
 1/55

Throughput Optimization Techniques for
Heterogeneous Architectures

Nicolas Derumigny,
Colorado State University

Inria

13th December 2023, Minatech

Advisors: Louis-Noël Pouchet,
Colorado State

University

Fabrice Rastello,
Inria Grenoble

2/55

Topic of the Ph.D

• Inria Grenoble, France

• “How do I optimize for an architecture?”

• CPU

• Fixed architecture

• Variable application

• Performance model

• Automated resource characterization

How to make the “best” hardware / software combination?

3/55

Topic of the Ph.D

• Inria Grenoble, France

• “How do I optimize for an architecture?”

• CPU

• Fixed architecture

• Variable application

• Performance model

• Automated resource characterization

• Colorado State University, USA

• “How do I optimize for an application?”

• FPGA / ASIC

• Variable architecture

• Fixed application

• Resource model

• ≈ Automated resource generation

How to make the “best” hardware / software combination?

 4/55

Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: GA

 5/55

Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: GA

6/55

Hardware architectures: accelerators, instructions

• CPU:

• Fixed (unknown) topology

• A few high performance cores

• Variable instructions

Zen core (Credit: AMD)

Meteor Lake die shot

7/55

Hardware architectures: accelerators, instructions

• CPU:

• Fixed (unknown) topology

• A few high performance cores

• Variable instructions

Zen core (Credit: AMD)

(Credit: Xilinx / AMD)

• FPGA/ASIC

• Dedicated accelerator logic

• Variable topology

• Decided by the designer

• May have variable instructions

Meteor Lake die shot

XC3S50A die shot
(Credit: Andrew Zonenberg)

8/55

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

Mapping & Resources

Instructions

Chip

R1

R2

R3

Scheduler

add
sub
load

input program

9/55

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

Mapping & Resources

Instructions

Chip

R1

R2

R3

Scheduler

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

add
sub
load

input program

add
sub
load

Scheduler

R1

add

10/55

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

Mapping & Resources

Instructions

Chip

R1

R2

R3

Scheduler

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

add
sub
load

input program

Scheduler

R1

add
sub
load

sub

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

11/55

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

Mapping & Resources

Instructions

Chip

R1

R2

R3

Scheduler

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

add
sub
load

input program

Scheduler R2

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

R3

Mapping
Instruction Resource
add R1

sub R1

mul R1

load R2 or R3

OR
load

add
sub
load

12/55

• Compute Units
• Specialized hardware units

• Configurable number

• Configurable capabilities

FPGA designs

• Interconnect
• Fixed, configurable routes

• Between CU

• Between storage units

• Fixed Schedule

Program

FPGA / ASIC

CU1

CU2

CU3

Scheduler

Mapping
Program Resource

Known,
Fixed

Unknown,
Variable

Tasks

13/55

(Bits of) CPU architecture

• Front End:
• Decoding

• Instructions -> µOPs

• Branch prediction

• Various caches

• Back-end:
• Execution pipeline

• Functional units
• Execution ports

• Instruction life cycle:
1)Issued
2)Scheded
3)Retired

Assembly
Instructions

CPU

P1

P2

P3

Front-end Scheduler

Mapping
Instruction Resource

Known,
Variable

Unknown,
Fixed

µOps

 14/55

Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: FPGAs

15/55

CPUs

Resource Mapping

Architecture

Throughput
Performance Model

Microbenchmarking

CPU

No µOps

Conjunctive /
Disjunctive

Automated

No dependence

Abstract Resources

16/55

Big picture

Resource
Mapping

Assembly
Instructions

How to build a CPU bottleneck analyser?

Functional execution
(e.g. QEMU)

Other
Performance

Models

Performance
Bottleneck

Abstract
Simulation

Instrumentation

Bottleneck analyser

17/55

Microkernel & Execution Time

• Average execution time
(►throughput):

3 cycles

load

add

store

Mapping
Instruction Port
load P1 or P2

add 2*P1

store P2

Ports
P1 P2

1

2

1

load

add

add store

P1 P2

Repeated
a high number

of times

18/55

Microkernel & Execution Time

load

add

store

Mapping
Instruction Port
load P1 or P2

add 2*P1

store P2

Ports
P1 P2

1

2

1

add

add store

P1 P2

Repeated
a high number

of times

Ports
P1 P2

1

2

1

• Average optimal execution
time (►throughput):

2 cycles
load

19/55

But....

Disjunctive Mapping
Instruction Port
load P1 or P2

add 2*P1

store P2

Conjunctive Mapping
Instruction Resource
load 0.5*R12

add 2*R1 and R12

store R2 and 0.5*R12

proved
equivalent

load storeadd load storeadd

P1 P2 R1 R12 R2

OR AND
AND

20/55

But....

Disjunctive Mapping
Instruction Port
load P1 or P2

add 2*P1

store P2

load storeadd

P1 P2

OR

add

add store

P1 P2

load

• Average optimal execution
time (►throughput):

2 cycles

load

add

store

21/55

But....

Conjunctive Mapping
Instruction Resource
load 0.5*R12

add 2*R1 and R12

store R2 and 0.5*R12

load storeadd

R1 R12 R2

AND
AND

• Average optimal execution
time (►throughput):

2 cycles

add

add store
add

R1 R12

store

R2

load

load

add

store

22/55

Trick of the dual formulation

• Disjunctive form:
• Derived from hardware

• Instruction may be executed on
several ports

• Optimal excecution time is an
optimization problem

load storeadd

P1 P2

OR

23/55

Trick of the dual formulation

• Conjunctive form:
• Simpler representations

• More resources

• No µOps

• Optimal execution time is
a maximum of a sum

• Disjunctive form:
• Derived from hardware

• Instruction may be executed on
several ports

• Optimal excecution time is an
optimization problem

• Decomposition of always used
resources

• For all disjunctive mapping, there
exists an equivalent dual
conjunctive mapping

load storeadd

P1 P2

OR

load storeadd

R1 R12 R2

AND
AND

24/55

PALMED: overview

Assembly
Instructions

Basic Instruction Selection

Core Mapping

Complete Mapping

Resource
Mapping

Quadratic
benchmarks

Heuristiques

Benchmark
stem

LP solver

LP solver
Saturating

benchmarks

Basic
Instructions

Basic
Instructions

Mapping

25/55

PALMED: overview

Assembly
Instructions

Basic Instruction Selection

Core Mapping

Complete Mapping

Resource
Mapping

Quadratic
benchmarks

Heuristiques

Benchmark
stem

LP solver

LP solver
Saturating

benchmarks

Basic
Instructions

Basic
Instructions

Mapping

26/55

Basic Instruction Selection

• Input: ISA with syntax rules

• Output: Reduced set of Basic Instructions

• ~10-20 instructions

• Use preferrentially one resource

• Based on three selection filters

• Equivalence classes of instructions
• Quadratic benchmarks

• Independant instructions

• Instruction using resource of high throughput

load storeadd

R1 R12 R2

27/55

PALMED: overview

Assembly
Instructions

Basic Instruction Selection

Core Mapping

Complete Mapping

Resource
Mapping

Quadratic
benchmarks

Heuristiques

Benchmark
stem

LP solver

LP solver
Saturating

benchmarks

Basic
Instructions

Basic
Instructions

Mapping

28/55

Core Mapping

• Input: Set of Basic Instructions

• Outputs:
• Mapping of the Basic Instruction

• Saturating benchmarks

• Multi-step solving
1) Determine the shape of the mapping

• number of resources
• possible edges
• Iterative process

2) Determine the value of the edges

load storeadd

R1 R12 R2

►(add, store) saturates R2

29/55

PALMED: overview

Assembly
Instructions

Basic Instruction Selection

Core Mapping

Complete Mapping

Resource
Mapping

Quadratic
benchmarks

Heuristiques

Benchmark
stem

LP solver

LP solver
Saturating

benchmarks

Basic
Instructions

Basic
Instructions

Mapping

30/55

Complete Mapping

• Input: Saturating benchmarks

• Output: Complete mapping

• Use saturating benchmarks as resource
indicators

• Force a resource to be saturated...

• ... even if the unknown instruction does not use it!

• Proved

Saturating
benchmark

RS

Unknown
instruction

RX

?

31/55

PALMED Accuracy

SPEC2017 Polybench SPEC2017 Polybench
SKL-SP Zen1

0

10

20

30

40

50

60

70

MSE, Lower is better

PALMED

PMEvo

llvm-mca

IACA

uops.info

Mean Square Error (exec. time prediction) of basic blocs with no dependencies

• Solving time: 2h

• Two times faster than PMEvo[1] on Skylake

• Eight time faster than PMEvo[1] on Zen

• Supports ~2500 instructions

• PMEvo: ~300 instructions

32/55

PALMED: limitations

• Limited to x86 architecture

• Armv8 port in progress

• Limited to port-bound assembly code

• Transient effects?

• Instruction cache?

• No dependencies

• Not an optimisation tool as it

33/55

PALMED[3]: Main contributions

• Based on a novel conjunctive resource mapping
• Key design point for scalability

• Only rely on timing measurement

• Microbenchmark-driven
• Only measures asymptotic throughput of list of instructions

• Dynamic generation of microbenchmarks depending of the target architecture

• Architecture-agnostic
• Tested on Intel and AMD CPUs

• WIP: Adaptation on ARM CPUs

[3] Nicolas Derumigny, Théophile Bastian, Fabian Gruber, Guillaume Iooss, Christophe Guillon, Louis-Noël Pouchet, and Fabrice Rastello. 2022. PALMED:
Throughput Characterization for Superscalar Architectures. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2022

Automated and scalable reverse engineering of port mapping

 34/55

Outline
1) Background

2) Optimising for a fixed architecture: PALMED

3) Optimising for fixed applications: GA

35/55

FPGA/ASIC

Pipeline

Throughput

Architecture

Multiple Applications

Mapping

Optimization

Performance Model

Resources

FPGA/ASIC
HLS

Area

Interconnect

Compute Units

DSP

Compilation

36/55

FPGAs

• Customizable hardware
• Grid of atomic gate element

• Integrates:
• Routing logic

• LUT: Elementary computation unit

• FF: Elementary Storage units

• DSP: Embedded accelerators

• Block-RAM: On chip, denser memory

• Used for:
• High Throughput signal processing

• Deep Learning acceleration

• Design Prototyping

(Credit: Xilinx)

Field-programmable gate array

37/55

High Level Synthesis: principle, tools

• Switch from HDL languages to C/C++
• Semantic definition of the computation

• Semi-automated definition of the hardware
topology

• Extensive use of pragmas
• High expertise required

• Faster design time
• Annotated C is still less verbose than VHDL

• Faster verification time
• Semantic is embedded in the design

• Faster TTM / Cost-effective solution
• Used in industry

Compilers for hardware design

38/55

High Level Synthesis: examples

• Several designs can execute the same
program

• Compiler optimise for efficiency

• Paretto Front of optimal design

• Sensitive to program syntax
• Function and loop bodies forms compute units

• Two equivalent codes may lead to different designs

• Relies on annotations:
• #pragma pipeline

• #pragma unroll

• Example:

39/55

High Level Synthesis: examples

• Several designs can execute the same
program

• Compiler optimise for efficiency

• Paretto Front of optimal design

• Sensitive to program syntax
• Function and loop bodies forms compute units

• Two equivalent codes may lead to different designs

• Relies on annotations:
• #pragma pipeline

• #pragma unroll

• Example:

fun vect_add():
for i in [0,N]:

#pragma HLS pipeline
#pragma HLS unroll factor=2
a[i] = b[i] ⊕ c [i]

return a

addadd

Accelerator topology

Loop control

40/55

HLS: Resource Sharing

• We consider Compute Unit sharing

• More resources may translate in...
• More performances

• More area / power consumption

• Idea: Mutualise part of resources
• Often trade part of the performance for efficiency

• Reduce area

• Requires additional control logic

• Uses two types of floating-point operations:
• Additions

• Multiplications

addadd mul

41/55

HLS: Resource Sharing

• Example: extract of Discrete Wavelet Transform

for j=1 to m−3 step 2 do
tmp[i][j] ⊕= a1 ⊗ (tmp[i][j−1] ⊕ tmp[i][j+1])

for j=1 to m−3 step 2 do
tmp[i][j] ⊕= a3 ⊗ (tmp[i][j −1] ⊕ tmp[i][j+1])
img[j/2+m/2][i] = k2 ⊗ tmp[i][j]

• We consider Compute Unit sharing

• More resources may translate in...
• More performances

• More area / power consumption

• Idea: Mutualise part of resources
• Often trade part of the performance for efficiency

• Reduce area

• Requires additional control logic

• Uses two types of floating-point operations:
• Additions

• Multiplications

addadd mul

addadd mul

addadd mul

Loop 1

Loop 2
Time

• A valid accelerator design is:

• Corresponding execution:

addadd mul

42/55

Optimal resource sharing with an LP

• Convex, naive encoding (ILP)

• Objective: Find the fastest accelerator

• Constraints:

• Maximal resource budget

• Dependencies must be satisfied

• Number of Compute Units

• Log y scale!

• There is no compromise here...

Scaling w.r.t. the type and number of operations

43/55

Optimal resource sharing with an LP

• Convex, naive encoding (ILP)

• Objective: Find the fastest accelerator

• Constraints:

• Maximal resource budget

• Dependencies must be satisfied

• Number of Compute Units

• Log y scale!

• There is no compromise here...

Scaling w.r.t. the type and number of operations

►Optimal sharing is not the right approach !

44/55

Inexact solving: dominance of the interconnect

• Routing elements (LUTs) are over-used

• Regularity of the compute pattern lost
• High-fanout multiplexers

TODO EXPLAIN HEURISTIC

45/55

Inexact solving: dominance of the interconnect

• Routing elements (LUTs) are over-used

• Regularity of the compute pattern lost
• High-fanout multiplexers

Can we use these routing logic
more intelligently?

TODO EXPLAIN HEURISTIC

46/55

Generic Accelerator: Flow of the work

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Set of input applications

for i in 0..512:
 A[i] += B[i]

Fixed
Interconnect /

Structure

Architecture
Description /
Constraints Output Design

Set of polyhedral kernels

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Merged kernels
(Functional Units)

HLSfor i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]for i in 0..512:
 A[i] += B[i]

Customized
Generic Accelerator

47/55

Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

48/55

Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
 y[i] *= beta

for j in 0..N:
 tmp = alpha * x[j]

 for i in 0..N:
 y[i] += A[i][j] * tmp

GEMVGEMV

49/55

Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
 y[i] *= beta

for j in 0..N:
 tmp = alpha * x[j]

 for i in 0..N:
 y[i] += A[i][j] * tmp

GEMVGEMV
for i in 0..N:
 y[i] *= beta

for j in 0..N:
 x[j] *= alpha

for j in 0..N:
 for i in 0..N:
 t[i] += A[i][j]*x[j]

for i in 0..N:
 y[i] = t[i] + x[i]

mulsv

mulmv

mulsv

addv

50/55

Customized
Generic Accelerator

Generic Accelerator: User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
 y[i] *= beta

for j in 0..N:
 tmp = alpha * x[j]

 for i in 0..N:
 y[i] += A[i][j] * tmp

GEMVGEMV
for i in 0..N:
 y[i] *= beta

for j in 0..N:
 x[j] *= alpha

for j in 0..N:
 for i in 0..N:
 t[i] += A[i][j]*x[j]

for i in 0..N:
 y[i] = t[i] + x[i]

mulsv

mulmv

mulsv

addvCustomized
Generic Accelerator

mulvs(x, alpha, x)
mulvs(y, beta, y)
mulmv(t,A,x)
addv(x,y,t)

Configuration for GEMV

51/55

Generic Accelerator: template architecture & FUs

• Loop-based detection of kernels

• Execution of Kernels on Functional
Units (FU)

• Composed of simple operations:

• Corresponds to merged CU

• Shared elements:

• Loop Control Logic

• Loop Bound Generator

• Iteration Vector Generator

• Unified buffer

Create an accelerator for a family of tasks

52/55

Supported Functionnalities

• Two accelerators have been tested
• LA-GA: Linear algebra

• CORR-GA: Correlation computation

• Hardware primitives:
• Add, mul, div, sqrt

• Different routing/iteration spaces combination creates
31 kernels

53/55

Performances

• GA is efficient when batching independant
computation

• Sharing low-usage operations

• GA performs similarily to Most Sharing
dedicated designs on 6 out of 10 benchmarks

• Low-performance of the GA on 4 out 10
benchmarks is due to loop merging

• GA performs in several macro-instructions what is
compiled into a single pipeline on dedicated hardware

54/55

Generic Accelerator: Limitations

• FUs are limited in their variety

• No vector FU

• Limited automation (w.r.t. the program input)

• Memory subsystem is resource-dominant

• HLS limitation

• Only optimised for throughput-per-DSP

• No tradeoff at all on latency

55/55

Conclusion

• We present an overview of throughput optimisation techniques for heterogeneous
architectures:

• Automated detection of resources for superscalar architectures (PALMED)

• CPU-oriented

• Proved

• Porting on other archs (Arm) in progress

• Generation of throughput-efficient FPGA/ASIC designs (GA)

• Suports a set of application as input

• Automated selection of kernels

• Limited expressivity of the FUs

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 3
	Slide: 4
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 33
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 34 (4)
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39

