multiplication. When multiplying two polynomials in New-
ton basis, we need that ”the lower part“ of the result be rep-
resented in this basis also, and the ”upper part“, should be
represented such that it can be easily bounded with interval
arithmetic. Hence, we chose to represent the product PQ in
the basis Nx∗,0, . . . , Nx∗,n, Wx∗Nx∗,0, . . . ,Wx∗Nx∗,n−1. We
have P (x) · Q(x) = G(x) + Wx∗(x)H(x), where G(x) =
nP

i=0

giNx∗,i(x) and H(x) =
n−1P
i=0

hiNx∗,i(x).

One of the advantages of this representation is that we gave
an exact interval bound for Wx∗ in Section 2.1. Moreover, it
can be easily shown thatG(x) is the Chebyshev interpolation
polynomial of P (x) ·Q(x), i.e. of fg.

In order to compute the coefficients of G and H one can
use several techniques. We mention that based on [8] a con-
version back to monomial basis, followed by an interpolation
seems to be the fastest asymptotically (needingO(M(n) logn)
operations, where M(n) denotes the cost of multiplying uni-
variate polynomials of degree less than n). However, in our
current multiple precision interval arithmetic implementa-
tion, we use an O(n2) algorithm based on applying the di-
vided differences algorithm first for computing the coeffi-
cients of G and then for computing the coefficients of H =



(PQ−G)/Wx∗ .
Interval Range Bounding. We use a Horner-like algorithm [16]

for bounding the range of a polynomial in Newton basis,
which takes O(n) operations.

Operations with polynomials in Chebyshev basis.
Consider two polynomials of degree n in Chebyshev basis:

P (x) =
nP

i=0

piT
[a,b]
i (x) and Q(x) =

nP
i=0

qiT
[a,b]
i (x).

Addition. Adding two polynomials in Chebyshev basis is

straightforward: P (x)+Q(x) =
nP

i=0

(pi+qi)T
[a,b]
i (x) and takes

O(n) operations.
Multiplication. Their product can be expressed in Cheby-

shev basis as follows: P (x) · Q(x) =
2nP

k=0

ckT
[a,b]
k (x), where

ck = (
P

|i−j|=k

pi · qj +
P

i+j=k

pi · qj)/2. This identity can be ob-

tained noting [20] that T [a,b]
i (x)·T [a,b]

j (x) = (T
[a,b]
i+j +T

[a,b]

|i−j|)/2.
The cost using this simple identity is O(n2) operations.

Interval Range Bounding. For our purpose, we will use the
following identity for interval bounding range of a polyno-
mial in Chebyshev basis, which takes O(n) operations: ∀x ∈

[a, b], P (x) ∈ p0 +
nP

i=1

pi · [−1, 1].

4.2 Rigorous implementation of the interpola-
tion process

In the following, we denote an interval x as a pair x =
[x, x]. For a polynomial P with real number coefficients, we
denote by P a polynomial obtained by replacing its coeffi-
cients with intervals which enclose them.

We implemented all the operations involved using multiple-
precision interval arithmetic and all the algorithms we use
are straightforwardly adaptable in this context. Hence, from
the implementation point of view, the only notable change
is that instead of polynomials with real number coefficients
we have polynomials with tight interval coefficients. This
means that in our implementation, for a function f we obtain
a model (P ,∆), such that ∀x ∈ [a, b], f(x) ∈ P (x)+∆. This
design choice allows us to take into account all the rounding
errors, because for each operation with interval arithmetic
an outward rounding is performed. Moreover, it is proved
in [28] that when evaluating a function ϕ over a point inter-
val x = [x, x], the interval enclosure of ϕ(x) can be made
arbitrarily tight by increasing the precision used for evalua-
tion. In our case the computations needed for the coefficients
of the polynomial are done with initially almost point inter-
vals, so the overestimation of the coefficients can be made as
small as possible by increasing the precision used.

However, if needed, a certified floating-point approxima-
tion polynomial can be easily obtained from a CM (P ,∆).

Let us consider P (x) =
nP

i=0

ciβi(x) where βi is the ith ele-

ment of the considered basis (Newton or Chebyshev). It suf-
fices to take the middle points ti of ci as the coefficients of

the approximation polynomial P̃ (x) =
nP

i=0

tiβi(x) and then

to compute a simple interval bound δ =
nP

i=0

[ci − ti, ci − ti] ·

βi(x), using the methods presented in Section 4.1. Then the
error between the function f and its approximation polyno-

mial P̃ is bounded by δ + ∆.

5. CHEBYSHEV INTERPOLATION MOD-
ELS WITH EXACT ARITHMETIC

We follow the two-step approach specific for TMs, as men-
tioned in Section 3. As detailed below, firstly, we compute
models for basic functions; secondly we apply specifically
designed algebraic operations on such models.

5.1 Basic functions
We consider as basic functions the trigonometric, exponen-

tial, logarithmic functions, 1/x, the power function, or any
other function for which specific properties can be exploited.
For such functions we compute directly a model (P,∆) formed
by an interpolation polynomial P and an interval bound for
the remainder ∆.

5.1.1 Computation of the interpolation polynomial
We mentioned in 2.2 how to express an interpolation poly-

nomial in Newton basis, using the divided differences pro-
cedure. The number of operations necessary to compute the
coefficients of the interpolation polynomial is 3n2/2 [16].

We now need to know how to represent it using Cheby-
shev basis. The Chebyshev interpolation polynomial P can
be expressed using the collocation method [20] as follows:

P (x) =
nP

i=0

piT
[a,b]
i (x), with pi =

nP
k=0

2
n+1

f(x∗k)T
[a,b]
i (x∗k).

Using directly this formula, the computation cost is O(n2)
operations. It is known [24] that the usage of Fast Fourier
Transform, can speed-up this computation to O(n logn) op-
erations. However, note that in this case, an interval arith-
metic adaptation of FFT should be considered.

5.1.2 Computation of the remainder
We can compute an enclosure of the remainder f − P over

[a, b] using Formula (3): ∆n(x, ξ) = f (n+1)(ξ)Wx∗(x)/(n +

1)!, where x, ξ ∈ [a, b]. This reduces to bounding f (n+1)

over [a, b], which does not pose any problem for basic func-
tions, since simple formulae are available for their deriva-
tives. Moreover, Wx∗(x) can be bounded straightforwardly
using Lemma 2.1.

We remark that, thanks to Lemma 2.2, an exact bound for
the remainder can be computed when one can show that f (n+1)

is increasing (resp. decreasing) over [a, b]. In such cases, one
can use (2) and bound f [x∗0, . . . , x

∗
n, x] by [ f [x∗0, . . . , x

∗
n, a],

f [x∗0, . . . , x
∗
n, b] ] (resp. [ f [x∗0, . . . , x

∗
n, b], f [x∗0, . . . , x

∗
n, a] ]).

For basic functions, checking whether f (n+2) has constant
sign over [a, b] is simple. This remark makes it possible to
obtain smaller remainders and strengthens the effectiveness
of the “basic bricks” approach.

5.1.3 Bounding the interpolation polynomial
When using this approach, one needs to compute bounds

for the range of polynomials involved in such models. We
denote by B(P ) an interval range bound for a polynomial P ,
over a given interval I . Several methods exist and a trade-off
between their speed and the tightness of the bound is usu-
ally considered. For TMs, the fastest but "rough" method is a
Horner-like interval evaluation. More complicated schemes
exist, that usually give tighter bounds: LDB, QDB [5], or us-
ing a conversion to Bernstein basis [22, 33]. For univariate
polynomials, slower techniques based on root isolation can



be used for a very tight polynomial bounding [30]. In our
case, we focused on speed, and so, when considering inter-
val range bounding for polynomials in Newton or Cheby-
shev basis we used two simple methods described in Sec-
tion 4.1. Similarly to TMs, for a penalty in speed, more re-
fined algorithms can also be plugged-in. However the simple
techniques we used, proved effective in most of the examples
we treated so far.

5.2 Addition and multiplication
In what follows we consider two CMs for two functions f1

and f2, over I , of degree n: (P1,∆1) and (P2,∆2). Adding
the two models is done by adding the two polynomials and
the remainder bounds:

(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 + ∆2).

Note that adding two polynomials in Newton or Chebyshev
basis is straightforward and has a linear complexity, see Sec-
tion 4.1.

For proving the correction we note that: ∀x ∈ I,∃δ1 ∈
∆1 and δ2 ∈∆2 s.t. f1(x)− P1(x) = δ1 and f2(x)− P2(x) =
δ2. Hence f1(x) + f2(x)− (P1(x) + P2(x)) = δ1 + δ2 ∈∆1 +
∆2.

For multiplication, we have

f1(x) · f2(x) = P1(x) ·P2(x) +P2(x) · δ1 +P1(x) · δ2 + δ1 · δ2.

We observe that P1 · P2 is a polynomial of degree 2n. De-
pending on the basis used, we split it into two parts: the
polynomial consisting of the terms that “do not exceed n”,
(P1 ·P2)0...n and respectively the upper part (P1 ·P2)n+1...2n,
for the terms of the product P1 ·P2 whose “order exceeds n”.

Now, a CM for f1 ·f2 can be obtained by finding an interval
bound ∆ for all the terms except P = (P1 · P2)0...n:

∆ = B((P1 ·P2)n+1...2n)+B(P2) ·∆1 +B(P1) ·∆2 +∆1 ·∆2.

The interval bound for the polynomials involved can be com-
puted as discussed in 5.1.3.

In our current setting, cf. Section 4.1, the number of opera-
tions necessary to multiply two such models is O(n2).

For the sake of completeness, we mention that multiplying
a CM with a constant, reduces to multiplying the polynomial
and the remainder with the respective constant.

5.3 Composition
When the model for f1 ◦f2 is needed, we can consider (f1 ◦

f2)(x) as function f1 evaluated at point y = f2(x). Hence, we
have to take into account the additional constraint that the
image of f2 has to be included in the definition range of f1.
This can be checked by a simple interval bound computation
of B(P2) + ∆2. Then we have:

(f1 ◦ f2)(x)− P1(f2(x)) ∈∆1 (4)

which implies that

(f1 ◦ f2)(x)− P1(P2(x) + ∆2) ∈∆1 (5)

In this formula, the only polynomial coefficients and remain-
ders involved are those of the CMs of f1 and f2 which are
basic functions. As we have seen above, fairly simple for-
mulæ exist for computing the coefficients and remainders of
such functions. However, when using Formula (4), it is not
obvious how to extract a polynomial and a final remainder

bound from it. In fact, we have to reduce this extraction pro-
cess to performing just multiplications and additions of CMs.
A similar idea is used for composing TMs [19, 33].

In our case, the difference is that P1 and P2 are polyno-
mials represented in Newton/Chebyshev basis, and not in
the monomial basis. In consequence, for computing the com-
position, we had to use a different algorithm. It is worth
mentioning that a simple change of basis back and forth to
monomial basis will not be successful. The problem is that
the multiplications and additions used in such a composition
process do not have to add too much overestimation to the
final remainder. As we discussed in Section 3, for Taylor ex-
pansions of most of the functions we address, the size of the
coefficients for the representation in the monomial basis is
bounded by a decreasing sequence. Hence the contributions
of the remainders in such a recursive algorithm are smaller
and smaller. On the contrary, for interpolation polynomials,
the coefficients represented in monomial basis oscillate too
much and have poor numerical properties. Hence, a direct
application of the principle of composing TMs will not be
successful.

When using Newton basis, we perform the composition
using a Horner-like algorithm [16]. It takes a linear number
of operations between models.

ALGORITHM 1. Horner-like composition of CMs in Newton
basis: Composing (P1,∆1) with (P2,∆2)

/*We denote by P1j the jth coefficient of P1*/
/*and by x∗j the jth interpolation point for P1 */
(Cn,Rn) := (P1n, [0, 0])
For j = n− 1, . . . , 0 do
(Cj ,Rj) := ((P2,∆2)−(x∗j , [0, 0]))·(Cj+1,Rj+1)+(P1j , [0, 0]) ;
Return (C0,R0 + ∆1)

When using Chebyshev basis, we perform the composition
using an adaptation of Clenshaw algorithm [20]. Algorithm 2
is used for efficient evaluation of a Chebyshev sum

P
ciTi(x).

It reduces evaluation of such polynomials to basic additions
and multiplications and it is as efficient as Horner form for
evaluating a polynomial as a sum of powers using nested
multiplications. In our case, the variable x where the sum is
to be evaluated is a CM, the multiplications and additions are
operations between CMs. Moreover, using this algorithm, we
perform a linear number of such operations between models.

ALGORITHM 2. Clenshaw-like composition of CMs in Cheby-
shev basis: Composing (P1,∆1) with (P2,∆2)

(Cn+2,Rn+2) := (0, [0, 0]) /*CMs for 0*/
(Cn+1,Rn+1) := (0, [0, 0])
/*We denote by P1j the jth coefficient of P1*/
For j = n, . . . , 1 do
(Cj ,Rj) := 2 · (P2,∆2) · (Cj+1,Rj+1) − (Cj+2,Rj+2) +
(P1j , [0, 0]) ;
(C,R) := (P2,∆2) · (C1,R1)− (C2,R2) + (P10, [0, 0])
Return (C,R+ ∆1)

5.4 Growth of the coefficients and overestima-
tion

The overestimation does not grow too much during the re-
cursion process. This is due to the nice convergence proper-
ties of the series expansions in Newton Basis or in Chebyshev
polynomial basis. One can prove for instance that if the func-
tion under consideration is analytic over a “sufficiently large”



domain of C which contains [a, b], the coefficients of the ex-
pansion in Newton [15] or in Chebyshev [9] bases decrease
exponentially. As with TMs, when composing two such mod-
els, the intervals contributing to the final remainder become
smaller for higher coefficients, which yields a reduced over-
estimation in the final remainder.

6. EXPERIMENTAL RESULTS
We implemented the two methods in Maple, using the Int-

pakX1 package. The Maple code can be downloaded from
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels.
Table 1 shows the quality of some absolute error bounds ob-
tained with the following presented methods: CMs, direct in-
terpolation combined with AD, and TMs respectively. Each
row of the table represents one example. The function f , the
interval I and the degree n of the approximation polynomial
are given in the first column.

We computed, as explained in Section 5, two CMs: one us-
ing polynomials in Newton basis CM1 = (P1,∆1) and the
other CM2 = (P2,∆2) using Chebyshev basis. Let ∆1 =
[α1, β1] and ∆2 = [α2, β2], we provide in the second and
third columns rigorous upper-bounds for max(|α1|, |β1|) and
max(|α2|, |β2|) respectively.

In order to observe the amount of overestimation we com-
puted the exact error bounds ε1 = supx∈I{|f(x)− P1(x)|}
and ε2 = supx∈I{|f(x)− P2(x)|} and we provide in the fourth
column the minimum of the two: εCM = min{ε1, ε2}.

We give in fifth and sixth columns the computed remain-
der bounds and the exact error obtained when an interpo-
lating polynomial is directly used (directly means that the
remainder is computed using (3) and automatic differentia-
tion). Finally we present the computed remainder bound ob-
tained using a TM and the corresponding exact error. The
Taylor polynomial was developed in the middle of I and
the necessary polynomials bounds were computed using a
Horner scheme.

The first five examples were analyzed in [11] for compar-
ing the bounds obtained with interpolation vs. TMs. There, it
was observed that in some cases the overestimation in the in-
terpolation remainder is so big, that we can not benefit from
using such a polynomial. We used them in order to highlight
that CMs do not have this drawback and the remainders ob-
tained with our methods have better quality than the TMs in
all situations.

The first example presents a basic function which is ana-
lytic on the whole complex plane. There is almost no over-
estimation in this case, whatever method we use. The sec-
ond is also a basic function. It has singularities in the com-
plex plane (in π/2 + Zπ), but the interval I is relatively far
from these singularities. All the methods present a relatively
small overestimation. The third example is the same function
but over a larger interval. In these case, the singularities are
closer and Taylor polynomials are not very good approxima-
tions. The fourth and fifth examples are composite functions
on larger intervals. The overestimation in the interpolation
method becomes very large, rendering this method useless,
while it stays reasonable with TMs and CMs.

The following examples (6 − 8) are similar to some pre-
sented in [3]. There, the authors computed the minimax poly-
nomials for these functions. Evidently, the polynomials ob-

1http://www.math.uni-wuppertal.de/~xsc/software/
intpakX/

tained with CMs have a higher approximation error than the
minimax, however, it is important to notice that in these tricky
cases the remainder bound obtained for the CMs stays fairly
good and is much better than the one obtained from TMs.

Examples 8−9 present the case when the definition domain
of the function is close to a singularity. As seen in these ex-
amples, when a direct interpolation process is used for a com-
posite function, unfortunately, one can not apply Lemma 2.2
for bounding the remainder. Consequently, the bound ob-
tained for the remainder is highly overestimated. However,
when using the approach based on “basic bricks” both TMs
and CMs benefit from it, yielding a much better remainder
bound.

Example 10 deals with a function which is associated to the
classical Runge phenomenon. Firstly, since the complex sin-
gularities of the function f defined by f(x) = 1/(1 + 4x2) are
close to the definition interval I , the Taylor polynomial is not
a good approximation. Then, the interpolation method gives
unfeasible interval remainder bounds due to the overestima-
tion of the n+1th derivative of the function f . TMs and CM1
fail both from the same cause: when computing a model for
f = g◦h one needs to compose the models for g(y) = 1/y and
h(x) = 1 + 4x2. The model for h is simple to compute. How-
ever, one has to take into account that the model of g has to
be computed over an interval range enclosure of the model of
h. When such an enclosure is computed, using the presented
simple methods for polynomial range bounding we have an
overestimation of the image of h. This leads in fact to an in-
terval that contains 0. Hence, the model for g which is not
defined in 0 can not be computed. On the contrary, the over-
estimation in polynomial range bounding with the method
of CM2 is smaller and we have a feasible remainder in this
case.

We do not give specific timings, since for the moment our
implementation is rather a “proof of concept” one. The al-
gorithms necessary for TMs seem to be slightly simpler and
hence more efficient than the ones needed by our approaches:
we observed a factor between 2 and 3 of speed-up in favor of
TMs, for cases when Taylor approximations are fairly good
ones (tight intervals, analytic functions). However, we note
that in some cases (when considering larger intervals or com-
posed functions), in order to attain the same quality for the
remainder, TMs need a much higher polynomial degree, more
computation time, or they have to be applied over many subin-
tervals, which favors the usage of CMs.

7. CONCLUSION AND FUTURE WORK
We introduced two approaches for computing “Chebyshev

interpolation models”, a tool which is potentially useful in
various rigorous computing applications. Currently, they al-
ways achieve smaller remainders than Taylor models but re-
quire nevertheless more computing time in some cases.

This work is preliminary, in two senses. First, we did not
address in this paper the opportunity to use Chebyshev trun-
cated series instead of Chebyshev interpolation polynomials.
Actually, this approach is a work in progress and seems very
promising since the quality of the remainder should remain
at least as good as the one provided by CM and the com-
plexity of basic bricks computations should be lowered. This
issue of complexity has to be addressed if we want CMs to
replace TMs in most of univariate applications. The tech-
niques developed in [27, 2] could prove useful to achieve this
goal. Secondly, we address the computation of such models



No f(x), I , n
CMs Interpolation TMs

CM1 bound CM2 bound Exact bound Interp. bound Exact bound TM bound Exact bound

1 sin(x), [3, 4], 10 1.19 · 10−14 1.19 · 10−14 1.13 · 10−14 1.19 · 10−14 1.13 · 10−14 1.22 · 10−11 1.16 · 10−11

2 arctan(x), [−0.25, 0.25], 15 7.89 · 10−15 7.89 · 10−15 7.95 · 10−17 7.89 · 10−15 7.95 · 10−17 2.58 · 10−10 3.24 · 10−12

3 arctan(x), [−0.9, 0.9], 15 5.10 · 10−3 5.10 · 10−3 1.76 · 10−8 5.10 · 10−3 1.76 · 10−8 1.67 · 102 5.70 · 10−3

4 exp(1/ cos(x)), [0, 1], 14 6.69 · 10−7 5.22 · 10−7 4.95 · 10−7 0.11 6.10 · 10−7 9.06 · 10−3 2.59 · 10−3

5 exp(x)
log(2+x) cos(x) , [0, 1], 15 1.70 · 10−8 9.11 · 10−9 2.21 · 10−9 0.18 2.68 · 10−9 1.18 · 10−3 3.38 · 10−5

6 sin(exp(x)),[−1, 1], 10 4.10 · 10−6 9.47 · 10−5 3.72 · 10−6 4.42 · 10−3 3.72 · 10−6 2.96 · 10−2 1.55 · 10−3

7 tanh(x + 0.5) − tanh(x − 0.5), [−1, 1], 10 8.48 · 10−3 1.75 · 10−3 4.88 · 10−7 8.48 · 10−3 4.88 · 10−7 8.68 2.96 · 10−3

8
√

x + 1.0001, [−1, 0], 10 3.64 · 10−2 3.64 · 10−2 3.64 · 10−2 3.64 · 10−2 3.64 · 10−2 0.11 0.11

9
√

x + 1.0001 · sin(x), [−1, 0], 10 3.10 · 10−2 3.32 · 10−2 3.08 · 10−2 3.21 · 1033 3.08 · 10−2 0.12 9.83 · 10−2

10 1
1+4x2 , [−1, 1], 10 +∞ 1.13 · 10−2 6.17 · 10−3 1.50 · 107 4.95 · 10−3 +∞ 8.20 · 102

Table 1: Examples of bounds obtained by several methods

for univariate functions only. A long-term project of ours is
to extend these methods to the multivariate case.

The methods presented in this paper should be available
in the months to come in the Sollya2 tool.
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