
Correctly Rounded Multiplication
by Arbitrary Precision Constants

Nicolas Brisebarre and Jean-Michel Muller, Senior Member, IEEE

Abstract—We introduce an algorithm for multiplying a floating-point number x by a constant C that is not exactly representable in

floating-point arithmetic. Our algorithm uses a multiplication and a fused multiply and add instruction. Such instructions are available in

some modern processors such as the IBM Power PC and the Intel/HP Itanium. We give three methods for checking whether, for a

given value of C and a given floating-point format, our algorithm returns a correctly rounded result for any x. When it does not, some of

our methods return all of the values x for which the algorithm fails. The three methods are complementary: The first two do not always

allow one to conclude, yet they are simple enough to be used at compile time, while the third one always either proves that our

algorithm returns a correctly rounded result for any x or gives all of the counterexamples. We generalize our study to the case where a

wider internal format is used for the intermediate calculations, which gives a fourth method. Our programs and some additional

information (such as the case where an arbitrary nonbinary even radix is used), as well as examples of runs of our programs, can be

downloaded from http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html.

Index Terms—Floating-point arithmetic, computer arithmetic, multiplication by constants, fused multiply-add instruction, correct

rounding.

Ç

1 INTRODUCTION

MANY numerical algorithms require multiplication by
constants that are not exactly representable in float-

ing-point (FP) arithmetic. Typical constants that are used
[1], [4] are �, 1=�, lnð2Þ, e, Bk=k! (Euler-McLaurin summa-
tion), and cosðk�=NÞ and sinðk�=NÞ (Fast Fourier Trans-
forms). Some numerical integration formulas such as [4]:

Z x1

x0

fðxÞdx � h 55

24
fðx1Þ �

59

24
fðx2Þ

�

þ 37

24
fðx3Þ �

9

24
fðx4Þ

�
;

also naturally involve multiplication by constants. In the
following, we call a number that is exactly representable in
the FP format being used an FP number (unless it is clearly
stated—as in Section 9—we assume that only one format is
used so that there is no ambiguity).

For approximating Cx, where C is an infinite-precision
constant and x is an FP number, the desirable result would
be the best possible one, namely, �ðCxÞ, where �ðuÞ is u

rounded to the nearest FP number (in this paper, we
assume round to nearest even mode only). In practice, one
usually defines a constant Ch, equal to the FP number that is
closest to C, and actually computes Chx (that is, what is
returned is �ðChxÞ). Due to the extra approximation of C by

Ch, the obtained result is frequently different from �ðCxÞ, as
shown in Section 2. Our goal here is to be able—at least for
some constants and some FP formats—to return �ðCxÞ for
all input FP numbers x (provided no overflow or underflow
occurs) and at a low cost (that is, using a very few
arithmetic operations only). This will lead to more accurate
numerical computations. To do that, we will use fused
multiply and add (FMA) instructions. The FMA instruction is
available on some current processors such as the IBM
Power PC or the Intel/HP Itanium. It evaluates an
expression xyþ z, where x, y, and z are FP numbers, with
one final rounding error only. This makes it possible to
perform correctly rounded division using Newton-Raphson
Division [3], [12], [13]. Li et al. use it for argument reduction
[11]. Also, this makes evaluation of scalar products and
polynomials faster and, generally, more accurate than with
conventional (addition and multiplication) FP operations.
We will examine two possible cases: In the first case, all
intermediate calculations are performed in the “target”
format. In the second case, the intermediate calculations are
performed in a somewhat larger format (a frequent example
is when the target format is the IEEE-754 double precision
format and the intermediate calculations are performed in
the double-extended precision format that is available on
INTEL processors).

Our proofs will use the ulp function. Several slightly
different definitions of ulpðxÞ do exist in the literature [5],
[7], [8], [12], [15]. These definitions and their properties are
compared in [14]. In this paper, we will use the following
definition, given by Cornea-Hasegan et al. [3]: In a radix-2
FP system with n-bit mantissas, if x 2 ½2e; 2eþ1Þ, then
ulpðxÞ ¼ 2e�nþ1. With this definition, we have the following
properties (see [14]):

Assume that the binary FP number X approximates the
real number x. Then,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008 165

. N. Brisebarre is with the Laboratoire MUSE, Université Jean Monnet,
Saint- �Etienne, France, and Projet Arénaire of INRIA.
E-mail: Nicolas.Brisebarre@ens-lyon.fr.

. J.-M. Muller is with LIP, ENS Lyon, 46 Allee d’Italie, 69364 Lyon Cedex
07, France. E-mail: jean-michel.muller@ens-lyon.fr.

Manuscript received 7 July 2006; revised 27 Apr. 2007; accepted 3 Aug. 2007;
published online 5 Sept. 2007.
Recommended for acceptance by M. Schulte.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0264-0706.
Digital Object Identifier no. 10.1109/TC.2007.70813.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

jX � xj < 1

2
ulpðxÞ) X ¼ �ðxÞ;

X ¼ � ðxÞ) jX � xj � 1

2
ulpðxÞ;

X ¼ � ðxÞ) jX � xj � 1

2
ulpðXÞ;

jX � xj < 1

2
ulpðXÞ does not imply X ¼ �ðxÞ:

An example for which jX � xj < 1
2 ulpðXÞ and yet X 6¼

�ðxÞ can be obtained by choosing X ¼ 1 and
1� 2�n < x < 1� 2�n�1. In such a case, �ðxÞ ¼ 1� 2�n 6¼ 1
and jx� 1j < 2�n ¼ 1

2 ulpð1Þ. One can easily show the
following result:

If one of the two following conditions is satisfied

. x is not of the form 2k � �, with 2k�n�1 < � < 2k�n or

. X is not a power of 2,

then,

jX � xj < 1

2
ulpðXÞ) X ¼ �ðxÞ:

In Section 3, we give an algorithm for multiplying by a
constant C. For most values of C but not all (see Section 4),
it will return a correctly rounded value of Cx for all FP
variables x. Hence, for a given value of C, we have to check
whether our algorithm returns a correctly rounded result
for all x. In Section 6, we present three methods to do that.
The three methods are complementary: The first two do not
always allow one to conclude, yet they are simple enough to
be used at compile time, whereas the third always either
proves that our algorithm returns a correctly rounded result
for any x or gives all of the counterexamples. In Section 9,
we extend our algorithm to the very frequent case where
the calculations can be performed in an internal format that
is larger than the “target” FP format.

2 SOME STATISTICS

Let n be the number of mantissa bits of the considered FP
format (usual values of n are 24, 53, 64, 113). For small
values of n, one can compute �ðChxÞ and �ðCxÞ for all
possible values of the mantissa of x. The proportion of
correctly rounded results is given in Table 1, for C ¼ � (it
was obtained through a Maple simulation of these FP
arithmetics). These results show that the “naive” method
that consists of computing �ðChxÞ often returns an

incorrectly rounded result (in around 41 percent of the
cases for n ¼ 7).

3 FIRST CASE: THE INTERMEDIATE CALCULATIONS

ARE PERFORMED IN THE “TARGET” FORMAT

We want to compute Cx with correct rounding (assuming
rounding to nearest even), where C is a constant (that is, C
is known at compile time). C is not an FP number
(otherwise, the problem would be straightforward). We
assume that an FMA instruction is available. We assume
that the operands are stored in a binary FP format with n-bit
mantissas. We also assume that the two following FP
numbers are precomputed:

Ch ¼ �ðCÞ;
C‘ ¼ �ðC � ChÞ:

�
ð1Þ

In the next sections of the paper, we analyze the behavior
of the following algorithm. Specifically, we want to know
for which values of C and n will it return a correctly
rounded result for any x. When it does not, we wish to
know for which values of x it does not.

Algorithm 1: Multiplication by C with a multiplication
and an FMA). From x, compute

u1 ¼ �ðC‘xÞ;
u2 ¼ �ðChxþ u1Þ:

�
ð2Þ

The result to be returned is u2.

It is worth pointing out that, without the use of FMA
instruction, Algorithm 1 would fail to return a correctly
rounded result for all but a few simple (for example,
powers of 2) values of x.

When C is the exact reciprocal of an FP number, this
algorithm coincides with an algorithm for division by a
constant given in [2]. Obviously (provided no overflow/
underflow occurs), if Algorithm 1 gives a correct result with
a given constant C and a given input variable x, it will work
as well with a constant 2pC and an input variable 2qx, where
p and q are integers. Also, if x is a power of 2 or if C is
exactly representable (that is, C‘ ¼ 0) or if C � Ch is a power
of 2 (so that u1 is exactly ðC � ChÞx), it is straightforward to
show that u2 ¼ �ðCxÞ. Hence, without loss of generality, we
assume in the following that 1 < x < 2 and 1 < C < 2, that C is
not exactly representable, and that C � Ch is not a power of 2.

In Section 6, we give three methods for analyzing the
behavior of Algorithm 1 for a given constant C. The first
two certify that Algorithm 1 always returns a correctly
rounded result, give a “bad case” (that is, a number x for
which u2 6¼ �ðCxÞ), or are unable to infer anything. The
third one is able to return all “bad cases,” or certify that
there are none. These methods use the following property,
which bounds the maximum possible distance between u2

and Cx in Algorithm 1. Of course, Algorithm 1 works for a
given constant C and precision n if all FP numbers x are
such that ju2 � Cxj < ð1=2ÞulpðCxÞ. In most cases, this will
be equivalent to ju2 � Cxj < ð1=2Þulpðu2Þ, which leads us to
establish Property 2. Therefore, we need to prove Property 1,
which gives the at most four possible values of x (between 1
and 2) for which ulpðu2Þ may differ from ulpðCxÞ or

166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

TABLE 1
Proportion of Input Values x for which �ðChxÞ ¼ �ðCxÞ for C ¼ �

and Various Values of the Number n of Mantissa Bits

ulpðChxþ u1Þ. Algorithm 1 will need to be separately
checked with these four values (this is done easily and
quickly).

Property 1 (Equivalence of ulpðCxÞ, ulpðu2Þ, and

ulpðChxþ u1Þ). Define xcut ¼ 2=C.

. If x < xcut � 2�nþ2, then Cx, Chxþ u1, and u2 are in
the same binade (hence, they have the same ulp).

. If x > xcut þ 2�nþ2, then Cx, Chxþ u1, and u2 are in
the same binade (hence, they have the same ulp).

Proof. We just consider the case x > xcut þ 2�nþ2 (the proof
for the other case is very similar). If x > xcut þ 2�nþ2,
then Cx > 2þ 2�nþ2. Moreover, Ch > C � 2�n; hence,
Chx > ð2þ 2�nþ2Þ � 2�nþ1 � 2þ 2�nþ1.

From jC‘j � 2�n, we deduce jC‘xj < 2�nþ1; hence,
ju1j � 2�nþ1. Therefore, Chxþ u1 � 2. Hence, u2 � 2. tu

Property 2. Define �1 ¼ jC � ðCh þ C‘Þj:

. if x < xcut � 2�nþ2, then

ju2 � Cxj < ð1=2Þulpðu2Þ þ �;

. if x � xcut þ 2�nþ2, then

ju2 � Cxj < ð1=2Þulpðu2Þ þ �0;

where

� ¼ 1
2 ulpðC‘xcutÞ þ �1xcut;

�0 ¼ ulpðC‘Þ þ 2�1:

�

Proof. From 1 < C < 2 and Ch ¼ �ðCÞ, we deduce jC �
Chj < 2�n (since C � Ch is not a power of 2), which gives

j�1j �
1

2
ulpðC � ChÞ � 2�2n�1:

Now, we have

u2 � Cxj j � u2 � ðChxþ u1Þj j
þ ðChxþ u1Þ � ðChxþ C‘xÞj j
þ ðCh þ C‘Þx� Cxj j

� 1

2
ulpðChxþ u1Þ

þ ju1 � C‘xj þ �1jxj

� 1

2
ulpðu2Þ þ

1

2
ulpðC‘xÞ

þ �1jxj;

ð3Þ

and 1
2 ulpðC‘xÞ þ �1jxj is less than 1

2 ulpðC‘xcutÞ þ �1jxcutj if
jxj < xcut and less than ulpðC‘Þ þ 2�1 if xcut � x < 2. tu
Under the conditions of Property 1, if ju2 � Cxj <

ð1=2Þulpðu2Þ, then ju2 � Cxj < ð1=2ÞulpðCxÞ so that u2 is
the FP number that is closest to Cx. Hence, our problem is
to know if Cx can be at a distance larger than or equal to
1
2 ulpðu2Þ from u2. From (3), this would imply that Cx would
be at a distance less than 1

2 ulpðC‘xÞ þ �1jxj < 2�2nþ1 from the
midpoint of two consecutive FP numbers (see Fig. 1).

If x < xcut then Cx < 2, then the midpoint of two
consecutive FP numbers around Cx is of the form
ð2Aþ 1Þ=2n, where A is an integer between 2n�1 and

2n � 1. If x � xcut, then the midpoint of two consecutive
FP numbers around Cx is of the form ð2Aþ 1Þ=2n�1. For the
sake of clarity of the proofs, we assume that xcut is not an FP
number (if xcut is an FP number, it suffices to separately
check Algorithm 1 with x ¼ xcut).

4 BUILDING COUNTEREXAMPLES

We do not claim that Algorithm 1 works for all values of C.
Although the various examples we give at the end of the
paper show that, in practice, for most usual values of C and
most formats, Algorithm 1 returns a correctly rounded
value for all x, it is extremely easy to build constants C for
which the algorithm fails. Consider an integer A between
2n�1 and 2n � 1. The integer 2Aþ 1 is exactly representable
with nþ 1 bits of mantissa but cannot be exactly repre-
sented with n bits. Also consider an integer X, 2n�1 < X <

2n such that ð2Aþ 1Þ=X is not an FP number. The integer X
is exactly representable in our FP format.

Then, consider the following two constants:

Cþ ¼ ð2Aþ 1þ �Þ=X

and

C� ¼ ð2Aþ 1� �Þ=X;

where � is chosen small enough so that we get the same values
Ch andC‘ forCþ andC�. Adequate values of �will depend on
the bit patterns of ð2Aþ 1Þ=X but will be less than 2�n.

Now, consider Algorithm 1, with constant Cþ or C� and
input value X. Since both constants lead to the same values
Ch and C‘, Algorithm 1 will return the same value in both
cases. Nevertheless, since C�X < 2Aþ 1 < CþX and 2Aþ
1 is the exact middle of two FP numbers, the correctly
rounded values of C�X and CþX are necessarily different.

BRISEBARRE AND MULLER: CORRECTLY ROUNDED MULTIPLICATION BY ARBITRARY PRECISION CONSTANTS 167

Fig. 1. From (3), we know that Cx is within 1=2ulpðu2Þ þ � (or �0) of the
FP number u2, where � is less than 2�2nþ1. If we can show that Cx
cannot be at a distance less than or equal to � (or �0) from the midpoint of
two consecutive FP numbers, then u2 will be the FP number that is
closest to Cx.

Therefore, either C� or Cþ is a counterexample to
Algorithm 1.

For instance, assume n ¼ 53 (double precision format)
and consider

2Aþ 1 ¼ 253 þ 5 ¼ 9007199254740997;

X ¼ 3� 251 ¼ 6755399441055744;

and � ¼ 2�57. One can easily check that, called with constant

Cþ ¼ ð2Aþ 1þ �Þ=X

¼ 432691404877902542569521487194795

324518553658426726783156020576256

and variable X, Algorithm 1 fails to return a correctly
rounded value of CþX.

5 A REMINDER ON CONTINUED FRACTIONS

We just recall here the elementary results that we need in
the following. For more information on continued fractions,
see [6], [9], [16], [17].

Let � be a real number. From �, consider the two
sequences ðaiÞ and ðriÞ defined by

r0 ¼ �;
ai ¼ rib c;
riþ1 ¼ 1

ri�ai :

8<
: ð4Þ

If � is irrational, then these sequences are defined for any
i (that is, ri is never equal to ai) and the rational number

pi
qi
¼ a0 þ

1

a1 þ 1

a2þ 1

a3þ 1

. .
.
þ 1
ai

is called the ith convergent of �. If � is rational, then these
sequences finish for some k, and pk=qk ¼ � exactly. The pis
and the qis can be deduced from the ai using the following
recurrences:

p0 ¼ a0;
p1 ¼ a1a0 þ 1;
q0 ¼ 1;

8<
:

q1 ¼ a1;
pn ¼ pn�1an þ pn�2;
qn ¼ qn�1an þ qn�2:

8<
:

The major interest of the continued fractions lies in the
fact that pi=qi is the best rational approximation to � among
all rational numbers of denominator less than or equal to qi
(Theorem 1 states an even stronger result).

We will use the following two results [6]:

Theorem 1. Let ðpj=qjÞj�1 be the convergents of �. If qnþ1 exists,

then, for any ðp; qÞ 2 ZZ� IN�, with q < qnþ1, we have

jp� �qj � jpn � �qnj:

If qnþ1 does not exist (which implies that � is rational), then

the previous inequality holds for any ðp; qÞ 2 ZZ� IN�.

Theorem 2. Let p, q be integers, q 6¼ 0. If

p

q
� �

����
���� < 1

2q2
;

then p=q is a convergent of �.

6 THREE METHODS FOR ANALYZING ALGORITHM 1

We assume that Algorithm 1 is preliminarily checked with the

at most four values of x that are between xcut � 2�nþ2 and

xcut þ 2�nþ2. Hence, in the rest of this section, all FP numbersx

considered are such that ulpðCxÞ ¼ ulpðChxþ u1Þ ¼ ulpðu2Þ.
Our algorithms may be slow in the case where C is equal or

extremely close to a rational number of small (in front of 2n)

denominators. Nevertheless, in the case C ¼ 2k=p, where

jpj � 2n � 1, the method given in [2] can be applied. For

instance, it allows us to conclude that the algorithm always

works with constants 10�k, with 0 � k � 22.

6.1 Method 1: Use of Theorem 1

Define X ¼ 2n�1x and Xcut ¼ 2n�1xcut

� �
. X and Xcut are

integers. X is between 2n�1 þ 1 and 2n � 1 and Xcut is

between 2n�1 and 2n � 1. We separate the cases x < xcut and

x > xcut.

6.1.1 If x < xcut

We want to know if there is an integer A between 2n�1 and

2n � 1 such that

Cx� 2Aþ 1

2n

����
���� < �; ð5Þ

where � is defined in Property 2. Inequality (5) is equivalent to

2CX � 2A� 1j j < 2n�: ð6Þ

Define ðpi=qiÞi�1 as the convergents of 2C. Let k be the

smallest integer such that qkþ1 > Xcut and define

� ¼ jpk � 2Cqkj. Theorem 1 implies that, for any A;X 2 ZZ,

with 0 < X � Xcut, we have

j2CX � 2A� 1j � �:

Therefore,

1. if � � 2n�, then jCx� ð2Aþ 1Þ=2nj < � is impossible.
In that case, Algorithm 1 returns a correctly rounded
result for any x < xcut;

2. if � < 2n�, then we try Algorithm 1 with y ¼ qk2�nþ1.
If the obtained result is not �ðyCÞ, then we know that
Algorithm 1 fails for at least one value.1 Otherwise, we
cannot infer anything.

6.1.2 If x > xcut

We want to know if there is an integer A between 2n�1 and

2n � 1 such that

Cx� 2Aþ 1

2n�1

����
���� < �0; ð7Þ

where �0 is defined in Property 2. Inequality (7) is

equivalent to

CX � 2A� 1j j < 2n�1�0: ð8Þ

Define ðp0i=q0iÞi�1 as the convergents of C. Let k0 be the

smallest integer such that q0k0þ1 � 2n and define

168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

1. It is possible that y may be not between 1 and xcut. It will be a
counterexample anyway, that is, an n-bit number for which Algorithm 1
fails.

�0 ¼ jp0k0 � Cq0k0 j. Theorem 1 implies that, for any A;X 2 ZZ,

with Xcut � X < 2n, jCX � 2A� 1j � �0. Therefore,

1. if �0 � 2n�1�0, then jCx� ð2Aþ 1Þ=2n�1j < �0 is im-
possible. In that case, Algorithm 1 returns a correctly
rounded result for any x > xcut;

2. if �0 < 2n�1�0, then we try Algorithm 1 with
y ¼ q0k02�nþ1. If the obtained result is not �ðyCÞ, then
we know that Algorithm 1 fails for at least one value.
Otherwise, we cannot infer anything.

6.2 Method 2: Use of Theorem 2

Again, we use X ¼ 2n�1x and Xcut ¼ 2n�1xcut

� �
and we

separate the cases x < xcut and x > xcut.

6.2.1 If x < xcut

If

Cx� 2Aþ 1

2n

����
���� < �1xcut þ

1

2
ulpðC‘xcutÞ;

then

2C � 2Aþ 1

X

����
���� < 2n �

�1xcut þ 1
2 ulpðC‘xcutÞ
X

:

Therefore, since X � Xcut, if

�1xcut þ
1

2
ulpðC‘xcutÞ �

1

2nþ1Xcut
; ð9Þ

then we can apply Theorem 2: If jCx� ð2Aþ 1Þ=2nj < �1xcut

þ 1
2 ulpðC‘xcutÞ, then ð2Aþ 1Þ=X is a convergent of 2C.
In that case, we have to check the convergents of 2C of

denominator less than or equal to Xcut. A given convergent

p=q (with gcdðp; qÞ ¼ 1) is a candidate for generating a

value X for which Algorithm 1 does not work if there exist

X ¼ mq and 2Aþ 1 ¼ mp such that

2n�1 þ 1 � X � Xcut;
2n�1 � A � 2n � 1;
j CX2n�1 � 2Aþ1

2n j < �1xcut þ 1
2 ulpðC‘xcutÞ:

8<
:

This would mean

C
mq

2n�1
�mp

2n

��� ��� < �1xcut þ
1

2
ulpðC‘xcutÞ;

which would imply

2Cq � pj j < 2n

m�
�1xcut þ

1

2
ulpðC‘xcutÞ

� �
; ð10Þ

where m� ¼ d2n�1=qe is the smallest possible value of m.

Hence, if (10) is not satisfied, convergent p=q cannot

generate a bad case for Algorithm 1.
Now, if (10) is satisfied, we have to check Algorithm 1

with all values X ¼ mq, with m� � m � bXcut=qc.

6.2.2 If x > xcut

If

Cx� 2Aþ 1

2n�1

����
���� < �1xþ

1

2
ulpðC‘xÞ;

then

C � 2Aþ 1

X

����
���� < �1 þ

2n�2

X
ulpðC‘xÞ: ð11Þ

Now, if

22nþ1�1 þ 22n�1ulpð2C‘Þ � 1; ð12Þ

then, for any X < 2n (that is, x < 2),

�1 þ
2n�2

X
ulpðC‘xÞ <

1

2X2
:

Hence, if (12) is satisfied, then (11) implies (from Theorem 2)
that ð2Aþ 1Þ=X is a convergent of C. This means that if (12)
is satisfied to find the possible bad cases for Algorithm 1, it
suffices to examine the convergents of C of denominator
less than 2n. We can eliminate most of them. A given
convergent p=q (with gcdðp; qÞ ¼ 1) is a candidate for
generating a value X for which Algorithm 1 does not work
if there exist X ¼ mq and 2Aþ 1 ¼ mp such that

Xcut < X � 2n � 1;
2n�1 � A � 2n � 1;
j CX2n�1 � 2Aþ1

2n�1 j < �1
X

2n�1 þ 1
2 ulpðC‘xÞ:

8<
:

This would mean

C
mq

2n�1
� mp

2n�1

��� ��� < �1
mq

2n�1
þ 1

2
ulpð2C‘Þ;

which would imply that

Cq � pj j < �1q þ
2n�1

m�
ulpðC‘Þ; ð13Þ

where m� ¼ dXcut=qe is the smallest possible value of m.
Hence, if (13) is not satisfied, convergent p=q cannot
generate a bad case for Algorithm 1.

Now, if (13) is satisfied, we have to check Algorithm 1
with all values X ¼ mq, with m� � m � bð2n � 1Þ=qc.

6.2.3 Conclusion

This last result and (3) make it possible to deduce the
following:

Theorem 3 (Conditions on C and n). Assume that 1 < C < 2.
Let xcut ¼ 2=C and Xcut ¼ 2n�1xcut

� �
:

. If X ¼ 2n�1x � Xcut and �1xcut þ 1=2ulpðC‘xcutÞ �
1=ð2nþ1XcutÞ, then Algorithm 1 will always return a
correctly rounded result, except possibly if X is a
multiple of the denominator of a convergent p=q of 2C
for which j2Cq � pj < 2n

d2n�1=qe �1xcut þ 1
2 ulpðC‘xcutÞ

� 	
.

. If X ¼ 2n�1x > Xcut and 22nþ1�1 þ 22n�1ulpð2C‘Þ
� 1, then Algorithm 1 will always return a correctly
rounded result, except possibly if X is a multiple of the
denominator of a convergent p=q of C for which
jCq � pj < �1q þ 2n�1

dXcut=qeulpðC‘Þ.

6.3 Method 3: Refinement of Method 2

When Method 2 fails to return an answer, we can use the
following method.

We have jC � Chj < 2�n; hence, ulpðC‘Þ � 2�2n or
C‘ ¼ 2�n.

BRISEBARRE AND MULLER: CORRECTLY ROUNDED MULTIPLICATION BY ARBITRARY PRECISION CONSTANTS 169

6.3.1 If x < xcut

If ulpðC‘Þ � 2�2n�2, then we have, from Property 2:

u2 � Cxj j < 1

2
ulpðu2Þ þ 2�2n�1:

For any integer A, the inequality

Cx� 2Aþ 1

2n

����
���� � 1

22nþ1

implies that

2CX � 2A� 1j j � 1

2nþ1
<

1

2X
:

ð2Aþ 1Þ=X is a convergent of 2C from Theorem 2. It then

suffices to check (as in Method 2) the convergents of 2C of

the denominator less than or equal to Xcut.
Now, assume that ulpðC‘Þ � 2�2n�1. We have

� ulpðC‘Þ þ C‘
X

2n�1
� u1 � ulpðC‘Þ þ C‘

X

2n�1
;

that is,

� 22nulpðC‘Þ þ 2nþ1C‘X � u122n

� 22nulpðC‘Þ þ 2nþ1C‘X:
ð14Þ

The proof of Property 2 leads us to look for the integers X,

2n�1 þ 1 � X � Xcut, such that there exists an integer A,

2n�1 � A � 2n � 1, with

Ch
X

2n�1
þ u1 �

2Aþ 1

2n

����
���� < 2ulpðC‘Þ;

that is,

ChX

2nulpðC‘Þ
þ u1

2ulpðC‘Þ
� 2Aþ 1

2nþ1ulpðC‘Þ

����
���� < 1:

Since u1=ð2ulpðC‘ÞÞ is half an integer and ChX
2nulpðC‘Þ and

2Aþ1
2nþ1ulpðC‘Þ are integers, we have

ChX

2nulpðC‘Þ
þ u1

2ulpðC‘Þ
� 2Aþ 1

2nþ1ulpðC‘Þ
¼ 0;	1=2:

Then, combining these three equations with (14), we get the

following three pairs of inequalities:

0 � 2XðCh þ C‘Þ � ð2Aþ 1Þ þ 2nulpðC‘Þ
� 2nþ1ulpðC‘Þ;

0 � 2XðCh þ C‘Þ � ð2Aþ 1Þ � 2nþ1ulpðC‘Þ;
0 � 2XðCh þ C‘Þ � ð2Aþ 1Þ þ 2nþ1ulpðC‘Þ

� 2nþ1ulpðC‘Þ:

For y 2 IR, let fyg be the fractional part of y:

fyg ¼ y� byc. These three inequalities can be rewritten as

fXðCh þ C‘Þ þ 2n�1ulpðC‘Þ � 1=2g � 2nulpðC‘Þ;
fXðCh þ C‘Þ � 1=2g � 2nulpðC‘Þ;

fXðCh þ C‘Þ þ 2nulpðC‘Þ � 1=2g � 2nulpðC‘Þ:

We use an efficient algorithm due to Lefèvre [10] to

determine the integers X solution of each inequality.

6.3.2 If x > xcut

If ulpðC‘Þ � 2�2n�1, then we have

u2 � Cxj j < 1

2
ulpðu2Þ þ 2�2n:

Therefore, for any integer A, the inequality

Cx� 2Aþ 1

2n�1

����
���� � 1

22n

is equivalent to

CX � 2A� 1j j � 1

2nþ1
<

1

2X
:

ð2Aþ 1Þ=X is necessarily a convergent ofC from Theorem 2.

It suffices then to check, as indicated in Method 2, the

convergents ofC of denominator less than or equal to 2n � 1.
Now, assume that ulpðC‘Þ ¼ 2�2n or C‘ ¼ 2�n. The proof

of Property 2 leads us to look for the integers X,

Xcut þ 1 � X � 2n � 1, such that there exists an integer A,

2n�1 � A � 2n � 1, with

Ch
X

2n�1
þ u1 �

2Aþ 1

2n�1

����
���� < 1

22n�1
;

that is,

2nþ1ChX þ u122n � 2nþ1ð2Aþ 1Þ
�� �� < 2:

Since u122n, 2nþ1ChX, and 2nþ1ð2Aþ 1Þ 2 ZZ, we have

2nþ1ChX þ u122n � 2nþ1ð2Aþ 1Þ ¼ 0;	1:

Then, combining this equation with (14), we get the three

pairs of inequalities

0 � XðCh þ C‘Þ � ð2Aþ 1Þ þ 1

2nþ1
� 1

2n
;

0 � XðCh þ C‘Þ � ð2Aþ 1Þ � 1

2n
;

0 � XðCh þ C‘Þ � ð2Aþ 1Þ þ 1

2n
� 1

2n
;

that is to say,

X
Ch þ C‘

2
� 1

2
þ 1

2nþ2

�

� 1

2nþ1
;

X
Ch þ C‘

2
� 1

2

�

� 1

2nþ1
;

X
Ch þ C‘

2
� 1

2
þ 1

2nþ1

�

� 1

2nþ1
:

Here again, we use Lefèvre’s algorithm [10] to determine

the integers X solution of these inequalities.

7 EXAMPLES

7.1 Example 1: Multiplication by � in Double
Precision

Consider the case C ¼ �=2 (which corresponds to multi-

plication by any number of the form 2	j�) and n ¼ 53

(double precision) and assume we use Method 1. We find

170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Ch ¼ 884279719003555=562949953421312;
C‘ ¼ 6:123233996

 � 10�17;
�1 ¼ 1:497384905

 � 10�33;
xcut ¼ 1:2732395447351626862

 ;
ulpðC‘xcutÞ ¼ 2�106;
ulpðC‘Þ ¼ 2�106:

8>>>>>><
>>>>>>:

Hence,

2n� ¼ 7:268364390� 10�17;
2n�1�0 ¼ 6:899839541� 10�17:

�

Computing the convergents of 2C and C, we find

pk
qk
¼ 6134899525417045

1952799169684491

and � ¼ 9:495905771� 10�17 > 2n� (which means that Algo-

rithm 1 works for x < xcut) and

p0k0

q0k0
¼ 12055686754159438

7674888557167847

and �0 ¼ 6:943873667� 10�17 > 2n�1�0 (which means that

Algorithm 1 works for x > xcut). We therefore deduce the

following:

Theorem 4 (Correctly rounded multiplication by �).

Algorithm 1 always returns a correctly rounded result in

double precision with C ¼ 2j�, where j is any integer,

provided that no under/overflow occurs.

Hence, in that case, multiplying by � with correct rounding

only requires two consecutive FMAs.

7.2 Example 2: Multiplication by lnð2Þ in Double
Precision

Consider the case C ¼ 2 lnð2Þ (which corresponds to multi-

plication by any number of the form 2	j lnð2Þ), and n ¼ 53,

and assume we use Method 2. We find that

Ch ¼ 6243314768165359
4503599627370496 ;

C‘ ¼ 4:638093628

 � 10�17;
xcut ¼ 1:442695

 ;
�1 ¼ 1:141541688

 � 10�33;
�1xcut

þ 1
2 ulpðC‘xcutÞ ¼ 7:8099

 � 10�33;

1=ð2nþ1XcutÞ ¼ 8:5437

 � 10�33:

8>>>>>>>><
>>>>>>>>:

Since �1xcut þ ð1=2ÞulpðC‘xcutÞ � 1=ð2nþ1XcutÞ, to find the

possible bad cases for Algorithm 1 that are less than xcut, it

suffices to check the convergents of 2C of denominator less

than or equal to Xcut. These convergents are

2; 3; 11=4; 25=9; 36=13; 61=22; 890=321; 2731=985;

25469=9186; 1097898=395983; 1123367=405169;

2221265=801152; 16672222=6013233; 18893487=6814385;

35565709=12827618; 125590614=45297239;

161156323=58124857; 609059583=219671810;

1379275489=497468477; 1988335072=717140287;

5355945633=1931749051; 7344280705=2648889338;

27388787748=9878417065; 34733068453=12527306403;

62121856201=22405723468; 96854924654=34933029871;

449541554817=162137842952;

2794104253556=1007760087583;

3243645808373=1169897930535;

6037750061929=2177658018118;

39470146179947=14235846039243;

124448188601770=44885196135847;

163918334781717=59121042175090;

288366523383487=104006238310937;

6219615325834944=2243252046704767:

None of them satisfies (10). Therefore, there are no bad

cases less than xcut. Processing the case x > xcut is similar

and gives the same result; hence, we have the following:

Theorem 5 (Correctly rounded multiplication by lnð2Þ).
Algorithm 1 always returns a correctly rounded result in

double precision with C ¼ 2j lnð2Þ, where j is any integer,

provided that no under/overflow occurs.

7.3 Example 3 Multiplication by 1=� in Double
Precision

Consider the case C ¼ 4=� and n ¼ 53 and assume we use

Method 1. We find

Ch ¼ 5734161139222659
4503599627370496 ;

C‘ ¼ �7:871470670

 � 10�17;
�1 ¼ 4:288574513

 � 10�33;
xcut ¼ 1:570796

 ;
C‘xcut ¼ �1:236447722

 � 10�16;
ulpðC‘xcutÞ ¼ 2�105;
2n� ¼ 1:716990939

 � 10�16;
pk=qk ¼ 15486085235905811

6081371451248382 ;
� ¼ 7:669955467

 � 10�17:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Consider the case x < xcut. Since � < 2n�, there can be

bad cases for Algorithm 1. We try Algorithm 1 with X equal

to the denominator of pk=qk, that is, 6081371451248382, and

we find that it does not return �ðcXÞ for that value. Hence,

there is at least one value of x for which Algorithm 1 does not

work.
Method 3 certifies that X ¼ 6081371451248382, that is,

6081371451248382� 2	k are the only FP numbers for which

Algorithm 1 fails.

7.4 Example 4: Multiplication by
ffiffiffi
2
p

in Single
Precision

Consider the case C ¼
ffiffiffi
2
p

and n ¼ 24 (which corresponds

to single precision) and assume we use Method 1. We find

BRISEBARRE AND MULLER: CORRECTLY ROUNDED MULTIPLICATION BY ARBITRARY PRECISION CONSTANTS 171

Ch ¼ 11863283=8388608;
C‘ ¼ 2:420323497

 � 10�8;
�1 ¼ 7:628067479

 � 10�16;
Xcut ¼ 11863283;
ulpðC‘xcutÞ ¼ 2�48;
2n� ¼ 4:790110735

 � 10�8;
pk=qk ¼ 22619537=7997214;
� ¼ 2:210478490

 � 10�8;
2n�1�0 ¼ 2:769893477

 � 10�8;
pk0=qk0 ¼ 22619537=15994428;
�0 ¼ 2:210478490

 � 10�8:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Since 2n� > � and X ¼ qk ¼ 7997214 is not a bad case, we
cannot infer anything in the case x < xcut. Also, since 2n�1�0 >
�0 and X ¼ qk0 ¼ 15994428 is not a bad case, we cannot infer
anything in the case x � xcut. Hence, in the case C ¼

ffiffiffi
2
p

and
n ¼ 24, Method 1 does not allow us to know if the multi-
plication algorithm works for any input FP number x. In that
case, Method 2 also fails. Nevertheless, Method 3 or
exhaustive testing (which is possible since n ¼ 24 is reason-
ably small) show that Algorithm 1 always works.

7.5 Example 5: Powers of 10

Consider constants C of the form 10k, in double precision. If
0 � k � 22, C is exactly representable so that a simple FP
multiplication is used. Otherwise, for �100 � k � 100, the
only values of k for which Algorithm 1 fails to always return
a correctly rounded result are �89, �88, �80, �75, �74,
�39, �27, 44, 58, 81, 88, and 97 (the case �22 � k � �1 is
addressed using that in [2]).

8 IMPLEMENTATION AND RESULTS

As the reader will have guessed from the previous
examples, using our Methods by paper and pencil
calculation is tedious and error prone. We have written
Maple programs that implement Methods 1, 2, and 3, and
a GP/PARI2 program that implements Method 3. They
allow any user to quickly check, for a given constant C
and a given number n of mantissa bits, if Algorithm 1
works for any x, and Method 3 gives all values of x for
which it does not work (if there are such values). These
programs and some additional information (such as the
case where an arbitrary nonbinary even radix is used) can
be downloaded from http://perso.ens-lyon.fr/jean-michel.
muller/MultConstant.html

These programs, along with some examples, are given in
the appendix. Table 2 presents some obtained results. They
show that implementing Method 1, Method 2, and Method 3
is necessary: Methods 1 and 2 do not return a result (either a
bad case or the fact that Algorithm 1 always works) for the
same values of C and n. For instance, in the case C ¼ �=2
and n ¼ 53, we know that, thanks to Method 1, the
multiplication algorithm always works, whereas Method 2
fails to give an answer. On the contrary, in the case C ¼
1= lnð2Þ and n ¼ 24, Method 1 does not give an answer,
whereas Method 2 makes it possible to show that the
algorithm always works. Method 3 always returns an
answer but is more complicated to implement: This is not
a problem for getting a result such as Theorem 4 in advance

for a general constant C. Nevertheless, this might make

Method 3 difficult to implement in a compiler, to decide at

compile time if we can use our algorithm.

9 SECOND CASE: ASSUMING INTERMEDIATE

CALCULATIONS IN A LARGER FORMAT

Intermediate calculations will frequently be performed in

an internal format that is significantly larger than the

“target” format. For instance, on Intel processors, the

intermediate calculations can be performed in a double-

extended precision (with 64-bit mantissas), with the final

result being converted to double precision. This is done at

no cost since the only operators that are actually imple-

mented are double-extended precision operators. Hence, it

is important to see what changes in Algorithm 1 and its

properties in this case.

172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

2. http://pari.math.u-bordeaux.fr/.

TABLE 2
Some Results Obtained Using Methods 1, 2, and 3

The results given for constant C hold for all values 2	jC “AW” means
“always works” and “unable” means “the method is unable to conclude.”
For Method 3, “(c)” means that we have needed to check the
convergents.

Therefore, in the following, we still assume a “target”

n-bit format, but we assume that Ch and C‘ are computed in

a larger format, with nþ g bits of mantissa. We also assume

that Algorithm 1 is performed in that nþ g-bit format,

before its final result is rounded to the nearest number with

n-bit mantissa (using the standard round-to-nearest-even

rounding mode). We still assume that an FMA instruction is

available. We will denote ulptðxÞ as the value of ulpðxÞ in a

format with t bits of mantissa (the relevant values of t will

be n and nþ g).
One might be intuitively convinced that we will get a

correctly rounded result more frequently than when only

using n-bit arithmetic. This, of course, will be true in

general, as shown by the examples. Nevertheless, it is still

easy to build cases for which we get an incorrect result: It

suffices to use the method presented in Section 4, with a

smaller value of �. Here again, the case where C or 2C is a

rational number of denominator less than 2n � 1 (remember

that 1 < C < 2) is separately handled (as in Section 6).
Define �kðwÞ as w rounded to the nearest FP number with

k bits of mantissa. We will now use the constants

Ch ¼ �nþgðCÞ;
C‘ ¼ �nþgðC � ChÞ;

�
ð15Þ

and the following algorithm.

Algorithm 2: Multiplication by C using an intermediate

format with nþ g bits of mantissa. From x, compute

u1 ¼ �nþgðC‘xÞ;
u2 ¼ �nðChxþ u1Þ:

�
ð16Þ

The result to be returned is u2.

Analyzing this algorithm will be done in a way that is

very similar to what we did for Algorithm 1, so we will skip

the details. First, we preliminarily check the values of x

between xcut � 2�nþ2 and xcut þ 2�nþ2. We can then show

that, in all remaining cases,

ju2 � Cxj <
1

2
ulpnðu2Þ þ ulpnþgðC‘Þ þ 2�2ðnþgÞ

<
1

2
ulpnðu2Þ þ 2�2ðnþgÞþ1:

ð17Þ

Therefore,

1. If x < xcut � 2�nþ2. We want to know if there exists
an integer A between 2n�1 and 2n � 1 such that

Cx� 2Aþ 1

2n

����
���� � 2�2ðnþgÞþ1: ð18Þ

This would imply that

2CX � 2A� 1j j � 2�n�2gþ1;

where X ¼ 2n�1x. Since X < 2n, 2X will always be

strictly less than 2nþ2g�1 as soon as g � 1. Hence, if

g � 1, then (18) implies

2C � 2Aþ 1

X

����
���� < 1

2X2
:

Hence, it follows from Theorem 2 that ð2Aþ 1Þ=X is
a convergent of 2C. To find if such A and X do exist,
we proceed very similarly to Method 2. A con-
vergent ðp=qÞ of 2C (with gcdðp; qÞ ¼ 1) is a candidate
if there exist X ¼ mq and 2Aþ 1 ¼ mp such that

2n�1 þ 1 � X � Xcut;

2n�1 � A � 2n � 1;

and if

2Cq � pj j � 1

2nþ2g�1m�
;

where m� ¼ d2n�1=qe is the smallest possible value
of m.

2. If x > xcut þ 2�nþ2. We want to know if there exists
an integer A between 2n�1 and 2n � 1 such that

Cx� 2Aþ 1

2n�1

����
���� � 2�2ðnþgÞþ1: ð19Þ

This would imply that

CX � 2A� 1j j � 2�n�2g:

Since X < 2n, 2X will always be strictly less than
2nþ2g as soon as g � 1. Hence, if g � 1, then (19)
implies

C � 2Aþ 1

X

����
���� < 1

2X2
:

Hence, it follows from Theorem 2 that ð2Aþ 1Þ=X is
a convergent of C. Again, to find if such A and X do
exist, we proceed very similarly to Method 2. A
convergent ðp=qÞ of C (with gcdðp; qÞ ¼ 1) is a
candidate if there exist X ¼ mq and 2Aþ 1 ¼ mp
such that

Xcut < X � 2n � 1;

2n�1 � A � 2n � 1;

and if

Cq � pj j � 1

2nþ2gm�
;

where m� ¼ dXcut=qe is the smallest possible value
of m.

Method 4 consists of checking whether Algorithm 2
works with the values of X obtained from the convergents
of C and 2C. Method 4 is very similar to Method 2.
Nevertheless, Method 4 is always able to conclude: Either it
gives all counterexamples to Algorithm 2 or it proves that
Algorithm 2 always works with the chosen values of C, n,
and g.

A Maple program implementing this method is given in
the appendix. Using this program, we are able to conclude
that, in the case n ¼ 53 and g ¼ 11 (which corresponds to
the very useful case of double precision as the “target”
format and double-extended precision as the “internal”
format), Algorithm 2 always returns a correctly rounded
product when used with constants C equal to any power
of 2 times �, 1=�, lnð2Þ, 1= lnð2Þ, lnð10Þ, 1= lnð10Þ, and

BRISEBARRE AND MULLER: CORRECTLY ROUNDED MULTIPLICATION BY ARBITRARY PRECISION CONSTANTS 173

cosð�=8Þ. In practice, to find counterexamples for these
values of n and g, one must build them, for instance, using
the method given in Section 4.

10 CONCLUSION

The four methods we have proposed allow one to check
whether correctly rounded multiplication by an “infinite
precision” constant C is feasible at a low cost (one multi-
plication and one FMA). For instance, in double precision
arithmetic, we can multiply by � or lnð2Þ with correct
rounding. When the multiplication algorithm does not work,
Method 3 returns all counterexamples. Notice that, when the
calculations are performed in an internal format with at least
one more fraction bit than the target format, we have an even
simpler method (Method 4) that also gives all counter-
examples. Interestingly enough, although it is always
possible to build ad hoc values of C for which Algorithm 1
fails, for “general” values of C, our experiments show that
Algorithm 1 works for most values of n.

REFERENCES

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs and Mathematical Tables, Applied
Math. Series 55, US Nat’l Bureau of Standards, 1964.

[2] N. Brisebarre, J.-M. Muller, and S. Raina, “Accelerating Correctly
Rounded Floating-Point Division When the Divisor Is Known in
Advance,” IEEE Trans. Computers, vol. 53, no. 8, pp. 1069-1072,
Aug. 2004.

[3] M.A. Cornea-Hasegan, R.A. Golliver, and P. Markstein, “Correct-
ness Proofs Outline for Newton-Raphson Based Floating-Point
Divide and Square Root Algorithms,” Proc. 14th IEEE Symp.
Computer Arithmetic, I. Koren and P. Kornerup, eds., pp. 96-105,
Apr. 1999.

[4] B.P. Flannery, W.H. Press, S.A. Teukolsky, and W.T. Vetterling,
Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.

[5] D. Goldberg, “What Every Computer Scientist Should Know
about Floating-Point Arithmetic,” ACM Computing Surveys,
vol. 23, no. 1, pp. 5-47, Mar. 1991.

[6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of
Numbers. Oxford Univ. Press, 1979.

[7] J. Harrison, “A Machine-Checked Theory of Floating-Point
Arithmetic,” Proc. 12th Int’l Conf. Theorem Proving in Higher Order
Logics, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Théry, eds., pp. 113-130, Sept. 1999.

[8] W. Kahan, “A Logarithm Too Clever by Half,” http://
http.cs.berkeley.edu/ wkahan/LOG10HAF.TXT, 2004.

[9] A.Y. Khinchin, Continued Fractions. Dover, 1997.
[10] V. Lefèvre, “An Algorithm that Computes a Lower Bound on the

Distance between a Segment and Z2,” Developments in Reliable
Computing, pp. 203-212, Kluwer Academic, 1999.

[11] R.-C. Li, S. Boldo, and M. Daumas, “Theorems on Efficient
Argument Reductions,” Proc. 16th IEEE Symp. Computer Arith-
metic, 2003.

[12] P. Markstein, IA-64 and Elementary Functions: Speed and Precision,
Hewlett-Packard Professional Books. Prentice Hall, 2000.

[13] P.W. Markstein, “Computation of Elementary Functions on the
IBM Risc System/6000 Processor,” IBM J. Research and Develop-
ment, vol. 34, no. 1, pp. 111-119, Jan. 1990.

[14] J.-M. Muller, “On the Definition of ulpðxÞ,” Technical Report 2005-
09, LIP Laboratory, ENS Lyon, ftp://ftp.ens-lyon.fr/pub/LIP/
Rapports/RR/RR2005/RR2005-09.pdf, 2005.

[15] M.A. Overton, Numerical Computing with IEEE Floating-Point
Arithmetic. SIAM, 2001.

[16] O. Perron, Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte
Aufl., pp. 1954-1957. Teubner,

[17] H.M. Stark, An Introduction to Number Theory. MIT Press, 1981.

Nicolas Brisebarre received the PhD degree in
pure mathematics from the Université Bordeaux
I, France, in 1998. He has been a maı̂tre de
conférences (associate professor) in pure
mathematics at the Laboratoire d’Arithmétique
et d’Algèbre (LArAl), Université de Saint-
�Etienne, France, since 1999. His research
interests are in computer arithmetic and number
theory.

Jean-Michel Muller received the PhD degree
from the Institut National Polytechnique de
Grenoble in 1985. He is the directeur de
recherches (senior researcher) at CNRS,
France, and he is the former head of the LIP
Laboratory (LIP is a joint laboratory of CNRS,
the Ecole Normale Supérieure de Lyon, INRIA,
and the Université Claude Bernard Lyon 1). His
research interests are in computer arithmetic.
He was the coprogram chair of the 13th IEEE

Symposium on Computer Arithmetic (1997) and the general chair of the
14th IEEE Symposium on Computer Arithmetic (1999). He is the author
of several books, including Elementary Functions, Algorithms and
Implementation (second edition, Birkhäuser, 2006). He served as an
associate editor of the IEEE Transactions on Computers from 1996 to
2000. He is a senior member of the IEEE and a member of the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

