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Topic of the Ph.D

• Inria Grenoble, France

• “How do I optimize for an architecture?”

• CPU

• Fixed architecture

• Variable application

• Performance model

• Automated resource characterization

How to make the “best” hardware / software combination?
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Topic of the Ph.D

• Inria Grenoble, France

• “How do I optimize for an architecture?”

• CPU

• Fixed architecture

• Variable application

• Performance model

• Automated resource characterization

• Colorado State University, USA

• “How do I optimize for an application?”

• FPGA / ASIC

• Variable architecture

• Fixed application

• Resource model

• ≈ Automated resource generation

How to make the “best” hardware / software combination?
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Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: GA
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Hardware architectures: accelerators, instructions

• CPU:

• Fixed (unknown) topology

• A few high performance cores

• Variable instructions

Zen core (Credit: AMD)

Meteor Lake die shot
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Hardware architectures: accelerators, instructions

• CPU:

• Fixed (unknown) topology

• A few high performance cores

• Variable instructions

Zen core (Credit: AMD)

(Credit: Xilinx / AMD)

• FPGA/ASIC

• Dedicated accelerator logic

• Variable topology

• Decided by the designer

• May have variable instructions

Meteor Lake die shot

XC3S50A die shot
(Credit: Andrew Zonenberg )
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• Compute Units
• Specialized hardware units

• Configurable number

• Configurable capabilities

FPGA designs

• Interconnect
• Fixed, configurable routes

• Between CU

• Between storage units

• Fixed Schedule

Program

FPGA / ASIC

CU1

CU2

CU3

Scheduler

Mapping
Program Resource

Known,
Fixed

Unknown,
Variable

Tasks
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(Bits of) CPU architecture

• Front End:
• Decoding

• Instructions -> µOPs

• Branch prediction

• Various caches

• Back-end:
• Execution pipeline

• Functional units
• Execution ports

• Instruction life cycle:
1)Issued
2)Scheded
3)Retired

Assembly
Instructions

CPU

P1

P2

P3

Front-end Scheduler

Mapping
Instruction Resource

Known,
Variable

Unknown,
Fixed

µOps
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Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: FPGAs
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CPUs
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CPU
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Automated
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Abstract Resources
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Big picture

Resource
Mapping

Assembly
Instructions

How to build a CPU bottleneck analyser?

Functional execution
(e.g. QEMU)

Other
Performance

Models

Performance
Bottleneck

Abstract
Simulation

Instrumentation

Bottleneck analyser
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Microkernel & Execution Time

• Average execution time
(►throughput):

3 cycles
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But....

Disjunctive Mapping
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Trick of the dual formulation

• Disjunctive form:
• Derived from hardware

• Instruction may be executed on 
several ports

• Optimal excecution time is an 
optimization problem

load storeadd

P1 P2

OR



23/55

Trick of the dual formulation

• Conjunctive form:
• Simpler representations

• More resources

• No µOps

• Optimal execution time is 
a maximum of a sum

• Disjunctive form:
• Derived from hardware

• Instruction may be executed on 
several ports

• Optimal excecution time is an 
optimization problem

• Decomposition of always used 
resources

• For all disjunctive mapping, there 
exists an equivalent dual 
conjunctive mapping

load storeadd

P1 P2

OR

load storeadd

R1 R12 R2

AND
AND
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PALMED: overview
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Basic Instruction Selection

• Input: ISA with syntax rules

• Output: Reduced set of Basic Instructions

• ~10-20 instructions

• Use preferrentially one resource

• Based on three selection filters

• Equivalence classes of instructions 
• Quadratic benchmarks

• Independant instructions

• Instruction using resource of high throughput

load storeadd

R1 R12 R2
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Core Mapping

• Input: Set of Basic Instructions

• Outputs:
• Mapping of the Basic Instruction

• Saturating benchmarks

• Multi-step solving
1) Determine the shape of the mapping

• number of resources 
• possible edges
• Iterative process

2) Determine the value of the edges

load storeadd

R1 R12 R2

►(add, store) saturates R2
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Complete Mapping

• Input: Saturating benchmarks

• Output: Complete mapping

• Use saturating benchmarks as resource 
indicators

• Force a resource to be saturated...

• ... even if the unknown instruction does not use it!

• Proved

Saturating
benchmark

RS

Unknown
instruction

RX

?
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PALMED Accuracy

SPEC2017 Polybench SPEC2017 Polybench
SKL-SP Zen1
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MSE, Lower is better

PALMED

PMEvo

llvm-mca

IACA

uops.info

Mean Square Error (exec. time prediction) of basic blocs with no dependencies

• Solving time: 2h

• Two times faster than PMEvo[1] on Skylake

• Eight time faster than PMEvo[1] on Zen

• Supports ~2500 instructions

• PMEvo: ~300 instructions
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PALMED: limitations

• Limited to x86 architecture

• Armv8 port in progress

• Limited to port-bound assembly code

• Transient effects?

• Instruction cache?

• No dependencies

• Not an optimisation tool as it
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PALMED[3]: Main contributions

• Based on a novel conjunctive resource mapping
• Key design point for scalability

• Only rely on timing measurement

• Microbenchmark-driven
• Only measures asymptotic throughput of list of instructions

• Dynamic generation of microbenchmarks depending of the target architecture

• Architecture-agnostic
• Tested on Intel and AMD CPUs

• WIP: Adaptation on ARM CPUs

[3] Nicolas Derumigny, Théophile Bastian, Fabian Gruber, Guillaume Iooss, Christophe Guillon, Louis-Noël Pouchet, and Fabrice Rastello. 2022. PALMED: 
Throughput Characterization for Superscalar Architectures. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2022

Automated and scalable reverse engineering of port mapping
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Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: GA
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FPGA/ASIC

Pipeline

Throughput

Architecture

Multiple Applications

Mapping

Optimization

Performance Model

Resources

FPGA/ASIC
HLS

Area

Interconnect

Compute Units

DSP

Compilation
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FPGAs

• Customizable hardware
• Grid of atomic gate element

• Integrates:
• Routing logic

• LUT: Elementary computation unit

• FF: Elementary Storage units

• DSP: Embedded accelerators

• Block-RAM: On chip, denser memory

• Used for:
• High Throughput signal processing

• Deep Learning acceleration

• Design Prototyping

(Credit: Xilinx)

Field-programmable gate array
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High Level Synthesis: principle, tools

• Switch from HDL languages to C/C++
• Semantic definition of the computation

• Semi-automated definition of the hardware 
topology

• Extensive use of pragmas
• High expertise required

• Faster design time
• Annotated C is still less verbose than VHDL

• Faster verification time
• Semantic is embedded in the design

• Faster TTM / Cost-effective solution
• Used in industry

Compilers for hardware design



38/55

High Level Synthesis: examples

• Several designs can execute the same 
program

• Compiler optimise for efficiency

• Paretto Front of optimal design

• Sensitive to program syntax
• Function and loop bodies forms compute units

• Two equivalent codes may lead to different designs

• Relies on annotations:
• #pragma pipeline

• #pragma unroll

• Example:
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High Level Synthesis: examples

• Several designs can execute the same 
program

• Compiler optimise for efficiency

• Paretto Front of optimal design

• Sensitive to program syntax
• Function and loop bodies forms compute units

• Two equivalent codes may lead to different designs

• Relies on annotations:
• #pragma pipeline

• #pragma unroll

• Example:

fun vect_add():
for i in [0,N]:

#pragma HLS pipeline
#pragma HLS unroll factor=2
a[i] = b[i] ⊕ c [i]

return a

addadd

Accelerator topology

Loop control
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HLS: Resource Sharing

• We consider Compute Unit sharing

• More resources may translate in...
• More performances

• More area / power consumption

• Idea: Mutualise part of resources
• Often trade part of the performance for efficiency

• Reduce area

• Requires additional control logic

• Uses two types of floating-point operations:
• Additions

• Multiplications

addadd mul
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HLS: Resource Sharing

• Example: extract of Discrete Wavelet Transform

for j=1 to m−3 step 2 do
tmp[i][j] ⊕= a1 ⊗ (tmp[i][j−1] ⊕ tmp[i][j+1])

for j=1 to m−3 step 2 do
tmp[i][j] ⊕= a3 ⊗ (tmp[i][j −1] ⊕ tmp[i][j+1])
img[j/2+m/2][i] = k2 ⊗ tmp[i][j]

• We consider Compute Unit sharing

• More resources may translate in...
• More performances

• More area / power consumption

• Idea: Mutualise part of resources
• Often trade part of the performance for efficiency

• Reduce area

• Requires additional control logic

• Uses two types of floating-point operations:
• Additions

• Multiplications

addadd mul

addadd mul

addadd mul

Loop 1

Loop 2
Time

• A valid accelerator design is:

• Corresponding execution:

addadd mul
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Optimal resource sharing with an LP

• Convex, naive encoding (ILP)

• Objective: Find the fastest accelerator 

• Constraints:

• Maximal resource budget

• Dependencies must be satisfied

• Number of Compute Units

• Log y scale!

• There is no compromise here...

Scaling w.r.t. the type and number of operations
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Optimal resource sharing with an LP

• Convex, naive encoding (ILP)

• Objective: Find the fastest accelerator 

• Constraints:

• Maximal resource budget

• Dependencies must be satisfied

• Number of Compute Units

• Log y scale!

• There is no compromise here...

Scaling w.r.t. the type and number of operations

►Optimal sharing is not the right approach !
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Inexact solving: dominance of the interconnect

• Routing elements (LUTs) are over-used

• Regularity of the compute pattern lost
• High-fanout multiplexers

TODO EXPLAIN HEURISTIC
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Inexact solving: dominance of the interconnect

• Routing elements (LUTs) are over-used

• Regularity of the compute pattern lost
• High-fanout multiplexers

Can we use these routing logic 
more intelligently?

TODO EXPLAIN HEURISTIC
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Generic Accelerator: Flow of the work

for i in 0..512:
    A[i] += B[i]
for i in 0..512:
    out += A[i]

for i in 0..512:
    A[i] += B[i]
for i in 0..512:
    out += A[i]

Set of input applications

for i in 0..512:
    A[i] += B[i]

Fixed
Interconnect / 

Structure

Architecture
Description / 
Constraints Output Design

Set of polyhedral kernels

for i in 0..512:
    A[i] += B[i]for i in 0..512:

    A[i] += B[i]

Merged kernels
(Functional Units)

HLSfor i in 0..512:
    A[i] += B[i]for i in 0..512:

    A[i] += B[i]for i in 0..512:
    A[i] += B[i]

Customized
Generic Accelerator
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Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
    A[i] += B[i]
for i in 0..512:
    out += A[i]

Input application

for i in 0..512:
    A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
    A[i] += B[i]for i in 0..512:

    A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling
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Generic Accelerator: User perspective

for i in 0..512:
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    out += A[i]
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    A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
    A[i] += B[i]for i in 0..512:

    A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
  y[i] *= beta

for j in 0..N:
    tmp = alpha * x[j]

 for i in 0..N:
       y[i] += A[i][j] * tmp

GEMVGEMV
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Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
    A[i] += B[i]
for i in 0..512:
    out += A[i]

Input application

for i in 0..512:
    A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
    A[i] += B[i]for i in 0..512:

    A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
  y[i] *= beta

for j in 0..N:
    tmp = alpha * x[j]

 for i in 0..N:
       y[i] += A[i][j] * tmp

GEMVGEMV
for i in 0..N:
  y[i] *= beta

for j in 0..N:
  x[j] *= alpha

for j in 0..N:
  for i in 0..N:
    t[i] += A[i][j]*x[j]

for i in 0..N:
  y[i] = t[i] + x[i]

mulsv

mulmv

mulsv

addv



50/55

Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
    A[i] += B[i]
for i in 0..512:
    out += A[i]

Input application

for i in 0..512:
    A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
    A[i] += B[i]for i in 0..512:

    A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
  y[i] *= beta

for j in 0..N:
    tmp = alpha * x[j]

 for i in 0..N:
       y[i] += A[i][j] * tmp

GEMVGEMV
for i in 0..N:
  y[i] *= beta

for j in 0..N:
  x[j] *= alpha

for j in 0..N:
  for i in 0..N:
    t[i] += A[i][j]*x[j]

for i in 0..N:
  y[i] = t[i] + x[i]

mulsv

mulmv

mulsv

addvCustomized
Generic Accelerator

mulvs(x, alpha, x)
mulvs(y, beta, y)
mulmv(t,A,x)
addv(x,y,t)

Configuration for GEMV
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Generic Accelerator: template architecture & FUs

• Loop-based detection of kernels

• Execution of Kernels on Functional 
Units (FU)

• Composed of simple operations:

• Corresponds to merged CU

• Shared elements:

• Loop Control Logic

• Loop Bound Generator

• Iteration Vector Generator

• Unified buffer

Create an accelerator for a family of tasks
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Supported Functionnalities

• Two accelerators have been tested
• LA-GA: Linear algebra

• CORR-GA: Correlation computation

• Hardware primitives:
• Add, mul, div, sqrt

• Different routing/iteration spaces combination creates 
31 kernels
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Performances

• GA is efficient when batching independant 
computation

• Sharing low-usage operations

• GA performs similarily to Most Sharing 
dedicated designs on 6 out of 10 benchmarks

• Low-performance of the GA on 4 out 10 
benchmarks is due to loop merging

• GA performs in several macro-instructions what is 
compiled into a single pipeline on dedicated hardware
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Generic Accelerator: Limitations

• FUs are limited in their variety

• No vector FU

• Limited automation (w.r.t. the program input)

• Memory subsystem is resource-dominant

• HLS limitation

• Only optimised for throughput-per-DSP

• No tradeoff at all on latency
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Conclusion

• We present an overview of throughput optimisation techniques for heterogeneous 
architectures:

• Automated detection of resources for superscalar architectures (PALMED)

• CPU-oriented

• Proved

• Porting on other archs (Arm) in progress

• Generation of throughput-efficient FPGA/ASIC designs (GA)

• Suports a set of application as input

• Automated selection of kernels

• Limited expressivity of the FUs
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