Accelerating Correctly Rounded Floating-Point

Division When the Divisor is Known in Advance

Nicolas Brisebarre, Jean-Michel Muller and Saurabh Kumar Raina
Laboratoire LIP, ENSL/CNRS/INRIA Arenaire Project
Ecole Normale Sugrieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07 RANCE

Nicolas.Brisebarre@ens-lyon.fr, Jean-Michel.Muller@ens-lyon.fr, Saurabh-Kumar.Raina@ens-lyon.fr

June 2, 2003

Index terms: Computer arithmetic, Floating-point arithmetic, Division, Compilation

optimization.

Abstract

We present techniques for accelerating the floating-point computatiopyof
wheny is known beforex. The proposed algorithms are oriented towards archi-
tectures with available fused-MAC operations. The goal is to get exactly the same
result as with usual division with rounding to nearest. These technigues can be used

by compilers to accelerate some numerical programs without loss of accuracy.

Motivation of this research

We wish to provide methods for accelerating floating-point divisions of the fofm
wheny is known beforer, either at compile-time, or at run time. We assume that a fused
multiply-accumulator is available, and that division is done in software (this happens for
instance on RS6000, PowerPC or Itanium architectures). The computed result must be
the correctly rounded result.

A naive approach consists in computing the reciprocal ffith rounding to near-
est), and then, onceis available, multiplying the obtained result bylt is well known
that that “naive method” does not always produce a correctly rounded result. One might
then conclude that, since the result should always be correct, there is no interest in in-
vestigating that method. And yet, if the probability of getting an incorrect rounding was

small enough, one could imagine the following strategy:

e the computations that follow the naive division are performed as if the division

was correct;

e in parallel, using holes in the pipeline, a remainder is computed, to check whether

the division was correctly rounded;

o ifit turns out that the division was not correctly rounded, the result of the division
is corrected using the computed remainder, and the computation is started again

at that point.

To investigate whether that strategy is worth being applied, it is of theoretical and prac-

tical interest to have at least a rough estimation of the probability of getting an incorrect

2

rounding. Also, one could imagine that there might exist some valugsaf which
the naive method always work (for any. These values could be stored. Last but not
least, some properties of the naive method are used to design better algorithms. For
these reasons, we have decided to dedicate a section to the analysis of the naive method.
Another approach starts as previously: omds known, it is multiplied by the pre-
computed reciprocal of. Then a remainder is computed, and used to correct the fi-
nal result. This does not require testing. That approach looks like the final steps of a
Newton-Raphson division. It is clear from the literature that the iterative algorithms for
division require an initial approximation of the reciprocal of the divisor, and that the
number of iterations is reduced by having a more accurate initial approximation. Of
course this initial approximation can be computed in advance if the divisor is known.

The problem is to always get correctly rounded results, at very low cost.

1 Introduction

We deal with floating-point (FP for short) divisions of the forly for which y is
known beforezx, either at compile-time (i.ey is a constant. In such a case, much
pre-computation can be performed), or at run-time. We want to get the result more
quickly than by just performing a division, yet with the same accuracy: we wish to get a
correctly rounded value, as required by the IEEE 754 Standard for FP arithmetic [1, 6].
In this paper, we focus on rounding to nearest only. Divisions by constants are a clear
application of our work. There are other applications, for instance when many divisions

by the same) are performed. Consider for instance Gaussian elimination:

for j=1 to n-1 do if a[j,j] = O then stop

else
for i = j+1 to n do
cfij] = alij] / afj.]]
for k = j+1 to n do a[i,k] = a[i,k] - c[i,j]*a[j,k]
end for
b[i] = bfi] - I[i,j*b[]
end for
end for
Most programmers replace the divisioagj] / alj,j] by multiplications byp
=1/ afj, (computed in théefor j... loop). The major drawback is a loss

of accuracy. Our goal is to get the same result as if actual divisions were performed,
without the delay penalty they would involve. Presentation of conventional division
methods can be found in [4, 10, 14]. To make this paper easier to read, we have put the

proofs in appendix.

2 Definitions and notations

DefineM,, as the set of exponent-unboundeehit mantissa, binary FP numbers (with

n > 1), thatis: M, = {M x 28 2n' <M <2"—1 M, EeZ}U{0}. Itisan
“ideal” system, with no overflows or underflows. We will show result¥lip. These re-

sults will remain true in actual systems that implement the IEEE 754 standard, provided

that no overflows or underflows do occur. Tim@ntissaof a nonzero element/ x 2F

of M, is the numbern (z) = M /2" 1.
The result of an arithmetic operation whose input values belorygl fanay not
belong toM,, (in general it does not). Hence that result mustdaended The standard

defines 4 different rounding modes:

e rounding towardstoo, or upwards:o,(z) is the smallest element &L, that is

greater than or equal tg

e rounding towards-oo, or downwardso,(z) is the largest element &fl, that is

less than or equal te;

e rounding toward®: o, (z) is equal too,(z) if = < 0, and too,(z) otherwise;

e rounding to the nearest evesy;(z) is the element oM, that is closest ta. If =
is exactly halfway between two elementsidf,, o, (z) is the one for which\/ is

an even number.

The IEEET754 standard requires that the user should be able to choose one rounding
mode among these ones, calleddleéve rounding mode After that, when performing
one of the4 arithmetic operations, or when computing square roots, the obtained result
should be equal to the rounding of the exact result. &ar M,,, we definea™ as its
successoin M, that is,a™ = min{b € M,,,b > a}, andulp(a) as|a|* — |a|. If ais
not an element oil,,, we define ulga) aso,(a) — o4(a). The name ulp is an acronym
for unitin the last place. Whenz € M,,, ulp(z) is the “weight” of the last mantissa bit
of z. We also define~ as thepredecessor of.

We call abreakpoint a valuez where the rounding changes, that is;;iand¢, are

5

real numbers satisfying < z < t, ando, is the rounding mode, then(t;) < o(t2).
For “directed” rounding modes (i.e., towaréso, —oo or 0), the breakpoints are the FP
numbers. For rounding to the nearest mode, they are the exact middle of two consecutive

FP numbers.

3 Preliminary results and previous work

3.1 Preliminary results

We will frequently use the following well-known properties:

Property 1

e Lety € M,,. There existg such thatl /y belongs taV], if and only ify is a power

of 2.
e If m > n, the exact quotient of twe-bit numbers cannot be an-bit number.
o letz,yeM,.x #y=|z/y—1]>27"

The next result gives a lower bound on the distance between a breakpoint (in round-

to-nearest mode) and the quotient of two FP numbers.

Property 2 If z,y € M,,, 1 < x,y < 2, then the distance betweerly and the middle

of two consecutive FP numbers is Iower-boundedg@lm > 22% if x > y; and

1
y><22n

> 77 Otherwise. Moreover, if the last mantissa bityd a zero, then the lower

bounds become twice these ones.

3.2 The naive method

As said in the introduction, we have to evaluatg), andy is known beforez. An
obvious solution consists in pre-computing= 1/y (or more precisely rounded-to-
nearest, that isz;, = o,(1/y)), and then to multiplyz by z,. We will refer to this

as “the naive method”. Although this method does not necessarily give the correctly-
rounded expected result, we study its properties, because they can be used to derive

better algorithms. We assume round-to-nearest mode.

3.2.1 Maximum error of the naive solution

Property 3 The naive solution returns a result that is at most at distaneulps from
the exact result ifn(z) < m(y) (reminder:m(u) is the mantissa of); and 1 ulp from

the exact result ifn(x) > m(y).

If + < yandl < z,y < 2, the following property holds. It will allow us to analyze

the behavior of another algorithm (Algorithm 1).

Property 4 If x < yand1 < z,y < 2, then the naive solution returns a resylsuch

that either is within 1 ulp fromz /y, or z/y is at least at a distancé—— +27"+! —

2—3n+2

from a breakpoint of the round-to-nearest mode.

Property 3 gives tight bounds: there are valuesdy for which the naive solution

leads to an error very close 1o ulps. More precisely,

Property 5 The maximum error of the naive algorithm can be obtained through a rea-

sonably fast algorithm. This maximum error converges.faulps asn — oc.

7

This is illustrated in Table 1. For instance, in the IEERFdouble precision format

268435449 9007199120523265 by the naive algorithm

(n = 53), the division ofz = 518 BY v = Siasasararoins

leads to an error equal 1004999999739 - - - ulps.

3.2.2 Probability of getting a correctly rounded result using the naive solution

For the first few values of (up ton = 13), we have computed, through exhaustive
testing, the proportion of couplés, y) for which the naive method gives an incorrectly
rounded result. These results are given in Table 2. The proportion seems to converge, as

n grows, to a constant value that is arowvd. More precisely,

Conjecture 1 Assuming a uniform distribution of the mantissas of FP numbers, round-
ing to nearest, and: bits of mantissa, the probability that the naive method return a

result different fromp, (z/y) goes tol3/48 = 0.2708 - - - asn goes to+oo.

This conjecture is an “half-conjecture” only, since we have a rough sketch of a proof,
given in the Appendix. The figures given in Table 2 and our conjecture tend to show
that for anyn, the naive method gives a proportion of incorrectly rounded results around

27%, which is by far too large to be neglected.

3.2.3 Values ofy for which the naive method always works

Depending om, there are a very few values gf(including, of course, the powers of

2) for which the naive method always works (i.e., for all valuescbf These values

for n < 13 are given in Table 3. Unfortunately, we are not able to compute them
much faster than by exhaustive testing (which does not allow to tackle with the most

interesting values of, namely24, 53 and113).
8

3.3 Division with one multiplication and two fused MACs

On some modern processors (such as the PowerPC, the IBM RISCSystem/6000 [13]
and I1A64-based architectures [2, 12]), a fused-multiply accumulate instruction (fused-
MAC) is available. This makes it possible to evaluate an expression b with one

final (correct) rounding only. Let us now investigate how can such an instruction be
used to solve our problem. The following result, due to Markstein [13]. was designed
in order to get a correctly rounded result from an approximation to a quotient obtained

using Newton-Raphson or Goldschmidt iterations.

Theorem 1 (Markstein, 1990 [3, 13])Assumer,y € M,,. If z, is within 1/2 ulp of

1/y andq € M,,, ¢ within 1 ulp of z/y then one application of

o= oy(z—qy)
q¢ = o,(q+rz)
yieldsq' = o, (x/y).

One would like to use Theorem 1 to get a correctly rounded result from an ini-
tial value ¢ obtained by the naive method, that is, by computingrz;,), wherez, =
o,(1/y). Unfortunatelyg will not always be within one ulp from/y (see Property 3),
so Theorem 1 cannot be directly applied. One could get a better initial approximation
to x/y by performing one step of Newton-Raphson iteration franfAnd yet, such an
iteration step is not necessary, as shown by the following result (see the work of Mark-

stein [12, 13] for this kind of algorithm).

Theorem 2 (Division with one multiplication and two Macs [12, 13]) Algorithm 1,

given below, always returns the correctly rounded (to nearest) quatignt'y).
9

Algorithm 1 (Division with one multiplication and two Macs)
e in advance, evaluate, = o, (1/y);
e as soon ag is known, compute = o, (z X z);
e computer = o, (z — qy);
e computey’ = o, (q +r2).

This method requires one division befards known, and three consecutive (and de-
pendent) MACs once is known. In the following section, we try to design a faster
algorithm. Unfortunately, either there are a few (predictable) valuesfof which it
does not work, or it requires the availability of an internal precision slightly larger than

the target precision.

4 Proposed techniques

4.1 Division with one multiplication and one fused MAC

Using the method presented in Section 3.3, we could compliteising one multipli-
cation and two MACs, once is known. Let us show that in many cases, one multipli-
cation and one MAC (once is known) do suffice. To do this, we need a double-word

approximation tal /y. Let us first see how can such an approximation be computed.

10

4.1.1 Preliminary result: Getting a double-word approximation to 1/y.

Kahan [8] explains that the fused MAC allows to compute remainders exactly. Let us

show how it works.

Property 6 Letz,y,q € M, such thaty € {o4(z/y),o.(z/y)}. The remainder =

x — qy is computed exactly with a fused MAC. Thabigz — qy) = = — qy.

The algorithms we are going to examine require a double-word approximatiofy to
that is,2 FP valuesz, and z, such thatz, = o,(1/y) andz, = o,(1/y — z,). The
only reasonably fast algorithm we know for getting these values requires a fused MAC.

Using Property 6z, andz, can be computed as follows.

Property 7 Assume, € M,,, y # 0. The following sequence 8foperations computes

zp, and z, such thatz, = o, (1/y) andz, = o, (1/y — z).

o 2, =o0,(1/y);

o p=o,(1 —yz);

® z=0,(p/y).

4.1.2 The algorithm

We assume that from, we have computed = 1/y, z;, = o,(z) andz, = o,(z — z3)

(for instance using Property 7). We suggest the followdrggep method:

Algorithm 2 (Division with one multiplication and one fused MAC) Compute:

o ¢ =o,(v2);

11

o ¢x=0,(rzn +q1).

This algorithm almost always work3able 4 shows that far < 29, there are more
than 98.7% of values ofy for which the algorithm returns a correctly rounded quo-
tient for all values ofr (these figures have been obtained through exhaustive checking).
Moreover, in the other cases (see the proof of Theorem 3), for a givémere isat
most one value of the mantissazxofthat can be computed in advance) for which the

algorithm may return an incorrectly rounded quotient.

Theorem 3 Algorithm 2 gives a correct result (that ig; = o,(x/y)), as soon as at

least one of the following conditions is satisfied:

1. the last mantissa bit of is a zero;
2. nis less than or equal tG;
3. |z¢| < 27"7%7¢, wheree is the exponent of (i.e.,2¢ < |y| < 2¢T1);

4. for some reason, we know in advance that the mantissanll be larger than

that ofy;

5. Algorithm 3, given below, returrtsue when the input value is the integ&r =
y x 2"717% wheree, is the exponent of (Y is the mantissa of, interpreted as

an integer).

Algorithm 3 (Tries to find solutions to Eqgn. (9) of the appendix.) We give the algo-
rithm as a Maple program (to make it more didactic). If it returns “true” then Algo-
rithm 2 always returns a correctly rounded result when dividingybyit requires the

availability of 2n + 1-bit integer arithmetic.

12

TestY := proc(Y,n)
local Pminus, Qminus, Xminus, OK, Pplus, Qplus, Xplus;
Pminus = (1/Y) mod 2°(n+1)
requires computation of a modular inverse
Qminus := (Pminus-1) / 2;
Xminus := (Pminus * Y - 1) / 2°(n+1);
if (Qminus >= 2°(n-1)) and (Xminus >= 2°(n-1))
then OK := false
else
OK := true

Pplus := 2°(n+1)-Pminus;

Qplus = (Pplus-1) / 2;

Xplus := (Pplus * Y + 1) / 2°(n+1);

if (Qplus >= 27°(n-1)) and (Xplus >= 27(n-1))
then OK := false end if; end if;

print(OK)

end proc;

Translation of Algorithm 3 into a C or Fortran program is easily done, since comput-
ing a modular reciprocal modulo a power of two requires a few operations only, using
the extended Euclidean GCD algorithm [9]. Algorithm 3 also computes the only possi-
ble mantissaX for which, for the considered value &f, Algorithm 2 might not work.
Hence, if the algorithm returrglse, it suffices to check this very valueXf(that is, we

try to divide thisX by Y at compile time) to know if the algorithm will always work, or

13

if it will work for all X’s but this one. (see the proof of Theorem 3).

Let us discuss the consequences of Theorem 3.

e Condition “the last mantissa bit af is a zero” is very easily checked on most
systems. Hence, that condition can be used for accelerating divisions ywhen
is known at run-time, soon enougheforexz. Assuming that the last bits of the
mantissas of the FP numbers appearing in computatiorisarewith probability

1/2, that condition allows to accelerate half divisions;

e Assuming a uniform distribution of, in (—27"~17¢ +27"~1=¢) which is rea-
sonable (see [5]), ConditionZ;| < 2-"~2~¢" allows to accelerate half remaining

cases;

e Our experimental testings up to= 24 show that condition “Algorithm 3 returns
true” allows to accelerate arourgh% of the remaining cases (i.e., the cases for
which the last bit ofy is a one andz,] > 27"27¢). If Algorithm 3 returns
false then checking the only value af for which the division algorithm might
not work suffices to deal with all remaining cases. And yet, all this requires much

more computation: itis probably not interesting it not known at compile-time.

4.2 If alarger precision than target precision is available

A larger precision than the target precision is frequently available. A typical example

is the double extended precision that is available on Intel microprocessors. We now

1The order of magnitude behind this “soon enough” highly depends on the architecture and operating

system.

14

show that if an internal format is available, with at least 1-bit mantissas (which is
only one bit more than the target format), then an algorithm very similar to Algorithm 2
always works. In the followinge;.;,(z) meanse rounded ton + p bits, with rounding
modet. Definez = 1/y. We assume that from, we have computed, = o,(z) and

2y = 0,.41(2 — z,). They can be computed through:
o 2z, =0,(1/y);
o p=o,(1—yz);
e 2 =o,.11(p/Y);
We suggest the following-step method:
Algorithm 4 (Division with one multiplication and one MAC) Compute:
® g1 = 0y 41(T2);
® g2 = o, (zzn + qu).
Theorem 4 Algorithm 4 always returns a correctly rounded quotient.

Notice that if the first operation returns a result with more than 1 bits, the al-
gorithm still works. We can for instance perform the first operation in double extended

precision, if the target precision is double precision.

5 Comparisons

Let us give an example of a division algorithm used on an architecture with an avail-

able fused-MAC. In [12], Markstein suggests the following sequence of instructions for
15

double-precision division on IA-64. The intermediate calculations are performed using
the internal double-extended format. The first instructfocpa , returns a tabulated
approximation to the reciprocal of the operand, with at |86 valid bits. When two
instructions are put on the same line, they can be performed “in parallel”. The returned

result is the correctly rounded quotient with rounding mode

Algorithm 5 (Double precision division. This is Algorithm 8.10 of [12])

o 2 =frcpa (y);

o c=o,(l—yx);

e 2o =0,(2z1 + 2z1€); €1 =o,(e X e);

o 23 =0,(29 + 2261); €2 =0,(e1 X €1);

o 2y =0,(23 + z3€2);

o ¢ =o,(x24);

o r=o,(r—yq),

o g =o,(q+rzy).

This algorithm require8 FP latencies, and usé8 instructions. The lasi lines of
this algorithm are Algorithm 1 of this paper (with a slightly different context, since Al-
gorithm 5 uses extended precision). Another algorithm also given by Markstein (Algo-
rithm 8.11 of [12]) require§ FP latencies only, but usés$ instructions. The algorithm
suggested by Markstein for extended precision is Algorithm 8.18 of [12]. It req8ires

FP latencies and uséd FP instructions.
16

These figures show that replacing conventional divisign by specific algorithms
whenevely is a constant or division by the samés performed many times in a loop is
worth being done. For double-precision calculations, this replad¢d? latencies by
(using Algorithm 1) or2 (using Algorithm 2 ify satisfies the conditions of Theorem 3,
or Algorithm 4 if a larger internal precision — e.g., double-extended precision — is avail-
able). Whenever an even slightly larger precision is available (one more bit suffices),
Algorithm 4 is of interest, since it requir@sFP latencies instead 8f Algorithm 2 is
certainly interesting when the last bitgfs a zero, and, possibly, whegn| < 27"727<,

In the other cases, the rather large amount of computation required by checking whether
that algorithm can be used (we must run Algorithm 3 at compile-time) limits its use to
divisions by constants in applications for which compile time can be large and running

time must be as small as possible.

Conclusion

We have presented several ways of accelerating a divisighwherey is known be-

fore x. Our methods could be used in optimizing compilers, to make some numerical
programs run faster, without any loss of accuracy. Algorithm 1 always works and does
not require much pre-computation (so it can be used evgnsifknown a few tens of
cycles only beforer). Algorithm 2 is faster, and yet it requires much pre-computation
(for computingz;, andz,, and making sure that the algorithm works) so it is more suited
for division by a constant. Algorithm 4 always works and requires two operations only

oncer is known, but it requires the availability of a slightly larger precision. The various

17

programs we have used for this study can be obtained through an email to the authors.

References

[1] American National Standards Institute and Institute of Electrical and Electronic

[2]

[3]

[4]

Engineers. |IEEE standard for binary floating-point arithmef®&ISI/IEEE Stan-

dard, Std 754-1988\ew York, 1985.

M. Cornea-Hasegan and B. Norin. 1A-64 floating-point operations and the IEEE

standard for binary floating-point arithmetimtel Technology JournalQ4, 1999.

M. A. Cornea-Hasegan, R. A. Golliver, and P. W. Markstein. Correctness proofs
outline for Newton-Raphson based floating-point divide and square root algo-
rithms. Proc. 14th IEEE Symposium on Computer Arithmetic (Adelaide, Aus-

tralia), pages 96-105, April 1999. IEEE Computer Society Press.

M. D. Ercegovac and T. Landgivision and Square Root: Digit-Recurrence Algo-

rithms and Implementation&Kluwer Academic Publishers, Boston, 1994.

[5] A. Feldstein and R. Goodma®onvergence estimates for the distribution of trail-

[6]

ing digits Journal of the ACM23: 287-297, 1976.

D. Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Computing Survey23(1):5-47, March 1991.

[7] C. lordache and D. W. Matula. On infinitely precise rounding for division, square

root, reciprocal and square root reciprodatoc. 14th IEEE Symposium on Com-

18

puter Arithmetic (Adelaide, Australiapages 233—-240, April 1999. IEEE Com-

puter Society Press.

[8] W. Kahan. Lecture notes on the status of IEEE-754. File accessible at

[9]

[10]

[11]

[12]

[13]

[14]

[15]

http://nttp.cs.berkeley.eduivkahan/ieee754status/ieee754.ps, 1996.

D. Knuth. The Art of Computer Programmingolume 2. Addison Wesley, Read-

ing, MA, 1973.

I. Koren. Computer arithmetic algorithmsPrentice-Hall, Englewood Cliffs, NJ,

1993.

T. Lang and J.-M. Muller. Bound on run of zeros and ones for algebraic functions.
Proc. 15th IEEE Symposium on Computer Arithmetic (Vail, Colorald@E Com-

puter Society Press, 2001.

P. W. MarksteinlA-64 and Elementary Functions : Speed and Precisibewlett-

Packard Professional Books. Prentice Hall, 2000. ISBN: 0130183482.

P. W. Markstein. Computation of elementary functions on the IBM Risc Sys-
tem/6000 processotBM Journal of Research and Developmesd(1):111-119,

Jan. 1990.

S. F. Oberman and M. J. Flynn. Division algorithms and implementatitdiSE

Transactions on Computer46(8):833—-854, Aug. 1997.

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivigser’s Guide to PARI-

GP, available fromftp://megrez.math.u-bordeaux.fr/pub/pari

19

Appendix: proof of the properties and theorems

Properties 1 and 2:The proofs are straightforward and omitted for reasons of space.
Proof of Property 3. Let z,y € M,. Without loss of generality, we can assume that
andy belong to[1, 2). Since the cases y = 1 or 2 are straightforward, we assume that

x andy belong to(1, 2). Thusl/y ¢ M,,. Sincez, = o,(z) andz € (1/2,1), we have,

i - zh’ < 271 Therefore,

’f —xzp| <27 Q)

Y

From Property 1 and (1), we cannot have, > 1 andzz, < 1 or the converse. So
xz andzxz, belong to the same “binade” (i.e., Uhx;,) = ulp(zz)). Now, there are two

possible cases:
o if x>y, then|xz, —o,(z2;)] < 27", s0|x/y — o, (z21)] < 27" = ulp(z/y).

o if # < y, then|zz, —o,(xz)] < 27", so|z/y —o,(xz)| < 3 x 27" =

1.5 x ulp(z/y).

Proof of Property 4. The proof is similar to that of Property 3. We use the tighter

bounds:

o |1/y— z,| <2771 — 2727 /y (this comes from Property 2:/y is at a distance at

least2—2" /y from a breakpoint);

o 1z <2 — 272 (this comes fromx < y < 2, which impliesz < (27)7).

20

Combining these bounds gives

272n+1 273n+2
. 2—2n+1 +
Yy Yy

X
— — T2}
)

<27 —

The final bound’,,,;, is obtained by adding the/2 ulp bound onzz;, — o, (zz)|:

I 272n+1 o1 273n+2
< Appin =3 X 2 - =2 + —
Yy Yy

xT
- — o,,(a:zh)
Yy

If o, (xz,) is not within 1 ulp fromz /y, it means that /y is at a distance at least2 ulp
from the breakpoints that are immediately above or bejow o, (xz;,). And since the
breakpoints that are immediately abovgxz,)* or belowo, (zz,)~ are at a distance
1.5 ulps= 3 x 27"~ fromo,(xz;), z/y is at least at a distandex 27"~ — £,,;,, from

these breakpoints. d

Proof of Property 5. We look for the coupleér, y) € M, suchthat <z <y < 2and

. ., 1.5 :
|x/y — o, (z o, (1/y))| is as close as possmlethn—. To hasten the search, we will look
1 2K +1 .
for couples such th%tE — o, (x o, (-)) ‘ > 2—:_2 whereK is a real parameter
Y Y "

as close as possible to If we write

s (oo () =5 oo () ree () - (o= (),
weseotan e, (1) o (o (1)

11
< 5—, we want

2n
1 1 K
ol (32 5 @
Y Y 2r
H 2K since|~ ! L (1/y ¢ M,). Letuswritey — 2 anda —
encer > smceg—oy ; <2n+1(Jy ¢ M,,). Letus writey = T andz =
2n—1 .
T withl <s<|2"(1—-K)|] —1lands+1<1[<|2"(1— K)]|. We have,
2" s 1 s
_:2n—1 < -]
y U

21

Asy > z, (2) implies
Gl @
The full proof considers two casesis odd ands is even. For reasons of space we only
deal with the cases*odd” here. The other case is very similar (the full proof can be
obtained through an email to one of the authors).
Whens is odd, we only keep the € [1, [2"(1 — K)| — 1] such that

1 s 1 VA P 1 1 2n—1

= 0,- - K U kE+ K ——k+-—-K

22”—36<’2 2"—3) U (TR T T 2”—3>
keN\{0}

i.e.,S e [1, LQn(l - K)J - 1] ﬂ UkEN(GOdeﬁ’ bodd,k) Wlth

—2k 4+ 1+ +/(2k — 1)2 +2*2(2k — 1 + K)
2

—2k — 14 /(2k + 1)2 + 27+2(2k + 1 — K))

2

Aogsp = 0 ANdaguyr = forall £ > 1,

for all &.

bodec =

Let koo = max {k € N, aoqr < |2"(1 — K)| — 1} . We have

o F2"+2(1—K)+4(L2”(1—K)J—1)<L2”<1—K)J—2)J
2 2042 —4[2n(1 — K)| +4 '

Finally, whens is odd, we only keep the

5 € U (Gosas boag) U (odakoaey 1D (Dosakoger (2" (1 — K)])) -

0<k<kodg—1

1
Letk € N, 0 < k < ko such thats € (aouaks bosar:). We have2” o, (—) =

Y
+1 . . .
n—l 4 i + k,with £ = +if s > —k + Vk2 + 2"tk and+ = — otherwise. Thus,
1 (st 1+ 2k
y n

Now, recall that we want

1 1 2K +1
TOy | =] =% | ZTOy | — > -
Y Y on+1

22

f—xoy(l)‘. 5)
Y Yy

This can be written as

1 L\\|o26+1 2 —1[1 & (2k+1)
xo,|—)—o,lxo, | — > — — - =& .
y y gl Q=1 |20n g 2 B

We get from this condition and (4), that

I(s £ 1+ 2k)

on € U (m+2"5 ek, m+1—2"51K,)

meN

ie,le[s+1,12"(1 - K)]]NU,Len (Cosam> Qogam) Where

2"(m+ K +1/2) — 2"|s?/(2" — s) — (2k + 1)
st 1+2k—1s?/(2" —s) — (2k £ 1)

Coddm =

2"(m — K 4+ 1/2) +2"s?/(2" — s) — (2k £ 1)
st1+2k+[s?/(2" —s) — (2k £ 1)

Letmes = min {m € N, s < dogqm } @NdMeq = max {m € N, cooqm < [2"(1 — K)]}.

andd0d¢m —

We easily get an exact expression of these integers. Hence, we look for the

l E (maX(codd,modda 8)7 dodtimodd) U U (codd,ma dodd,m)
Moddt1<m<Mogg—1

U (Codd,]VIOdda min(dodd,Modda L2n(1 - K)J))

Once we have got all these couplgs!), we end up our research by checking if
% —o, (;c o, G)) ‘ > 2t with o = (2" — 1) /2"t andy = (2" — s)/2" .

These remarks lead to an algorithm implemented in GP, the calculator of PARI [15],

that gets faster as the parametérgrows. If K is too large, we won't find any cou-
ple. But, we know values oK that are close td and associated to a couple, y).
These values allow us to get the couplesy) € M, such thatl < = < y < 2 and

)

Sequencez,, ¥,)nen {0} SUch that, for alh € N\ {0}, zp,, y, € M, 1 < 2, <y < 2

. L5 . .
is as close as possible t29; More precisely, we now give a

23

Tn 1 3
and2" |— —o, | 2,0, | — —3 asn — +oo. Forn even, we choose
Yn Yn
on _ 2n/2 _ 2n/2—1 +3 2n/2 -1
Tn = on—1 v Yn = W
Forn odd, we choose
2(n+3)/2 -7 on _ 2(n+1)/2 +1
= e 0 Y T on-1 '

o1 2% — 20 o143

55T 531 . After some

Letn = 2p, p € N\ {0}. We have 2 —

2p

calculation, we get, for ajpp > 2,

o (oo (o)) =2
— — Oy | T2p Oy | — =15 3 _
ygp ygp 2 21_2;0

x ,
Letn =2p+ 1, p € N. We have ol 21;?57 22p+1322pp+1+1. After some calcula-

Yop+1

3
— — asp — +00.

92p
2

tion, we get, for alp > 2,

Top+1 1
e Oy (pr—i-l Oy ()) ‘
Yop+1 Yop+1
|

22p+1

1
1— 277 4221

S —7e2PR (27 7 27

3
5 —>§aSp—>+oo.

Then we use our algorithm with the paramekéobtained from this sequence. We
get the values given in Table 1. Note that the coupleg) in the table are the couples

(n, yn) €Xcept forn = 64. O

Sketch of a proof for Conjecture 1.
Definez = 1/y = z, + z,, wherez, = o,(z), with1 < y < 2. Whenn —
oo, the maximum value ofz,| is asymptotically equal td/2ulp(z), and its average

value is asymptotically equal to/4ulp(z) = 27"~2. Hence, forl < z < 2, we can
24

y+1

write: zz = x2, + ¢ where the average value pf is x 27" = (y +1)27"73

2+y

for z < y and x 272 = (2 4+ y)27" 3 for x > y (to get these figures, we
multiply the average value aefby the average value af, which isyTJr1 forl<z <y

and ”Ty fory < x < 2). The “breakpoints” of the rounding mofjeare regularly
spaced, at distanc&™ for z < y, and2 "*! for + > y. Therefore, the probability
thato,(xz) # o,(xz,) should asymptotically be the probability that there should be a

. e 1
breakpoint between these values. That probabilityyig- 1)2773/2™" = % for

2
r <y,and(2+y)2 "2t = % forz > y.

Therefore, for a givery, the probability that the naive method should give a result

different fromo, (/) is =1 4 2@ _ 2 1 1 Therefore, assuming now that

y Is variable, the probability that the naive method give an incorrectly rounded result is

2 2
Y 1 13
Vi) ay=-2~027.
/1 <16+8) T

Proof of Theorem 2. We assumd < z,y < 2. First, let us notice that i > v,
then (from Property 3)¢ is within one ulp fromz/y, therefore Theorem 1 applies,
henceq = o,(x/y). Let us now focus on the case < y. Definee; = z/y — g
ande, = 1/y — z,. From Property 3 and the definition of rounding to nearest, we have,
le1] < 3x27" Tand|ey| < 27" 1. The numbep = z—qy = ¢ yislessthardx 2" and

is a multiple of2=2"*1, It therefore can be represented exactly withl bits of mantissa.

2Since we assume rounding to nearest mode, the breakpoints are the exact middles of two consecutive

machine numbers.

25

Hence, the difference between that number@ando, (x — qy) (i.e., p rounded ta: bits
of mantissa) is zero at2~*"*1. Thereforey = ¢,y + €3, with e3 € {0, £272" 1},
Let us now compute + rz,. We havey + rz;, = L + s €162y — €9€3. Hence,
Y Y

272n+1

S 4 3 x 2—2n—2y + 2—3n

’% — (q+7r2)

Definee = 2721 /y + 3 x 27272y 4+ 2737 Now, from Property 4, either was at a
distance less than one ulp fromiy (but in such a case; = o, (z/y) from Theorem 1),

or x/y is at least at a distance

2—2n+1 N 2_2n+1 B 2—3n+2
Yy Yy

5:

from a breakpoint. A straightforward calculation shows that; it 4, thene < 6.
Therefore there is no breakpoint betweely andg+rz;,. Henceo, (¢+rz,) = o, (z/y).

The cases < 4 are easily checked through exhaustive testing. O

Proof of Property 6. Without loss of generality, we assume< z,y < 2. Define
K =n+1if ¢ < 1andK = n otherwise. Since is a multiple of2="~%+2 that is less

than2-%+1y, we haver € M,,. Hence, it is computed exactly. O

Proof of Property 7. From Property 6p is computed exactly. Therefore it éxactly

equal tol — yz,. Henceyp/y is equal tol /y — z;,. Hencez, is equal too, (1/y — z;,).0

Proof of Theorem 3. The cases < 7 have been processed through exhaustive search-

ing. Let us deal with the other cases. Without loss of generality, we assumg., 2)
26

andy € (1,2) (the cases = 1 ory = 1 are straightforward). This givese (1/2,1),
and, from Property 1, the binary representatior: @ infinite. Henceyz;, € [1/2,1].
The casez, = 1 is impossible{ > 1 andy € M, imply y > 1 + 27"*! thus
)y <1 -2l 42722 <« 1 — 27" € M, thuso,(1/y) < 1 —27"). Hence,
the binary representation of, has the form0.z} 2223 - .- 27, Sincez, is obtained by
roundingz to the nearest, we have: — z,| < fulp(z) = 27"~'. Moreover, Property 1
shows that the cage — z;,| = 27"~ ! is impossible. Therefore — z;| < 27"~!. From
this, we deducefz,| = | o, (z — 2z;)| < 2771, Again, the caséz,| = 27" is im-
possible: if we hadz — z,| < 2771 = |z, this would imply |z — (z;, + 27" 1)| <
2721 or |z — (2, — 27"71)| < 272"~1 which would contradict the fact that the bi-
nary representation of the reciprocal of arbit number cannot contain more than
n — 1 consecutive zeros or ones [7, 11]. Therefore < 27"~'. Thus, from the
definition of z, |(z — z1) — 2¢| < 272"72, thus, |x(z — 2;,) — z2| < 272", hence,

1
lz(2 — 21) — o, (wz)| < 272771 iulp(xzz) < 27?" Therefore,
1
lz2 — o [zzy + o, (220)]| < 272" + §u|p (xzh + ou(x20)) (6)

Hence, if for a givery there does not exist anysuch thatc/y = zz is at a distance
less thar2—2" from the middle of two consecutive FP numbers, thglz;, + o, (72)]
will always be equal te,(zz), i.e., Algorithm 2 will give a correct result. Therefore,
from Property 2, ifz > y then Algorithm 2 will return a correctly rounded quotient.

Also, if |z,| < 27"~% (which corresponds to Conditionz;| < 27"~“~2" of the theorem

we are proving) then we get a sharper bound:

1
|zz — o, [zzn + o, (z20)]| < 272" + QUIp (xzp + o, (z2)) (7)
27

and Property 2 implies that we get a correctly rounded quotient.
Let us now focus on the case< y. Letq € M, 1/2 < ¢ < 1, and define integers

X,YandQ@ as
X = xx2"1

Y = yx2v 1
Q = qx2".

If we have? = ¢ + 2771 4 ¢, with |e] < 2727 then
2"LX = 2QY +Y + 2"eY, with || < 272" (8)
But:
e Equation (8) implies thak’ = 2"*1¢Y should be an integer.
e The bound¥” < 2" and|e| < 272" imply |R'| < 2.
e Property 1 implies?’ # 0.

Hence, the only possibility i&’ = +1. Therefore, to find valueg for which for anyz

Algorithm 2 gives a correct result, we have to examine the possible integer solutions to

;

X = (2Q +1)Y +1,

-l <X <o — 1,
9)
-l <y <o — 1,

\ ol < Q<o —1.
There are no solutions to (9) for whigh is even. This shows that if the last mantissa
bit of y is a zero, then Algorithm 2 always returns a correctly rounded result. Now,
if Y is odd then it has a reciprocal modute!. Define P~ = (1/Y) mod2"*! and

Pt = (-1/Y)mod2"*, Q= = (P~ —1)/2 andQ" = (PT — 1)/2. From0 <

28

P—, Pt <2l —1andP~ + Pt = 0 mod2"*!, we easily findP~ + P+ = 27+,

From this, we deduce,

0 5262_762+ §;2n _'17
(10)

Q +Qt=2"—1.

Define X~ = X+l and X+ = 22X+ From (10) we easily deduce that either
Q- > 2"t or@"t > 2! but both are impossible. Hence, eith@f, X, Q™) or
(Y, X—,Q™) can be solution to Eq. (9), but both are impossible. Algorithm 3 checks

these two possible solutions. This explains the last condition of the theorem. [

Proof of Theorem 4.
As previously, we can assumec (1/2,1). The proof of Theorem 3 is immedi-
ately adapted ifc > y, so that we focus on the case< y. Using exactly the same

computations as in the proof of Theorem 3, we can show that
—2n—1 1
|zz — o, (zzh + op1(x20))| < 2 + §ulp (xzp + op.q1(T20)) -

and Property 2 implies that we get a correctly rounded quotient.

29

Table 1: Some maximal errors (in ulps) of the naive solution for various values of

n T Y Error >

32 4291868995 65533 1.4999618524452582589456
53 el 9007199190525263 1.4999999739229677997443
64 | Lot O00L LRS00 e 1.4999999994316597271551
113 | S iistesorsesssrs | slossvossussissiozssioimoszzaoogs | 1-4999999999999999757138

30

Table 2: Actual probability of an incorrect result for small values of

| n || probability|
710.2485 - - -
81 0.2559- -
91 0.2662- -
10 || 0.2711-- -
111 0.2741---

31

Table 3: Then-bit numbersy betweenl and 2 for which, for anyn-bit numberz,
o,(z x 0,(1/y)) equalso, (z/y).

n
105
RN,
151 | 163 | 183
8111 135 | T8 | 18
307
911 25
10| 1
1705
11| 160
121
4411 | 4551 | 4915
13111 | Jo06 | 3096 | 2096

32

Table 4: Numbery(n) and percentag&00v(n)/2"~! of values ofy for which Algo-
rithm 2 returns a correctly rounded quotient for all values.oforn < 7, the algorithm
always works.

n ~(n) | percentage

7 64 | 100

8 1271 99.218

9 254 1 99.218
10 510 | 99.609
11 1011 | 98.730
12 2022 | 98.730
13 4045 | 98.754
14 8097 | 98.840
15 16175 | 98.724
16 32360 | 98.754
17 64686 | 98.703

18 129419 | 98.738
19 258953 | 98.782
20 517591 | 98.722
21 1035255 | 98.729
22 2070463 | 98.727
23 4140543 | 98.718
24 8281846 | 98.727
25| 16563692 | 98.727
26 | 33126395 | 98.724
27| 66254485 | 98.726
28 | 132509483 | 98.727
29 1265016794 | 98.726

33

