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Abstract

We present techniques for accelerating the floating-point computation ofx/y

wheny is known beforex. The proposed algorithms are oriented towards archi-

tectures with available fused-MAC operations. The goal is to get exactly the same

result as with usual division with rounding to nearest. These techniques can be used

by compilers to accelerate some numerical programs without loss of accuracy.
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Motivation of this research

We wish to provide methods for accelerating floating-point divisions of the formx/y,

wheny is known beforex, either at compile-time, or at run time. We assume that a fused

multiply-accumulator is available, and that division is done in software (this happens for

instance on RS6000, PowerPC or Itanium architectures). The computed result must be

the correctly rounded result.

A naive approach consists in computing the reciprocal ofy (with rounding to near-

est), and then, oncex is available, multiplying the obtained result byx. It is well known

that that “naive method” does not always produce a correctly rounded result. One might

then conclude that, since the result should always be correct, there is no interest in in-

vestigating that method. And yet, if the probability of getting an incorrect rounding was

small enough, one could imagine the following strategy:

• the computations that follow the naive division are performed as if the division

was correct;

• in parallel, using holes in the pipeline, a remainder is computed, to check whether

the division was correctly rounded;

• if it turns out that the division was not correctly rounded, the result of the division

is corrected using the computed remainder, and the computation is started again

at that point.

To investigate whether that strategy is worth being applied, it is of theoretical and prac-

tical interest to have at least a rough estimation of the probability of getting an incorrect
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rounding. Also, one could imagine that there might exist some values ofy for which

the naive method always work (for anyx). These values could be stored. Last but not

least, some properties of the naive method are used to design better algorithms. For

these reasons, we have decided to dedicate a section to the analysis of the naive method.

Another approach starts as previously: oncex is known, it is multiplied by the pre-

computed reciprocal ofy. Then a remainder is computed, and used to correct the fi-

nal result. This does not require testing. That approach looks like the final steps of a

Newton-Raphson division. It is clear from the literature that the iterative algorithms for

division require an initial approximation of the reciprocal of the divisor, and that the

number of iterations is reduced by having a more accurate initial approximation. Of

course this initial approximation can be computed in advance if the divisor is known.

The problem is to always get correctly rounded results, at very low cost.

1 Introduction

We deal with floating-point (FP for short) divisions of the formx/y for which y is

known beforex, either at compile-time (i.e.,y is a constant. In such a case, much

pre-computation can be performed), or at run-time. We want to get the result more

quickly than by just performing a division, yet with the same accuracy: we wish to get a

correctly rounded value, as required by the IEEE 754 Standard for FP arithmetic [1, 6].

In this paper, we focus on rounding to nearest only. Divisions by constants are a clear

application of our work. There are other applications, for instance when many divisions

by the samey are performed. Consider for instance Gaussian elimination:
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for j=1 to n-1 do if a[j,j] = 0 then stop

else

for i = j+1 to n do

c[i,j] = a[i,j] / a[j,j]

for k = j+1 to n do a[i,k] = a[i,k] - c[i,j]*a[j,k]

end for

b[i] = b[i] - l[i,j]*b[j]

end for

end for

Most programmers replace the divisionsa[i,j] / a[j,j] by multiplications byp

= 1 / a[j,j] (computed in thefor j... loop). The major drawback is a loss

of accuracy. Our goal is to get the same result as if actual divisions were performed,

without the delay penalty they would involve. Presentation of conventional division

methods can be found in [4, 10, 14]. To make this paper easier to read, we have put the

proofs in appendix.

2 Definitions and notations

DefineMn as the set of exponent-unbounded,n-bit mantissa, binary FP numbers (with

n ≥ 1), that is: Mn =
{
M × 2E, 2n−1 ≤ M ≤ 2n − 1, M, E ∈ Z

}
∪ {0}. It is an

“ideal” system, with no overflows or underflows. We will show results inMn. These re-

sults will remain true in actual systems that implement the IEEE 754 standard, provided

that no overflows or underflows do occur. Themantissaof a nonzero elementM × 2E
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of Mn is the numberm(x) = M/2n−1.

The result of an arithmetic operation whose input values belong toMn may not

belong toMn (in general it does not). Hence that result must berounded. The standard

defines 4 different rounding modes:

• rounding towards+∞, or upwards:◦u(x) is the smallest element ofMn that is

greater than or equal tox;

• rounding towards−∞, or downwards:◦d(x) is the largest element ofMn that is

less than or equal tox;

• rounding towards0: ◦z(x) is equal to◦u(x) if x < 0, and to◦d(x) otherwise;

• rounding to the nearest even:◦ν(x) is the element ofMn that is closest tox. If x

is exactly halfway between two elements ofMn, ◦ν(x) is the one for whichM is

an even number.

The IEEE754 standard requires that the user should be able to choose one rounding

mode among these ones, called theactive rounding mode. After that, when performing

one of the4 arithmetic operations, or when computing square roots, the obtained result

should be equal to the rounding of the exact result. Fora ∈ Mn, we definea+ as its

successorin Mn, that is,a+ = min{b ∈ Mn, b > a}, andulp(a) as|a|+ − |a|. If a is

not an element ofMn, we define ulp(a) as◦u(a)− ◦d(a). The name ulp is an acronym

for unit in the last place. Whenx ∈ Mn, ulp(x) is the “weight” of the last mantissa bit

of x. We also definea− as thepredecessor ofa.

We call abreakpoint a valuez where the rounding changes, that is, ift1 andt2 are
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real numbers satisfyingt1 < z < t2 and◦t is the rounding mode, then◦t(t1) < ◦t(t2).

For “directed” rounding modes (i.e., towards+∞,−∞ or 0), the breakpoints are the FP

numbers. For rounding to the nearest mode, they are the exact middle of two consecutive

FP numbers.

3 Preliminary results and previous work

3.1 Preliminary results

We will frequently use the following well-known properties:

Property 1

• Lety ∈ Mn. There existsq such that1/y belongs toMq if and only ify is a power

of 2.

• If m > n, the exact quotient of twon-bit numbers cannot be anm-bit number.

• Letx, y ∈ Mn. x 6= y ⇒ |x/y − 1| ≥ 2−n.

The next result gives a lower bound on the distance between a breakpoint (in round-

to-nearest mode) and the quotient of two FP numbers.

Property 2 If x, y ∈ Mn, 1 ≤ x, y < 2, then the distance betweenx/y and the middle

of two consecutive FP numbers is lower-bounded by1
y×22n−1 > 1

22n if x ≥ y; and

1
y×22n > 1

22n+1 otherwise. Moreover, if the last mantissa bit ofy is a zero, then the lower

bounds become twice these ones.
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3.2 The naive method

As said in the introduction, we have to evaluatex/y, andy is known beforex. An

obvious solution consists in pre-computingz = 1/y (or more preciselyz rounded-to-

nearest, that is,zh = ◦ν(1/y)), and then to multiplyx by zh. We will refer to this

as “the naive method”. Although this method does not necessarily give the correctly-

rounded expected result, we study its properties, because they can be used to derive

better algorithms. We assume round-to-nearest mode.

3.2.1 Maximum error of the naive solution

Property 3 The naive solution returns a result that is at most at distance1.5 ulps from

the exact result ifm(x) < m(y) (reminder:m(u) is the mantissa ofu); and 1 ulp from

the exact result ifm(x) ≥ m(y).

If x < y and1 ≤ x, y < 2, the following property holds. It will allow us to analyze

the behavior of another algorithm (Algorithm 1).

Property 4 If x < y and1 ≤ x, y < 2, then the naive solution returns a resultq such

that eitherq is within1 ulp fromx/y, or x/y is at least at a distance2
−2n+1

y
+ 2−2n+1 −

2−3n+2

y
from a breakpoint of the round-to-nearest mode.

Property 3 gives tight bounds: there are valuesx andy for which the naive solution

leads to an error very close to1.5 ulps. More precisely,

Property 5 The maximum error of the naive algorithm can be obtained through a rea-

sonably fast algorithm. This maximum error converges to1.5 ulps asn →∞.
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This is illustrated in Table 1. For instance, in the IEEE-754 double precision format

(n = 53), the division ofx = 268435449
134217728

by y = 9007199120523265
4503599627370496

by the naive algorithm

leads to an error equal to1.4999999739 · · · ulps.

3.2.2 Probability of getting a correctly rounded result using the naive solution

For the first few values ofn (up to n = 13), we have computed, through exhaustive

testing, the proportion of couples(x, y) for which the naive method gives an incorrectly

rounded result. These results are given in Table 2. The proportion seems to converge, as

n grows, to a constant value that is around27%. More precisely,

Conjecture 1 Assuming a uniform distribution of the mantissas of FP numbers, round-

ing to nearest, andn bits of mantissa, the probability that the naive method return a

result different from◦ν(x/y) goes to13/48 = 0.2708 · · · asn goes to+∞.

This conjecture is an “half-conjecture” only, since we have a rough sketch of a proof,

given in the Appendix. The figures given in Table 2 and our conjecture tend to show

that for anyn, the naive method gives a proportion of incorrectly rounded results around

27%, which is by far too large to be neglected.

3.2.3 Values ofy for which the naive method always works

Depending onn, there are a very few values ofy (including, of course, the powers of

2) for which the naive method always works (i.e., for all values ofx). These values

for n ≤ 13 are given in Table 3. Unfortunately, we are not able to compute them

much faster than by exhaustive testing (which does not allow to tackle with the most

interesting values ofn, namely24, 53 and113).
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3.3 Division with one multiplication and two fused MACs

On some modern processors (such as the PowerPC, the IBM RISCSystem/6000 [13]

and IA64-based architectures [2, 12]), a fused-multiply accumulate instruction (fused-

MAC) is available. This makes it possible to evaluate an expressionax + b with one

final (correct) rounding only. Let us now investigate how can such an instruction be

used to solve our problem. The following result, due to Markstein [13]. was designed

in order to get a correctly rounded result from an approximation to a quotient obtained

using Newton-Raphson or Goldschmidt iterations.

Theorem 1 (Markstein, 1990 [3, 13])Assumex, y ∈ Mn. If zh is within 1/2 ulp of

1/y andq ∈ Mn, q within 1 ulp ofx/y then one application of
r = ◦ν(x− qy)

q′ = ◦ν(q + rzh)

yieldsq′ = ◦ν(x/y).

One would like to use Theorem 1 to get a correctly rounded result from an ini-

tial valueq obtained by the naive method, that is, by computing◦ν(xzh), wherezh =

◦ν(1/y). Unfortunately,q will not always be within one ulp fromx/y (see Property 3),

so Theorem 1 cannot be directly applied. One could get a better initial approximation

to x/y by performing one step of Newton-Raphson iteration fromq. And yet, such an

iteration step is not necessary, as shown by the following result (see the work of Mark-

stein [12, 13] for this kind of algorithm).

Theorem 2 (Division with one multiplication and two Macs [12, 13]) Algorithm 1,

given below, always returns the correctly rounded (to nearest) quotient◦ν(x/y).
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Algorithm 1 (Division with one multiplication and two Macs)

• in advance, evaluatezh = ◦ν(1/y);

• as soon asx is known, computeq = ◦ν(x× zh);

• computer = ◦ν(x− qy);

• computeq′ = ◦ν(q + rzh).

This method requires one division beforex is known, and three consecutive (and de-

pendent) MACs oncex is known. In the following section, we try to design a faster

algorithm. Unfortunately, either there are a few (predictable) values ofy for which it

does not work, or it requires the availability of an internal precision slightly larger than

the target precision.

4 Proposed techniques

4.1 Division with one multiplication and one fused MAC

Using the method presented in Section 3.3, we could computex/y using one multipli-

cation and two MACs, oncex is known. Let us show that in many cases, one multipli-

cation and one MAC (oncex is known) do suffice. To do this, we need a double-word

approximation to1/y. Let us first see how can such an approximation be computed.
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4.1.1 Preliminary result: Getting a double-word approximation to 1/y.

Kahan [8] explains that the fused MAC allows to compute remainders exactly. Let us

show how it works.

Property 6 Let x, y, q ∈ Mn, such thatq ∈ {◦d(x/y), ◦u(x/y)}. The remainderr =

x− qy is computed exactly with a fused MAC. That is,◦ν(x− qy) = x− qy.

The algorithms we are going to examine require a double-word approximation to1/y,

that is,2 FP valueszh andz` such thatzh = ◦ν(1/y) andz` = ◦ν(1/y − zh). The

only reasonably fast algorithm we know for getting these values requires a fused MAC.

Using Property 6,zh andz` can be computed as follows.

Property 7 Assumey ∈ Mn, y 6= 0. The following sequence of3 operations computes

zh andz` such thatzh = ◦ν(1/y) andz` = ◦ν(1/y − zh).

• zh = ◦ν(1/y);

• ρ = ◦ν(1− yzh);

• z` = ◦ν(ρ/y).

4.1.2 The algorithm

We assume that fromy, we have computedz = 1/y, zh = ◦ν(z) andz` = ◦ν(z − zh)

(for instance using Property 7). We suggest the following2-step method:

Algorithm 2 (Division with one multiplication and one fused MAC) Compute:

• q1 = ◦ν(xz`);
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• q2 = ◦ν(xzh + q1).

This algorithm almost always works. Table 4 shows that forn ≤ 29, there are more

than 98.7% of values ofy for which the algorithm returns a correctly rounded quo-

tient for all values ofx (these figures have been obtained through exhaustive checking).

Moreover, in the other cases (see the proof of Theorem 3), for a giveny, there isat

most one value of the mantissa ofx (that can be computed in advance) for which the

algorithm may return an incorrectly rounded quotient.

Theorem 3 Algorithm 2 gives a correct result (that is,q2 = ◦ν(x/y)), as soon as at

least one of the following conditions is satisfied:

1. the last mantissa bit ofy is a zero;

2. n is less than or equal to7;

3. |z`| < 2−n−2−e, wheree is the exponent ofy (i.e.,2e ≤ |y| < 2e+1) ;

4. for some reason, we know in advance that the mantissa ofx will be larger than

that ofy;

5. Algorithm 3, given below, returnstrue when the input value is the integerY =

y × 2n−1−ey , whereey is the exponent ofy (Y is the mantissa ofy, interpreted as

an integer).

Algorithm 3 (Tries to find solutions to Eqn. (9) of the appendix.) We give the algo-

rithm as a Maple program (to make it more didactic). If it returns “true” then Algo-

rithm 2 always returns a correctly rounded result when dividing byy. It requires the

availability of2n + 1-bit integer arithmetic.
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TestY := proc(Y,n)

local Pminus, Qminus, Xminus, OK, Pplus, Qplus, Xplus;

Pminus := (1/Y) mod 2ˆ(n+1)

# requires computation of a modular inverse

Qminus := (Pminus-1) / 2;

Xminus := (Pminus * Y - 1) / 2ˆ(n+1);

if (Qminus >= 2ˆ(n-1)) and (Xminus >= 2ˆ(n-1))

then OK := false

else

OK := true

Pplus := 2ˆ(n+1)-Pminus;

Qplus := (Pplus-1) / 2;

Xplus := (Pplus * Y + 1) / 2ˆ(n+1);

if (Qplus >= 2ˆ(n-1)) and (Xplus >= 2ˆ(n-1))

then OK := false end if; end if;

print(OK)

end proc;

Translation of Algorithm 3 into a C or Fortran program is easily done, since comput-

ing a modular reciprocal modulo a power of two requires a few operations only, using

the extended Euclidean GCD algorithm [9]. Algorithm 3 also computes the only possi-

ble mantissaX for which, for the considered value ofY , Algorithm 2 might not work.

Hence, if the algorithm returnsfalse, it suffices to check this very value ofX (that is, we

try to divide thisX by Y at compile time) to know if the algorithm will always work, or
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if it will work for all X’s but this one. (see the proof of Theorem 3).

Let us discuss the consequences of Theorem 3.

• Condition “the last mantissa bit ofy is a zero” is very easily checked on most

systems. Hence, that condition can be used for accelerating divisions wheny

is known at run-time, soon enough1 beforex. Assuming that the last bits of the

mantissas of the FP numbers appearing in computations are0 or 1 with probability

1/2, that condition allows to accelerate half divisions;

• Assuming a uniform distribution ofz` in (−2−n−1−e, +2−n−1−e), which is rea-

sonable (see [5]), Condition “|z`| < 2−n−2−e” allows to accelerate half remaining

cases;

• Our experimental testings up ton = 24 show that condition “Algorithm 3 returns

true” allows to accelerate around39% of the remaining cases (i.e., the cases for

which the last bit ofy is a one and|z`| ≥ 2−n−2−e). If Algorithm 3 returns

false, then checking the only value ofx for which the division algorithm might

not work suffices to deal with all remaining cases. And yet, all this requires much

more computation: it is probably not interesting ify is not known at compile-time.

4.2 If a larger precision than target precision is available

A larger precision than the target precision is frequently available. A typical example

is the double extended precision that is available on Intel microprocessors. We now

1The order of magnitude behind this “soon enough” highly depends on the architecture and operating

system.
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show that if an internal format is available, with at leastn + 1-bit mantissas (which is

only one bit more than the target format), then an algorithm very similar to Algorithm 2

always works. In the following,◦t:+p(x) meansx rounded ton + p bits, with rounding

modet. Definez = 1/y. We assume that fromy, we have computedzh = ◦ν(z) and

z` = ◦ν:+1(z − zh). They can be computed through:

• zh = ◦ν(1/y);

• ρ = ◦ν(1− yzh);

• z` = ◦ν:+1(ρ/y);

We suggest the following2-step method:

Algorithm 4 (Division with one multiplication and one MAC) Compute:

• q1 = ◦ν:+1(xz`);

• q2 = ◦ν(xzh + q1).

Theorem 4 Algorithm 4 always returns a correctly rounded quotient.

Notice that if the first operation returns a result with more thann + 1 bits, the al-

gorithm still works. We can for instance perform the first operation in double extended

precision, if the target precision is double precision.

5 Comparisons

Let us give an example of a division algorithm used on an architecture with an avail-

able fused-MAC. In [12], Markstein suggests the following sequence of instructions for
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double-precision division on IA-64. The intermediate calculations are performed using

the internal double-extended format. The first instruction,frcpa , returns a tabulated

approximation to the reciprocal of the operand, with at least8.886 valid bits. When two

instructions are put on the same line, they can be performed “in parallel”. The returned

result is the correctly rounded quotient with rounding mode◦t.

Algorithm 5 (Double precision division. This is Algorithm 8.10 of [12])

• z1 = frcpa (y);

• e = ◦ν(1− yz1);

• z2 = ◦ν(z1 + z1e); e1 = ◦ν(e× e);

• z3 = ◦ν(z2 + z2e1); e2 = ◦ν(e1 × e1);

• z4 = ◦ν(z3 + z3e2);

• q1 = ◦ν(xz4);

• r = ◦ν(x− yq1);

• q = ◦t(q1 + rz4).

This algorithm requires8 FP latencies, and uses10 instructions. The last3 lines of

this algorithm are Algorithm 1 of this paper (with a slightly different context, since Al-

gorithm 5 uses extended precision). Another algorithm also given by Markstein (Algo-

rithm 8.11 of [12]) requires7 FP latencies only, but uses11 instructions. The algorithm

suggested by Markstein for extended precision is Algorithm 8.18 of [12]. It requires8

FP latencies and uses14 FP instructions.
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These figures show that replacing conventional divisionx/y by specific algorithms

whenevery is a constant or division by the samey is performed many times in a loop is

worth being done. For double-precision calculations, this replaces7 FP latencies by3

(using Algorithm 1) or2 (using Algorithm 2 ify satisfies the conditions of Theorem 3,

or Algorithm 4 if a larger internal precision – e.g., double-extended precision – is avail-

able). Whenever an even slightly larger precision is available (one more bit suffices),

Algorithm 4 is of interest, since it requires2 FP latencies instead of3. Algorithm 2 is

certainly interesting when the last bit ofy is a zero, and, possibly, when|z`| < 2−n−2−e.

In the other cases, the rather large amount of computation required by checking whether

that algorithm can be used (we must run Algorithm 3 at compile-time) limits its use to

divisions by constants in applications for which compile time can be large and running

time must be as small as possible.

Conclusion

We have presented several ways of accelerating a divisionx/y, wherey is known be-

fore x. Our methods could be used in optimizing compilers, to make some numerical

programs run faster, without any loss of accuracy. Algorithm 1 always works and does

not require much pre-computation (so it can be used even ify is known a few tens of

cycles only beforex). Algorithm 2 is faster, and yet it requires much pre-computation

(for computingzh andz`, and making sure that the algorithm works) so it is more suited

for division by a constant. Algorithm 4 always works and requires two operations only

oncex is known, but it requires the availability of a slightly larger precision. The various
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programs we have used for this study can be obtained through an email to the authors.
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Appendix: proof of the properties and theorems

Properties 1 and 2:The proofs are straightforward and omitted for reasons of space.

Proof of Property 3. Let x, y ∈ Mn. Without loss of generality, we can assume thatx

andy belong to[1, 2). Since the casesx, y = 1 or 2 are straightforward, we assume that

x andy belong to(1, 2). Thus1/y /∈ Mn. Sincezh = ◦ν(z) andz ∈ (1/2, 1), we have,∣∣∣ 1
y
− zh

∣∣∣ < 2−n−1. Therefore, ∣∣∣∣xy − xzh

∣∣∣∣ < 2−n. (1)

From Property 1 and (1), we cannot havex/y > 1 andxzh < 1 or the converse. So

xz andxzh belong to the same “binade” (i.e., ulp(xzh) = ulp(xz)). Now, there are two

possible cases:

• if x ≥ y, then|xzh − ◦ν(xzh)| ≤ 2−n, so|x/y − ◦ν(xzh)| < 2−n+1 = ulp(x/y).

• if x < y, then |xzh − ◦ν(xzh)| ≤ 2−n−1, so |x/y − ◦ν(xzh)| < 3 × 2−n−1 =

1.5× ulp(x/y).

�

Proof of Property 4. The proof is similar to that of Property 3. We use the tighter

bounds:

• |1/y − zh| < 2−n−1 − 2−2n/y (this comes from Property 2:1/y is at a distance at

least2−2n/y from a breakpoint);

• x ≤ 2− 2−n+2 (this comes fromx < y < 2, which impliesx ≤ (2−)−).
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Combining these bounds gives∣∣∣∣xy − xzh

∣∣∣∣ ≤ 2−n − 2−2n+1

y
− 2−2n+1 +

2−3n+2

y
.

The final bound̀ min is obtained by adding the1/2 ulp bound on|xzh − ◦ν(xzh)|:∣∣∣∣xy − ◦ν(xzh)

∣∣∣∣ ≤ `min = 3× 2−n−1 − 2−2n+1

y
− 2−2n+1 +

2−3n+2

y
.

If ◦ν(xzh) is not within 1 ulp fromx/y, it means thatx/y is at a distance at least1/2 ulp

from the breakpoints that are immediately above or belowq = ◦ν(xzh). And since the

breakpoints that are immediately above◦ν(xzh)
+ or below◦ν(xzh)

− are at a distance

1.5 ulps= 3× 2−n−1 from ◦ν(xzh), x/y is at least at a distance3× 2−n−1 − `min from

these breakpoints. �

Proof of Property 5. We look for the couples(x, y) ∈ Mn such that1 ≤ x < y < 2 and

|x/y − ◦ν (x ◦ν (1/y))| is as close as possible to
1.5

2n
. To hasten the search, we will look

for couples such that

∣∣∣∣xy − ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K + 1

2n+1
, whereK is a real parameter

as close as possible to1. If we write

x

y
− ◦ν

(
x ◦ν

(
1

y

))
=

x

y
− x ◦ν

(
1

y

)
+ x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))
,

we see that, as

∣∣∣∣x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≤ 1

2

1

2n
, we want

x

∣∣∣∣1y − ◦ν

(
1

y

)∣∣∣∣ ≥ K

2n
(2)

Hencex > 2K since

∣∣∣∣1y − ◦ν

(
1

y

)∣∣∣∣ <
1

2n+1
(1/y /∈ Mn). Let us writey =

2n − s

2n−1
andx =

2n − l

2n−1
with 1 ≤ s ≤ b2n(1−K)c − 1 ands + 1 ≤ l ≤ b2n(1−K)c. We have,

2n

y
= 2n−1 +

s

2
+

1

2

s2

2n − s
.
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As y > x, (2) implies ∣∣∣∣1y − ◦ν

(
1

y

)∣∣∣∣ >
K

2ny
. (3)

The full proof considers two cases:s is odd ands is even. For reasons of space we only

deal with the case “s odd” here. The other case is very similar (the full proof can be

obtained through an email to one of the authors).

Whens is odd, we only keep thes ∈ [1, b2n(1−K)c − 1] such that

1

2

s2

2n − s
∈

(
0,

1

2
−K

2n−1

2n − s

)
∪

⋃
k∈N\{0}

(
k + K

2n−1

2n − s
− 1

2
, k +

1

2
−K

2n−1

2n − s

)
i.e.,s ∈ [1, b2n(1−K)c − 1] ∩

⋃
k∈N(aodd,k, bodd,k) with

aodd,0 = 0 andaodd,k =
−2k + 1 +

√
(2k − 1)2 + 2n+2(2k − 1 + K)

2
for all k ≥ 1,

bodd,k =
−2k − 1 +

√
(2k + 1)2 + 2n+2(2k + 1−K)

2
for all k.

Let kodd = max {k ∈ N, aodd,k < b2n(1−K)c − 1} . We have

kodd =

⌊
1

2

2n+2(1−K) + 4(b2n(1−K)c − 1)(b2n(1−K)c − 2)

2n+2 − 4b2n(1−K)c+ 4

⌋
.

Finally, whens is odd, we only keep the

s ∈
⋃

0≤k≤kodd−1

(aodd,k, bodd,k) ∪ (aodd,kodd, min (bodd,kodd, b2n(1−K)c)) .

Let k ∈ N, 0 ≤ k ≤ kodd such thats ∈ (aodd,k, bodd,k). We have2n ◦ν

(
1

y

)
=

2n−1 +
s± 1

2
+ k, with ± = + if s > −k +

√
k2 + 2n+1k and± = − otherwise. Thus,

2nx ◦ν

(
1

y

)
= 2n − l + s± 1 + 2k − l(s± 1 + 2k)

2n
. (4)

Now, recall that we want∣∣∣∣x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K + 1

2n+1
−

∣∣∣∣xy − x ◦ν

(
1

y

)∣∣∣∣ . (5)
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This can be written as

∣∣∣∣x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K + 1

2n+1
− 2n − l

22n−1

∣∣∣∣12 s2

2n − s
− (2k ± 1)

2

∣∣∣∣ = εs,l,k,K .

We get from this condition and (4), that

l(s± 1 + 2k)

2n
∈

⋃
m∈N

(m + 2nεs,l,k,K , m + 1− 2nεs,l,k,K , )

i.e., l ∈ [s + 1, b2n(1−K)c] ∩
⋃

m∈N (codd,m, dodd,m) where

codd,m =
2n(m + K + 1/2)− 2n|s2/(2n − s)− (2k ± 1)|

s± 1 + 2k − |s2/(2n − s)− (2k ± 1)|

anddodd,m =
2n(m−K + 1/2) + 2n|s2/(2n − s)− (2k ± 1)|

s± 1 + 2k + |s2/(2n − s)− (2k ± 1)|
.

Letmodd = min {m ∈ N, s < dodd,m} andModd = max {m ∈ N, codd,m < b2n(1−K)c} .

We easily get an exact expression of these integers. Hence, we look for the

l ∈ (max(codd,modd, s), dodd,modd) ∪
⋃

modd+1≤m≤Modd−1

(codd,m, dodd,m)

∪ (codd,Modd, min(dodd,Modd, b2n(1−K)c)).

Once we have got all these couples(s, l), we end up our research by checking if∣∣∣∣xy − ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K+1
2n+1 with x = (2n − l)/2n−1 andy = (2n − s)/2n−1.

These remarks lead to an algorithm implemented in GP, the calculator of PARI [15],

that gets faster as the parameterK grows. If K is too large, we won’t find any cou-

ple. But, we know values ofK that are close to1 and associated to a couple(x, y).

These values allow us to get the couples(x, y) ∈ Mn such that1 ≤ x < y < 2 and∣∣∣∣xy − ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ is as close as possible to
1.5

2n
. More precisely, we now give a

sequence(xn, yn)n∈N\{0} such that, for alln ∈ N \ {0}, xn, yn ∈ Mn, 1 ≤ xn < yn < 2
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and2n

∣∣∣∣xn

yn

− ◦ν

(
xn ◦ν

(
1

yn

))∣∣∣∣ −→ 3

2
asn −→ +∞. Forn even, we choose

xn =
2n − 2n/2 − 2n/2−1 + 3

2n−1
, yn =

2n/2 − 1

2n/2−1
.

Forn odd, we choose

xn =
2(n+3)/2 − 7

2(n+1)/2
, yn =

2n − 2(n+1)/2 + 1

2n−1
.

Let n = 2p, p ∈ N \ {0}. We have
x2p

y2p

= 2p−1

2p−1

22p − 2p − 2p−1 + 3

22p−1
. After some

calculation, we get, for allp ≥ 2,

22p

∣∣∣∣x2p

y2p

− ◦ν

(
x2p ◦ν

(
1

y2p

))∣∣∣∣ =

∣∣∣∣32 − 5

2

2−p

1− 2−p

∣∣∣∣ −→ 3

2
asp −→ +∞.

Let n = 2p + 1, p ∈ N. We have
x2p+1

y2p+1

= 2p+2−7
2p+1

22p

22p+1−2p+1+1
. After some calcula-

tion, we get, for allp ≥ 2,

22p+1

∣∣∣∣x2p+1

y2p+1

− ◦ν

(
x2p+1 ◦ν

(
1

y2p+1

))∣∣∣∣
=

∣∣∣∣32 − 7 · 2−p−2 − (2−2p−1 − 7 · 2−3p−3)
1

1− 2−p + 2−2p−1

∣∣∣∣ −→ 3

2
asp −→ +∞.

Then we use our algorithm with the parameterK obtained from this sequence. We

get the values given in Table 1. Note that the couples(x, y) in the table are the couples

(xn, yn) except forn = 64. �

Sketch of a proof for Conjecture 1.

Define z = 1/y = zh + zρ, wherezh = ◦ν(z), with 1 < y < 2. Whenn →

∞, the maximum value of|zρ| is asymptotically equal to1/2ulp(z), and its average

value is asymptotically equal to1/4ulp(z) = 2−n−2. Hence, for1 < x < 2, we can
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write: xz = xzh + ε where the average value of|ε| is
y + 1

2
× 2−n−2 = (y + 1)2−n−3

for x < y and
2 + y

2
× 2−n−2 = (2 + y)2−n−3 for x > y (to get these figures, we

multiply the average value ofε by the average value ofx, which is y+1
2

for 1 < x < y

and 2+y
2

for y < x < 2). The “breakpoints” of the rounding mode2, are regularly

spaced, at distance2−n for x < y, and2−n+1 for x > y. Therefore, the probability

that◦ν(xz) 6= ◦ν(xzh) should asymptotically be the probability that there should be a

breakpoint between these values. That probability is(y + 1)2−n−3/2−n =
y + 1

8
for

x < y, and(2 + y)2−n−3/2−n+1 =
y + 2

16
for x > y.

Therefore, for a giveny, the probability that the naive method should give a result

different from◦ν(x/y) is (y+1)(y−1)
8

+ (y+2)(2−y)
16

= y2

16
+ 1

8
. Therefore, assuming now that

y is variable, the probability that the naive method give an incorrectly rounded result is

∫ 2

1

(
y2

16
+

1

8

)
dy =

13

48
≈ 0.27.

�

Proof of Theorem 2. We assume1 ≤ x, y < 2. First, let us notice that ifx ≥ y,

then (from Property 3),q is within one ulp fromx/y, therefore Theorem 1 applies,

henceq′ = ◦ν(x/y). Let us now focus on the casex < y. Define ε1 = x/y − q

andε2 = 1/y − zh. From Property 3 and the definition of rounding to nearest, we have,

|ε1| < 3×2−n−1 and|ε2| < 2−n−1. The numberρ = x−qy = ε1y is less than3×2−n and

is a multiple of2−2n+1. It therefore can be represented exactly withn+1 bits of mantissa.

2Since we assume rounding to nearest mode, the breakpoints are the exact middles of two consecutive

machine numbers.
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Hence, the difference between that number andr = ◦ν(x− qy) (i.e.,ρ rounded ton bits

of mantissa) is zero or±2−2n+1. Therefore,r = ε1y + ε3, with ε3 ∈ {0,±2−2n+1}.

Let us now computeq + rzh. We haveq + rzh =
x

y
+

ε3

y
− ε1ε2y − ε2ε3. Hence,∣∣∣∣xy − (q + rzh)

∣∣∣∣ ≤ 2−2n+1

y
+ 3× 2−2n−2y + 2−3n

Defineε = 2−2n+1/y + 3× 2−2n−2y + 2−3n. Now, from Property 4, eitherq was at a

distance less than one ulp fromx/y (but in such a case,q′ = ◦ν(x/y) from Theorem 1),

or x/y is at least at a distance

δ =
2−2n+1

y
+ 2−2n+1 − 2−3n+2

y
.

from a breakpoint. A straightforward calculation shows that, ifn ≥ 4, thenε < δ.

Therefore there is no breakpoint betweenx/y andq+rzh. Hence◦ν(q+rzh) = ◦ν(x/y).

The casesn < 4 are easily checked through exhaustive testing. �

Proof of Property 6. Without loss of generality, we assume1 ≤ x, y < 2. Define

K = n + 1 if q < 1 andK = n otherwise. Sincer is a multiple of2−n−K+2 that is less

than2−K+1y, we haver ∈ Mn. Hence, it is computed exactly. �

Proof of Property 7. From Property 6,ρ is computed exactly. Therefore it isexactly

equal to1− yzh. Hence,ρ/y is equal to1/y− zh. Hence,z` is equal to◦ν(1/y− zh).�

Proof of Theorem 3.The casesn ≤ 7 have been processed through exhaustive search-

ing. Let us deal with the other cases. Without loss of generality, we assumex ∈ (1, 2)
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andy ∈ (1, 2) (the casesx = 1 or y = 1 are straightforward). This givesz ∈ (1/2, 1),

and, from Property 1, the binary representation ofz is infinite. Hence,zh ∈ [1/2, 1].

The casezh = 1 is impossible (y > 1 and y ∈ Mn imply y ≥ 1 + 2−n+1, thus

1/y ≤ 1 − 2−n+1 + 2−2n+2 < 1 − 2−n ∈ Mn, thus◦ν(1/y) ≤ 1 − 2−n). Hence,

the binary representation ofzh has the form0.z1
hz

2
hz

3
h · · · zn

h . Sincezh is obtained by

roundingz to the nearest, we have:|z − zh| ≤ 1
2
ulp(z) = 2−n−1. Moreover, Property 1

shows that the case|z − zh| = 2−n−1 is impossible. Therefore|z − zh| < 2−n−1. From

this, we deduce:|z`| = | ◦ν (z − zh)| ≤ 2−n−1. Again, the case|z`| = 2−n−1 is im-

possible: if we had|z − zh| < 2−n−1 = |z`|, this would imply|z − (zh + 2−n−1)| <

2−2n−1 or |z − (zh − 2−n−1)| < 2−2n−1 which would contradict the fact that the bi-

nary representation of the reciprocal of ann-bit number cannot contain more than

n − 1 consecutive zeros or ones [7, 11]. Therefore|z`| < 2−n−1. Thus, from the

definition of z`, |(z − zh)− z`| < 2−2n−2, thus, |x(z − zh)− xz`| < 2−2n−1, hence,

|x(z − zh)− ◦ν(xz`)| < 2−2n−1 +
1

2
ulp(xz`) ≤ 2−2n. Therefore,

|xz − ◦ν [xzh + ◦ν(xz`)]| < 2−2n +
1

2
ulp(xzh + ◦ν(xz`)) (6)

Hence, if for a giveny there does not exist anyx such thatx/y = xz is at a distance

less than2−2n from the middle of two consecutive FP numbers, then◦ν [xzh + ◦ν(xz`)]

will always be equal to◦ν(xz), i.e., Algorithm 2 will give a correct result. Therefore,

from Property 2, ifx ≥ y then Algorithm 2 will return a correctly rounded quotient.

Also, if |z`| < 2−n−2 (which corresponds to Condition “|z`| < 2−n−e−2” of the theorem

we are proving) then we get a sharper bound:

|xz − ◦ν [xzh + ◦ν(xz`)]| < 2−2n−1 +
1

2
ulp(xzh + ◦ν(xz`)) (7)
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and Property 2 implies that we get a correctly rounded quotient.

Let us now focus on the casex < y. Let q ∈ Mn, 1/2 ≤ q < 1, and define integers

X, Y andQ as 
X = x× 2n−1,

Y = y × 2n−1,

Q = q × 2n.

If we havex
y

= q + 2−n−1 + ε, with |ε| < 2−2n, then

2n+1X = 2QY + Y + 2n+1εY, with |ε| < 2−2n. (8)

But:

• Equation (8) implies thatR′ = 2n+1εY should be an integer.

• The boundsY < 2n and|ε| < 2−2n imply |R′| < 2.

• Property 1 impliesR′ 6= 0.

Hence, the only possibility isR′ = ±1. Therefore, to find valuesy for which for anyx

Algorithm 2 gives a correct result, we have to examine the possible integer solutions to

2n+1X = (2Q + 1)Y ± 1,

2n−1 ≤ X ≤ 2n − 1,

2n−1 ≤ Y ≤ 2n − 1,

2n−1 ≤ Q ≤ 2n − 1.

(9)

There are no solutions to (9) for whichY is even. This shows that if the last mantissa

bit of y is a zero, then Algorithm 2 always returns a correctly rounded result. Now,

if Y is odd then it has a reciprocal modulo2n+1. DefineP− = (1/Y ) mod2n+1 and

P+ = (−1/Y ) mod2n+1, Q− = (P− − 1)/2 andQ+ = (P+ − 1)/2. From 0 <
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P−, P+ ≤ 2n+1 − 1 andP− + P+ = 0 mod2n+1, we easily findP− + P+ = 2n+1.

From this, we deduce,

0 ≤ Q−, Q+ ≤ 2n − 1,

Q− + Q+ = 2n − 1.

(10)

Define X− = P−Y−1
2n+1 and X+ = P+Y +1

2n+1 . From (10) we easily deduce that either

Q− ≥ 2n−1 or Q+ ≥ 2n−1, but both are impossible. Hence, either(Y, X+, Q+) or

(Y,X−, Q−) can be solution to Eq. (9), but both are impossible. Algorithm 3 checks

these two possible solutions. This explains the last condition of the theorem. �

Proof of Theorem 4.

As previously, we can assumex ∈ (1/2, 1). The proof of Theorem 3 is immedi-

ately adapted ifx ≥ y, so that we focus on the casex < y. Using exactly the same

computations as in the proof of Theorem 3, we can show that

|xz − ◦ν (xzh + ◦ν:+1(xz`))| < 2−2n−1 +
1

2
ulp (xzh + ◦ν:+1(xz`)) .

and Property 2 implies that we get a correctly rounded quotient.
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Table 1: Some maximal errors (in ulps) of the naive solution for various values ofn.

n x y Error >

32 4294868995
2147483648

65535
32768

1.4999618524452582589456

53 268435449
134217728

9007199120523265
4503599627370496

1.4999999739229677997443

64 18446744066117050369
9223372036854775808

18446744067635550617
9223372036854775808

1.4999999994316597271551

113 288230376151711737
144115188075855872

10384593717069655112945804582584321
5192296858534827628530496329220096

1.4999999999999999757138
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Table 2: Actual probability of an incorrect result for small values ofn.

n probability

7 0.2485 · · ·
8 0.2559 · · ·
9 0.2662 · · ·

10 0.2711 · · ·
11 0.2741 · · ·
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Table 3: Then-bit numbersy between1 and 2 for which, for anyn-bit numberx,
◦ν(x× ◦ν(1/y)) equals◦ν(x/y).

n

7 1 105
64

8 1 151
128

163
128

183
128

9 1 307
256

10 1

11 1 1705
1024

12 1

13 1 4411
4096

4551
4096

4915
4096
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Table 4: Numberγ(n) and percentage100γ(n)/2n−1 of values ofy for which Algo-
rithm 2 returns a correctly rounded quotient for all values ofx. Forn ≤ 7, the algorithm
always works.

n γ(n) percentage

7 64 100

8 127 99.218

9 254 99.218

10 510 99.609

11 1011 98.730

12 2022 98.730

13 4045 98.754

14 8097 98.840

15 16175 98.724

16 32360 98.754

17 64686 98.703

18 129419 98.738

19 258953 98.782

20 517591 98.722

21 1035255 98.729

22 2070463 98.727

23 4140543 98.718

24 8281846 98.727

25 16563692 98.727

26 33126395 98.724

27 66254485 98.726

28 132509483 98.727

29 265016794 98.726
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