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Abstract: We survey a class of algorithms to evaluate polynomials with �oating point coe�cients and

for computation performed with IEEE-754 �oating point arithmetic. The principle is to apply, once or

recursively, an error-free transformation of the polynomial evaluation with the Horner algorithm and to

accurately sum the �nal decomposition. These compensated algorithms are as accurate as the Horner

algorithm performed in K times the working precision, for K an arbitrary integer. We prove this

accuracy property with an a priori error analysis. We also provide validated dynamic bounds and apply

these results to compute a faithfully rounded evaluation. These compensated algorithms are fast. We

illustrate their practical e�ciency with numerical experiments on signi�cant environments. Comparing

to existing alternatives these K-times compensated algorithms are competitive for K up to 4, i.e., up

to 212 mantissa bits.

Keywords: Accurate polynomial evaluation, compensated algorithms, IEEE-754 �oating point arith-

metic.

1 Introduction

One of the main computing process with polynomials is evaluation. Higham [7, chap. 5] de-
votes an entire chapter to polynomials and more especially to polynomial evaluation. The small
backward error the Horner algorithm introduces in �oating point arithmetic justi�es its prac-
tical interest. Nevertheless the Horner algorithm returns results arbitrarily less accurate than
the working precision u when evaluating p(x) is ill-conditioned. The relative accuracy of the
computed evaluation with the Horner algorithm (Horner) satis�es the following well known a
priori bound,

|Horner(p, x)− p(x)|
|p(x)|

≤ cond(p, x)×O(u). (1)

In the right-hand side of this inequality, u is the computing precision and the condition number
cond(p, x) is a scalar larger than 1 that only depends on the entry x and on the coe�cients
of p �its expression will be given further. Evaluation is ill conditioned for example in the
neighborhood of multiple roots where most of the digits, or even the order of magnitude of the
computed value of p(x) can be false [3].

Numerous multiprecision libraries are available when the computing precision u is not
su�cient to guarantee the expected accuracy. Fixed-length expansions such as double-double
or quad-double libraries [1] are e�ective solutions to simulate twice or four times the IEEE-754
double precision. These �xed-length expansions are currently embedded in major developments
such as the new extended and mixed precision BLAS [15]. On the other hand, techniques similar
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to the compensated summation (see [7, p.83�88]) can be used, such as in [18] where e�cient algo-
rithms for summation and dot product are introduced only using the IEEE-754 double precision.

The compensated algorithms we here consider are similar to those of Ogita, Rump and
Oishi [18]. The compensated Horner algorithm introduced in [4] is a fast alternative to the
Horner algorithm implemented with double-double arithmetic. By fast we mean that this com-
pensated evaluation runs at least twice as fast as the double-double counterpart with the same
output accuracy. As the Horner algorithm with double-double arithmetic, the accuracy of the
compensated Horner algorithm (CompHorner) now satis�es

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + cond(p, x)×O(u2). (2)

Comparing to Relation (1), this relation means that the computed value is now as accurate
as the result of the Horner algorithm performed in twice the working precision with a �nal
rounding back to this working precision u �the same behavior is proved in [18] for compen-
sated summation and dot product. This motivates the two following issues we focus in this paper.

The bound (2) tells us that the compensated Horner algorithm may yield a full precision
accuracy for not too ill-conditioned polynomials, that is for p and x such that the second term
cond(p, x)×O(u2) is small compared to the working precision u. We describe how to guarantee
a faithfully rounded evaluation, i.e., how to compute one of the two consecutive �oating point
values that enclose p(x).

As in Relation (1) the accuracy of the compensated result still depends on the condition
number and may be arbitrarily bad for ill-conditioned polynomial evaluations. We describe how
to iterate the compensating process and improve the accuracy of the computed result by a factor
u at every iteration step. So we derive CompHornerK, a K-fold compensated Horner algorithm
that satis�es the following a priori bound for any arbitrary integer K,

|CompHornerK(p, x)− p(x)|
|p(x)|

≤ u + cond(p, x)×O(uK). (3)

Comparing to Relation (1), Relation (3) means that the computed value with CompHornerK is
now as accurate as the result of the Horner algorithm performed in K times the working
precision with a �nal rounding back to this working precision. We invite the reader to jump to
Figure 4 at the end of this article to visualise this interesting behavior.

The time penalty to improve the accuracy with these compensated algorithms justi�es their
practical interest. CompHorner is at least twice faster than its challenger in double-double
arithmetic. For K ≤ 4, CompHornerK is an e�cient alternative to other software solutions such
as the quad-double library [6] or MPFR [16]. We report signi�cant practical performances
where an optimized version of CompHornerKwith K = 4 runs about 40% faster than the
corresponding routine with quad-double arithmetic. In [13] we exhibit that the instruction level
parallelism of the compensated algorithms justi�es such good measured computing times when
running on up-to-date superscalar processors.

Many problems in Computer Assisted Design (CAD) reduce to �nd the roots of a polynomial
equation, which is subjected to accuracy problems when dealing with multiple roots. Accurate
polynomial evaluation algorithms are investigated in this area [8]. Our compensated algorithms
may be used with success in such cases since no restriction applies to the magnitude of |x|, nor
to the coe�cients neither to the degree of the polynomial.
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We start illustrating this motivation with a simple example. Let us consider the evalua-
tion in the neighborhood of its multiple roots of p(x) = (0.75 − x)5(1 − x)11, written in its
expanded form. Double precision IEEE-754 arithmetic is used for these experiments and the
coe�cients of p in the monomial basis are double precision numbers. We evaluate p(x) in the
neighborhood of its multiple roots 0.75 and 1 with the three algorithms Horner, CompHorner and
CompHornerKwith K = 3. Figure 1 presents these evaluations for 400 equally spaced points in
intervals [0.68, 1.15], [0.74995, 0.75005] and [0.9935, 1.0065]. It is clear that accurate polynomial
evaluation is necessary to recover the expected smooth drawing at a reasonable focus.
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Figure 1: Evaluation of p(x) = (0.75 − x)5(1 − x)11 in the neighborhood of its multiple roots,
using Horner (left), CompHorner (center) and CompHornerKwith K = 3 (right).

The paper is organized as follows. In Section 2 we recall the classic notations and the basic
error free transformations (EFT) for �oating point arithmetic. In Section 3, a �rst compensated
algorithm for polynomial evaluation, CompHorner, is derived from the Horner algorithm and its
associated EFT. In Section 4 we highlight the accuracy of the compensated Horner algorithm
exhibiting how to guarantee a faithfully rounded polynomial evaluation; numerical experiments
also illustrate the sharpness of the proposed dynamic bound of the evaluation accuracy. In
Section 5 we explain how to derive new EFT for the Horner algorithm. In Section 6 we apply
this recursive EFT and introduce a K-fold compensated algorithm, CompHornerK; we prove
its accuracy satis�es Relation (3) and illustrate it with some numerical experiments. In the
last Section 7 we demonstrate the practical e�ciency in terms of running time comparing our
algorithms and up-to-date challengers on several signi�cant computing environments.

Due to page limitation most of the proofs have not been detailed and some even not included.
Some technical developments have not been presented here, e.g., how to take care of under�ow
and denormalised �oating point numbers or how to bene�t from some speci�c arithmetic operator
or how to explain that the measured running times are signi�cantly better than the classic �op
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count. We invite the interested readers to consider the references [11, 4, 5, 12, 13, 14], from the
authors, to complete this survey on accurate, validated and fast polynomial evaluation thanks
to compensated algorithms.

2 Floating point arithmetic and basic error-free transformations

Throughout this paper, we assume a �oating point arithmetic adhering to the IEEE-754 �oating
point standard [9]. We constraint all the computations to be performed in one working precision,
with the �round to the nearest� rounding mode. We also assume that no over�ow nor under�ow
occurs during the computations.

2.1 Standard notations for �oating point arithmetic

Next notations are standard �see [7, chap. 2] for example. F is the set of all normalized �oating
point numbers and u denotes the unit round-o�, that is half the spacing between 1 and the next
representable �oating point value. For IEEE-754 double precision with rounding to the nearest,
we have u = 2−53 ≈ 1.11 · 10−16.

The symbols ⊕, 	, ⊗ and � represent respectively the �oating point addition, subtraction,
multiplication and division. For more complicated arithmetic expressions, fl(·) denotes the result
of a �oating point computation where every operation inside the parenthesis is performed in the
working precision. So we have for example, a⊕ b = fl(a + b).

When no under�ow nor over�ow occurs, the following standard model describes the accuracy
of every considered �oating point computation: for a, b ∈ F and for ◦ ∈ {+,−,×, /}, with have

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), with |ε1|, |ε2| ≤ u. (4)

To keep track of the (1 + ε) factors in the error analysis, we use the classic (1 + θk) and γk

notations [7, chap. 3]. For any positive integer k, θk denotes a quantity bounded according to
|θk| ≤ γk := ku/(1− ku). When using these notations, we always implicitly assume ku < 1. In
further a priori error analysis, we essentially use the following relations:

(1 + θk)(1 + θj) ≤ (1 + θk+j), ku ≤ γk, γk ≤ γk+1.

To derive validated and dynamic bounds we also use the next relations [18]:

γ̂k := (ku)� (1	 ku), γk ≤ (1 + u) γ̂k, (1 + u)n|x| ≤ fl
(

|x|
1− (n + 1)u

)
. (5)

We de�ne the �oating point predecessor and successor of a real number r as follows,

pred(r) = max{f ∈ F/f < r} and succ(r) = min{f ∈ F/r < f}.

A �oating point number f is de�ned to be a faithful rounding of a real number r if

pred(f) < r < succ(f).

We present further how to compute a faithfully rounded evaluation of a polynomial. Faithful
rounding means that the computed result equals the exact result if the latter is a �oating point
number and otherwise is one of the two adjacent �oating point numbers of the exact result p(x).
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2.2 EFT for the elementary operations

In this section, we review well known results concerning the error free transformations (EFT)
of the elementary �oating point operations ⊕, 	 and ⊗. These EFT are the core of the
implementation of �xed length expansions, as double-double or quad-double [1]; we will also
use it within compensated algorithms.

Let ◦ be an operator in {+,−,×}, a and b be two �oating point numbers, and x̂ = fl(a ◦ b).
Then there exist a �oating point value y such that

a ◦ b = x̂ + y. (6)

The di�erence y between the exact result and the computed result is the elementary rounding
error in the computation of x̂. Let us emphasize that Relation (6) between four �oating point
values relies on real operators and exact equality, i.e., not on approximate �oating point coun-
terparts. Ogita et al. [18] call such equality an error free transformation (EFT). The practical
interest of the EFT comes from next Algorithms 1 and 3 that compute the exact error term y
for ⊕ and ⊗.

Algorithm 1. EFT of the sum of two �oating point numbers.

function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

Algorithm 2. Splitting of a �oating point number into two parts.

function [x, y] = Split(a)
z = a⊗ (2r + 1)
x = z 	 (z 	 a)
y = a	 x

Algorithm 3. EFT of the product of two �oating point numbers.

function [x, y] = TwoProd(a, b)
x = a⊗ b
[ah, al] = Split(a)
[bh, bl] = Split(b)
y = al ⊗ bl 	 (((x	 ah ⊗ bh)	 al ⊗ bh)	 ah ⊗ bl)

For the EFT of the addition we use Algorithm 1, the well known TwoSum algorithm by
Knuth [10] that requires 6 �op (�oating point operations). For the product, we �rst need to
split the input arguments into two parts. It is done using Algorithm 2 of Dekker [2]. If q is the
number of bits of the mantissa, let r = dq/2e. Algorithm 2 splits a �oating point number a into
two parts x and y, both having at most r − 1 nonzero bits, such that a = x + y. For example,
with the IEEE-754 double precision, q = 53, r = 27, therefore the output numbers have at most
26 bits. The trick is that one bit sign is used for the splitting. Next, Algorithm 3 of Veltkamp
(see [2]) can be used for the EFT of the product. This algorithm is commonly called TwoProd
and requires 17 �op.

The next theorem exhibits the previously announced properties of TwoSum and TwoProd.
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Theorem 4 ([18]). Let a, b in F and x, y ∈ F such that [x, y] = TwoSum(a, b) (Algorithm 1).
Then the �oating point addition veri�es

a + b = x + y, x = a⊕ b, |y| ≤ u|x|, |y| ≤ u|a + b|.

Let a, b ∈ F and x, y ∈ F such that [x, y] = TwoProd(a, b) (Algorithm 3). Then the �oating point
product veri�es

a× b = x + y, x = a⊗ b, |y| ≤ u|x|, |y| ≤ u|a× b|.

We notice that algorithms TwoSum and TwoProd only require well optimizable �oating point
operations. They do not use branches, nor access to the mantissa that can be time-consuming.
TwoProd can be rewritten straightforwardly for processors that provide a Fused-Multiply-and-
Add operator (FMA), such as Intel Itanium or IBM PowerPC [17, 18]. For a, b and c in F,
FMA(a, b, c) is the exact result a × b + c rounded to the nearest �oating point value. Thus
y = a × b − a ⊗ b = FMA(a, b,−a ⊗ b) that now only costs 2 �op. We discuss how to manage
such optimization in [5].

3 From Horner algorithm to compensated Horner algorithm

We recall the classic Horner algorithm to introduce a �rst EFT for the polynomial evaluation. We
apply this EFTHorner to derive our compensated Horner algorithm. We end this section proving
the accuracy behavior of this compensated algorithm previously announced by Relation (2).

3.1 Accuracy with the Horner algorithm

The classic condition number of the evaluation of p(x) =
∑n

i=0 aix
i at a given entry x is [3]

cond(p, x) =
∑n

i=0 |ai||x|i

|
∑n

i=0 aixi|
:=

p̃(x)
|p(x)|

. (7)

For any �oating point value x we denote by Horner(p, x) the result of the �oating point evaluation
of the polynomial p at x using the Horner algorithm.

Algorithm 5. Horner algorithm.

function r0 = Horner(p, x)
rn = an

for i = n− 1 : −1 : 0
ri = ri+1 ⊗ x⊕ ai

end

We can now write Relation (1) with more details. The accuracy of the result of Algorithm 5
is linked to the condition number of the polynomial evaluation thanks to the following forward
error bound,

|Horner(p, x)− p(x)|
|p(x)|

≤ γ2n cond(p, x). (8)

Clearly, the condition number cond(p, x) can be arbitrarily large. In particular, when
cond(p, x) > γ−1

2n , we cannot guarantee that the computed result Horner(p, x) contains any
correct digit.
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3.2 An EFT for the Horner algorithm

We now propose an EFT for the polynomial evaluation with the Horner algorithm. We prove
that the error generated by the Horner algorithm is exactly the sum of two polynomials with
�oating point coe�cients. This allow us to write an algorithm to approximate this generated
error.

Algorithm 6. EFT for the Horner algorithm.
function [r0, pπ, pσ] = EFTHorner(p, x)

rn = an

for i = n− 1 : −1 : 0
[pi, πi] = TwoProd(ri+1, x)
[ri, σi] = TwoSum(pi, ai)
Let πi be the coe�cient of degree i in pπ

Let σi be the coe�cient of degree i in pσ

end

Theorem 7. Let p(x) =
∑n

i=0 aix
i be a polynomial of degree n with �oating point coe�cients,

and let x be a �oating point value. Then EFTHorner (Algorithm 6) computes both

i) the �oating point evaluation Horner(p, x) and

ii) two polynomials pπ and pσ of degree n− 1 with �oating point coe�cients,

such that
[Horner(p, x), pπ, pσ] = EFTHorner(p, x).

The Horner algorithm satis�es

p(x) = Horner(p, x) + (pπ + pσ)(x); (9)

and we have
( ˜pπ + pσ)(x) ≤ ( p̃π + p̃σ)(x) ≤ γ2n p̃(x). (10)

Relation (9) means that algorithm EFTHorner is an EFT for the polynomial evaluation with
the Horner algorithm.

Proof of Theorem 7. Since TwoProd and TwoSum are EFT from Theorem 4, it is easy to verify
that at the end of the loop we have

r0 =
n∑

i=0

aix
i −

n−1∑
i=0

πix
i −

n−1∑
i=0

σix
i,

which proves Relation (9). Using the standard model of �oating-point arithmetic it can be
proved by induction that we have

|pn−i| ≤ (1 + γ2i−1)
i∑

j=1

|an−i+j ||xj |, and |rn−i| ≤ (1 + γ2i)
i∑

j=0

|an−i+j ||xj |,

for i = 1, . . . , n. Since [pi, πi] = TwoProd(ri+1, x) and [ri, σi] = TwoSum(pi, ai), according to
Theorem 4 we have |πi| ≤ u|pi| and |σi| ≤ u|ri| for i = 0, . . . , n− 1. As a consequence,

( p̃π + p̃σ)(x) ≤ u
n∑

i=1

(|pn−i|+ |rn−i|)|xn−i| ≤ u
n∑

i=1

(2 + 2γ2i) p̃(x) ≤ 2nu (1 + γ2n) p̃(x).

Since 2nu(1 + γ2n) = γ2n, we obtain ( p̃π + p̃σ)(x) ≤ γ2n p̃(x). �

It is now easy to de�ne the compensated Horner algorithm.
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3.3 Compensated Horner algorithm

From Theorem 7 the forward error in the �oating point evaluation of p at x with the Horner
algorithm is

c = p(x)− Horner(p, x) = (pπ + pσ)(x),

where the two polynomials pπ and pσ are exactly identi�ed by EFTHorner (Algorithm 6) �this
latter also computes Horner(p, x). Therefore, the key of the algorithm proposed in this section
is to compute an approximate ĉ of the forward error c in the working precision, and then a
corrected result

r = Horner(p, x)⊕ ĉ.

We say that ĉ is a correcting term for Horner(p, x). The corrected result r̄ is expected to be
more accurate than the �rst result Horner(p, x) as proved in the rest of the section. The previous
remarks leads to next algorithm CompHorner (Algorithm 8).

Algorithm 8. Compensated Horner algorithm.

function r = CompHorner(p, x)
[ r̂, pπ, pσ] = EFTHorner(p, x)
ĉ = Horner(pπ ⊕ pσ, x)
r = r̂ ⊕ ĉ

3.4 Accuracy of the compensated Horner algorithm

We prove hereafter that the result of a polynomial evaluation computed with the compensated
Horner algorithm (CompHorner) is as accurate as if computed by the classic Horner algorithm
(Horner) using twice the working precision and then rounded to the working precision.

Theorem 9. Consider a polynomial p of degree n with �oating point coe�cients, and x a �oating
point value. The forward error in the compensated Horner algorithm is such that

|CompHorner(p, x)− p(x)| ≤ u|p(x)|+ γ2
2n p̃(x). (11)

Proof. The forward error in Algorithm 8 is

| r − p(x)| = |( r̂ ⊕ ĉ)− p(x)| = |(1 + ε)( r̂ + ĉ)− p(x)| with |ε| ≤ u.

Let c = (pπ + pσ)(x). From Theorem 7 we have r̂ = Horner(p, x) = p(x)− c, thus

| r − p(x)| = |(1 + ε) (p(x)− c + ĉ)− p(x)| ≤ u|p(x)|+ (1 + u)| ĉ− c|.

Since ĉ = Horner(pπ ⊕ pσ, x) with pπ and pσ two polynomials of degree n − 1, we verify that

| ĉ − c| ≤ γ2n−1( ˜pπ + pσ)(x). Then using (10) we have | ĉ − c| ≤ γ2n−1γ2n p̃(x). Since (1 +
u)γ2n−1 ≤ γ2n, we �nally write the expected error bound (11). �

In [4] we prove that the same behavior is still satis�ed when under�ow occurs. For later use,
we notice that | ĉ− c| ≤ γ2n−1γ2n p̃(x) implies

| ĉ− c| ≤ γ2
2n p̃(x). (12)

It is interesting to interpret the previous theorem in terms of the condition number of the
polynomial evaluation of p at x. Combining the error bound (11) with the condition number (7)
for polynomial evaluation gives

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ2
2n cond(p, x). (13)
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In other words, the bound for the relative error of the computed result is essentially γ2
2n times

the condition number of the polynomial evaluation, plus the inevitable term u for rounding the
result to the working precision. In particular, if cond(p, x) < γ−1

2n , then the relative accuracy of
the result is bounded by a constant of the order u. This means that the compensated Horner
algorithm computes an evaluation accurate to the last few bits as long as the condition number
is smaller than γ−1

2n ≈ (2nu)−1. Besides that, Relation (13) tells us that the computed result
is as accurate as if computed by the classic Horner algorithm with twice the working precision,
and then rounded to the working precision.

4 Faithfully rounded polynomial evaluation

Since the compensated Horner algorithm yields accurate results for small condition numbers,
we now discuss when and how this evaluation returns a faithfully rounded �oating point value
of the exact result. Thanks to an a priori error analysis, we provide a su�cient criterion on
the condition number cond(p, x) that the corrected result r computed with CompHorner is a
faithful rounding of the exact result p(x). We also derive a validated running error analysis
for CompHorner, which leads to a sharper enclosure of the computed result r. In particular,
our numerical experiments show that the computed evaluation can be proved to be faithfully
rounded at the running time, as long as the condition number is smaller than the inverse of the
working precision.

4.1 A priori condition for faithful rounding

Next Lemma provides a su�cient condition on the accuracy of the correcting term ĉ to ensure
the expected faithful rounding.

Lemma 10. Let p be a polynomial of degree n with �oating point coe�cients, and x be a
�oating point value. We consider the approximate r of p(x) computed with CompHorner(p, x).
Let c denotes c = (pπ + pσ)(x). If | ĉ− c| < u

2 | r|, then r is a faithful rounding of p(x).

Proof. (see [12] for details) The proof relies on [19, Lemma 2.4] and Relation (9). �

From the proof of Theorem 9, we know that the absolute error | ĉ−c| is bounded by γ2
2n p̃(x).

This provides us a more useful criterion about the condition number cond(p, x) to ensure that
CompHorner computes a faithfully rounded result.

Proposition 11. Let p be a polynomial of degree n with �oating point coe�cients, and x a
�oating point value. If

cond(p, x) <
1− u
2 + u

uγ2n
−2, (14)

then CompHorner(p, x) computes a faithful rounding of the exact p(x).

Proof. (see [12] for details) Using Relation (11) and Inequality (14) we prove (1 − u)|p(x)| −
γ2

2n p̃(x) ≤ | r|. Relation (12) and a small computation give

| ĉ− c| ≤ γ2
2n p̃(x) <

u
2

[
(1− u)|p(x)| − γ2

2n p̃(x)
]
≤ u

2
| r|.

From Lemma 10 we deduce that r is a faithful rounding of p(x). �

Numerical values for the upper bound (14) to ensure faithful rounding with the compensated
Horner algorithm are presented in Table 1 for degrees varying from 10 to 300 and IEEE-754
double precision.
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Table 1: A priori bound on the cond. number for a faithfully rounded polynomial of degree n.

n 10 100 200 300
1−u
2−uuγ2n

−2 1.13 · 1013 1.13 · 1011 2.82 · 1010 1.13 · 1010

4.2 Dynamic error bounds

The previous results are perfectly suited for theoretical purpose, for instance when we can a priori
bound the condition number of the evaluation. However, neither the error bound in Theorem 9,
nor the criterion proposed in Proposition 11 can be easily checked using only �oating point
arithmetic. Here we provide dynamical counterparts of Theorem 9 and Proposition 11, that can
be evaluated using �oating point arithmetic, in the �round to the nearest� rounding mode.

Lemma 12. Consider a polynomial p of degree n with �oating point coe�cients, and x a �oating
point value. We use the notations of Algorithm 8, and we denote (pπ + pσ)(x) by c. Then

|c− ĉ| ≤ fl
(

γ̂2n−1Horner(|pπ| ⊕ |pσ|, |x|)
1− 2(n + 1)u

)
:= α̂. (15)

Proof. Let us denote Horner(|pπ| ⊕ |pσ|, |x|) by b̂. Since c = (pπ + pσ)(x) and ĉ = Horner(pπ ⊕
pσ, x) where pπ and pσ are two polynomials of degree n− 1. Bounding the error in Horner(pπ ⊕
pσ, x) as done for Horner(p, x), we write

|c− ĉ| ≤ γ2n−1( ˜pπ + pσ)(x) ≤ (1 + u)2n−1γ2n−1 b̂.

From the �rst inequality in Relation (5) and the standard model (4) it follows that

|c− ĉ| ≤ (1 + u)2n γ̂2n−1 b̂ ≤ (1 + u)2n+1 fl( γ̂2n−1 b̂).

Finally we use the second inequality in Relation (5) to obtain the error bound. �

Lemma 12 allows us to compute an error bound for the computed correcting term ĉ. From
Theorem 7 we know that p(x) = r̂ + c, and since r = r̂ ⊕ ĉ we write

| r − p(x)| ≤ |( r̂ ⊕ ĉ)− ( r̂ + ĉ)|+ |( ĉ− c)|.

The �rst term |( r̂⊕ ĉ)− ( r̂ + ĉ)| in the previous inequality is the absolute rounding error that
occurs when computing r̂ ⊕ ĉ. Using only (4), it could be bounded by u| r|. But here we use
algorithm TwoSum to compute the actual rounding error exactly, which leads to a sharper error
bound.

Proposition 13. Consider a polynomial p of degree n with �oating point coe�cients, and x a
�oating point value. We use the notations of Algorithm 8, and we assume that e is the �oating
point value such that r + e = r̂ + ĉ, i.e., [ r, e] = TwoSum( r̂, ĉ). Moreover, let α̂ be the error
bound de�ned by (15). Then, the absolute error on the computed result r = CompHorner(p, x)
is bounded according to

| r − p(x)| ≤ fl
(

α̂ + |e|
1− 2u

)
:= β̂. (16)

Moreover, if α̂ < u
2 | r|, then r is a faithful rounding of p(x).
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Proof. By hypothesis r = r̂ + ĉ− e, and from Theorem 7 we have p(x) = r̂ + c, thus

| r − p(x)| = | ĉ− c− e| ≤ | ĉ− c|+ |e| ≤ α̂ + |e|.

From the standard model (4) and the second inequality in (5) it follows that

| r − p(x)| ≤ (1 + u) fl( α̂ + |e|) ≤ fl
(

α̂ + |e|
1− 2u

)
.

The second part of the proposition follows directly from Lemma 10. �

From Proposition 13 we conclude with next algorithm CompHornerIsFaithful. It computes
the compensated result r together with the validated error bound β̂. Moreover, the boolean
value isfaithful is set to true if and only if the result is proved to be faithfully rounded.

Algorithm 14. Compensated Horner algorithm with check of the faithful rounding.

function [ r, β̂, isfaithful] = CompHornerIsFaithful(p, x)
[ r̂, pπ, pσ] = EFTHorner(p, x)
ĉ = Horner(pπ ⊕ pσ, x)

b̂ = Horner(|pπ| ⊕ |pσ|, |x|)
[ r, e] = TwoSum( r̂, ĉ)

α̂ = ( γ̂2n−1 ⊗ b̂)� (1	 2(n + 1)⊗ u)

β̂ = ( α̂⊕ |e|)� (1− 2⊗ u)
isfaithful = ( α̂ < u

2 | r|)

4.3 Testing the faithful rounding and the sharpness of the dynamic bound

We focus on both the a priori and the dynamic bounds. We recall that two cases may occur
when the dynamic test for faithful rounding in CompHornerIsFaithful is performed.

1. If the dynamic test is satis�ed, this proves that the compensated result is a faithful round-
ing of the exact p(x). Corresponding plots are reported with a square (�) in Figure 2.

2. If the dynamic test fails then the compensated result may or may not be faithfully rounded.
We distinguish two sub-cases where we compare the compensated results to reference ones
obtained from high-precision computation.

a) If the compensated result is actually faithfully rounded, we report a �lled circle (•);

b) otherwise the compensated result does not faithfully round p(x) and we plot a cross (×).

We generate polynomials of degree 50 whose condition numbers vary from 102 to 1035. These
huge condition numbers have a sense here since the entries and the coe�cients of every generated
polynomial are �oating point numbers (see [12] for details about the generation algorithm).

The results of the tests with CompHornerIsFaithful (Algorithm 14) are reported with the left
plot of Figure 2. On this plot the horizontal axis represents the condition number (7).

We observe that the compensated algorithm exhibits the expected behavior. The relative
error in the compensated result is smaller than the working precision u �the horizontal line�
as long as the condition number is smaller than 1/u �the rightmost vertical line. Then, for
condition numbers between 1/u and 1/u2, this relative error degrades to no accuracy at all. As

11



 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000  1e+10  1e+15  1e+20  1e+25  1e+30  1e+35

re
la

tiv
e 

fo
rw

ar
d 

er
ro

r

condition number

Accuracy of polynomial evaluation with the compensated Horner scheme [n=50]

u

1/u 1/u2

u + γ2n
2 cond

(1-u)/(2+u)uγ2n
-2 

 1e-34

 1e-33

 1e-32

 1e-31

 1e-30

 1e-29

 1e-28

 1e-27

 1e-26

 1e-25

 0.994  0.996  0.998  1  1.002  1.004  1.006

ab
so

lu
te

 fo
rw

ar
d 

er
ro

r

argument x

Accuracy of the absolute error bounds for CompHorner

A priori error bound
Dynamic error bound

Actual forward error

Figure 2: Left: accuracy of CompHornerIsFaithful w.r.t. to the condition number. The leftmost
vertical line is the a priori condition (14) and the broken line is the a priori bound (13).
Right: signi�cance of the absolute error bounds.

usual, the a priori error bound (13) appears to be pessimistic by many orders of magnitude
�compare the observed behavior with the comments we provide just after Relation (13)

The a priori su�cient condition (14) for faithful rounding with respect to the condition
number is also represented on Figure 2 (left side) by the leftmost vertical line. As expected,
every polynomial evaluation with a condition number smaller than this a priori bound (14) is
faithfully evaluated with CompHornerIsFaithful. We also see that the dynamic test for faithful
rounding (Proposition 13) succeeds for condition numbers larger than the a priori bound (14)
�let us recall that all the compensated evaluations proved to be faithfully rounded thanks to
the dynamic test are reported with a square. Finally we notice that the compensated Horner
algorithm produces accurate evaluations for condition numbers up to about 1/u �evaluations
reported with a square or a �lled circle.

Now we illustrate the signi�cance of the dynamic error bound (16), compared to the a priori
absolute error bound (11) and to the actual forward error. We evaluate the expanded form
of p(x) = (1 − x)5 for 400 points around x = 1. For every value of the entry x, we compute
CompHorner(p, x), the associated dynamic error bound (16) and the actual forward error. The
results are reported on the right plot of Figure 2.

As already noticed, the closer the argument is to the root 1 (i.e., the more the condition
number increases), the more pessimistic becomes the a priori error bound. Our dynamic error
bound is more signi�cant than the a priori error bound as it takes into account the rounding
errors that occur during the computation.

5 A recursive EFT for polynomial evaluation

In the sequel of the paper, p1 is a polynomial of degree n with �oating point coe�cients, and
x is a �oating point value. Given an integer K ≥ 2, we now de�ne a new EFT for polynomial
evaluation. The starting point is Relation (9) that proves the forward error within the Horner
algorithm is the sum of two polynomials with �oating point coe�cients. So the principle of this
EFT is to apply algorithm EFTHorner (Algorithm 6) recursively K − 1 times.
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5.1 Recursive application of EFTHorner

Further developments will be easier to read introducing a graphical representation of one
application of the EFTHorner transformation (Algorithm 6). Given pi a polynomial of de-
gree d with �oating point coe�cients and x a �oating point number, we consider the �oat-
ing point value hi and the polynomials p2i and p2i+1 of degree at most d − 1 such that
[hi, p2i, p2i+1] = EFTHorner(pi, x). From Theorem 7, we have hi = Horner(pi, x) and

pi(x) = hi + (p2i + p2i+1)(x).

We represent this EFT of pi(x) with the following cell where edges are polynomials (one entry
and two outputs) and the node is a �oating point value.

pi

hi

p2i p2i+1

Now we describe the principle of the EFTHornerK algorithm as the binary tree of depth K
represented with Figure 3. For levels 1 to K − 1, we recursively apply EFTHorner. At the last
level K this gives 2K−1 polynomials here represented as rectangles.

When EFTHorner is applied to a polynomial of degree d then the two generated polynomials
are of degree d − 1. Since p1 is of degree n and EFTHorner is applied to K − 1 levels, the
polynomials computed on the level K are of degree at most n−K+1. In particular, if n−K+1 =
0 then the polynomials computed at the leaves of the binary tree are constants and so it is
useless to apply again EFTHorner. Therefore, to simplify the discussion we will always assume
2 ≤ K ≤ n + 1 in the sequel.

p2K
−1

h2K−1
−1

4

3

2

1

K

K − 1

p2K−1+1p2K−1

h2K−2

p2K
−2

h1

h2 h3

h4 h5 h6 h7

h8 h15h14h13h12h11h10h9

p2 p3

p4 p6p5 p7

p9 p15p13p11p8 p10 p12 p14

p2K
−2 p2K

−1p2K−1+1p2K−1

p1level

n−K + 1

n−K + 2

n− 3

n− 2

n− 1

n

degree

Figure 3: Representation of EFTHornerK as a binary tree.

To easily identify the nodes in this binary tree, we de�ne the following sets of index.

• NK
T = {1, . . . , 2K − 1} is the set of all the nodes of the tree, and card(NK

T ) = 2K − 1;

• NK
I = {1, . . . , 2K−1 − 1} is the set of the internal nodes, and card(NK

I ) = 2K−1 − 1;

• NK
L = {2K−1, . . . , 2K − 1} is the set of the leaves, and card(NK

L ) = 2K−1.
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In particular we have NT = NI ∪ NL and NI ∩ NL = ∅. We avoid the exponent K in the set
notations except when necessary. The recursive application of EFTHorner to K−1 levels is then
de�ned by

[hi, p2i, p2i+1] = EFTHorner(pi, x), for i ∈ NI , (17)

with hi ∈ F for i ∈ NI and pi being a polynomial with �oating point coe�cients for every
i ∈ NT . According to Theorem 7, every hi de�ned by the previous relation is the evaluation of
the polynomial pi at x by the Horner algorithm, i.e.,

hi = Horner(pi, x), for i ∈ NI .

Since EFTHorner is an EFT for the Horner algorithm, Theorem 7 also yields

pi(x) = hi + (p2i + p2i+1)(x), for i ∈ NI . (18)

The �oating point values hi∈NI
and the polynomials pi∈NL

are computed thanks to the next
EFTHornerK algorithm.

Algorithm 15. Recursive application of EFTHorner to K − 1 levels.

function [hi∈NI
, pi∈NL

] = EFTHornerK(p1, x)
for i ∈ NI , [hi, p2i, p2i+1] = EFTHorner(pi, x)

5.2 Numerical properties of EFTHornerK

First we prove that EFTHornerK (Algorithm 15) is actually an EFT for the evaluation of p1(x).

Theorem 16. Given an integer K with 2 ≤ K ≤ n + 1, we consider the �oating point numbers
hi∈NI

and the polynomials pi∈NL
, such that [hi∈NI

, pi∈NL
] = EFTHornerK(p1, x) (Algorithm 15).

The following relation holds,

p1(x) =
∑
i∈NI

hi +
∑
i∈NL

pi(x). (19)

Algorithm EFTHornerK computes the evaluation hi = Horner(pi, x) of every polynomial pi,
for i ∈ NI . For the proof of Theorem 16, we also need to consider the evaluation of the
polynomials pi(x), for i ∈ NL. So let us also denote hi = Horner(pi, x), for i ∈ NL.

Proof. (see [14] for details). We proceed by induction on K. For K = 2, according to Theorem 7
we have p1(x) = Horner(p1, x) + (p2 + p3)(x) = h1 + p2(x) + p3(x), and therefore [h1, p2, p3] =
EFTHorner(p1, x). The induction step is easy to derive using Relations (17) and (18). �

Proposition 17. With the same hypothesis as in Theorem 16, the following relations hold,∣∣∣∣∣∣p1(x)−
∑

i∈NT

hi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈NL

pi(x)− hi

∣∣∣∣∣∣ ≤ γ2(n−K+1)γ
K−1
4n p̃1(x). (20)

The error generated when approximating p1(x) by the exact sum
∑

i∈NT
hi is therefore

equal to the sum of the errors generated when approximating every pi(x) by hi = Horner(pi, x),
for i ∈ NL. The previous proposition also provides an a priori bound on this error with respect
to p̃1(x) =

∑n
i=0 |ai||x|i. See [14] for the proof of Proposition 17.

Our approach is motivated by Inequality (20). This inequality shows that when the parame-
ter K is incremented by one, the distance between p1(x) and the exact sum

∑
i∈NT

hi decreases
by a factor γ4n, that corresponds roughly to an accuracy improvement by a factor 4nu.
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6 Algorithm CompHornerK

Now we formulate the algorithm CompHornerK (Algorithm 19), and then we provide an a priori
error bound for this recursive compensated evaluation.

6.1 Principle of the algorithm

As previously, the �oating point values hi∈NT
are de�ned according to the relations

[hi∈NI
, pi∈NL

] = EFTHornerK(p1, x), and hi = Horner(pi, x) for i ∈ NL. Then Inequality (20)
shows that ∣∣∣∣∣∣p1(x)−

∑
i∈NT

hi

∣∣∣∣∣∣ ≤ (4nu)K p̃1(x) +O(uK+1). (21)

The principle of the CompHornerK algorithm is to compute an approximate
CompHornerK(p, x, K) of

∑
i∈NT

hi in K times the working precision, so that

|CompHornerK(p, x, K)− p1(x)|
|p1(x)|

≤
(
u +O(u2)

)
+

(
(4nu)K +O(uK+1)

)
cond(p1, x). (22)

In this inequality the term (4nu)K +O(uK+1) re�ects that the intermediate computation is as
accurate as if performed in precision uK . The �rst term u + O(u2) re�ects the �nal rounding
of the result to the working precision u. This accuracy bound corresponds to the introductory
Relation (3). For the �nal computation of

∑
i∈NT

hi, we use the SumK algorithm proposed by
Ogita, Rump and Oishi in [18]. This algorithm allows us to compute an approximate value of∑

i∈NT
hi with the same accuracy as if it was computed in K times the working precision. The

following theorem summarizes the properties of algorithm SumK.

Theorem 18 (proposition 4.10 in [18]). Given a vector z = (z1, . . . , zn) of n �oating point
values, let us de�ne s =

∑n
i=1 zi and s̃ =

∑n
i=1 |zi|. We assume 4nu < 1 and we denote by s

the �oating point number such that s = SumK(z,K). Then, even in presence of under�ow,

| s− s| ≤ (u + 3γ2
n−1)|s|+ γK

2n−2 s̃. (23)

6.2 CompHornerK and its a priori error bound

Now we formulate our compensated algorithm CompHornerK. We prove that it is as accurate as
the Horner algorithm performed in K times the working precision.

Algorithm 19. Compensated Horner algorithm providing K times the working precision.
function r = CompHornerK(p1, x,K)

[hi∈NI
, pi∈NL

] = EFTHornerK(p1, x)
for i ∈ NL, hi = Horner(pi, x)
r = SumK (hi∈NT

,K)

In algorithm EFTHornerK, polynomials pi∈NI
are of degree at most n. Applying

EFTHorner to each of these polynomials requires O(n) �op. Since card(NI) = 2K−1 − 1,
the cost of EFTHornerK is therefore O

(
n2K

)
�op. In CompHornerK, the evaluation of the

2K−1 polynomials pi∈NL
also requires O(n2K) �op. Finally, SumK (hi∈NT

,K) involves
(6K − 5)(2K−1 − 1) = O(n2K) �op. Overall, the cost of algorithm CompHornerK is therefore
O

(
n2K

)
�op. We will further see that this exponential complexity does not reduce the practical

e�ciency of the proposed algorithm for reasonable values of K, e.g., while K ≤ 4.

Next theorem gives an a priori bound for the forward error in CompHornerK.
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Theorem 20. Let K be an integer such that 2 ≤ K ≤ n + 1. We assume (2K − 2)γ2n+1 ≤ 1.
Then the forward error in the compensated evaluation of p1(x) with r = CompHornerK(p1, x)
(Algorithm 19) is bounded as follows,

| r − p1(x)| ≤
(
u + 3γ2

2K−2 + γK
2K+1−4

)
|p1(x)|+

(
γK

4n + γ2n+1γ
K
2K+1−4 + γK+1

4n

)
p̃1(x). (24)

For the proof of Theorem 20, we use the following lemma to bound the absolute condition
number for the �nal summation of the �oating point numbers hi∈NT

.

Lemma 21. With the notations of Algorithm 19, assuming (2K − 2)γ2n+1 ≤ 1, we have∑
i∈NT

|hi| ≤ |p1(x)|+ γ4n p̃1(x).

Proof. We decompose the sum as follows,
∑

i∈NT
|hi| = |h1| +

∑
i∈NT−{1} |hi|. Since h1 =

Horner(p1, x), we have |h1| ≤ |p1(x)| + γ2n p̃1(x). Moreover, for i ∈ NT − {1} we also have
hi = Horner(pi, x) with pi of degree at most n− 1 and p̃i(x) ≤ γ2n p̃1(x), thus

|hi| ≤ |pi(x)|+ γ2(n−1) p̃i(x) ≤ (1 + γ2(n−1)) p̃i(x) ≤ (1 + γ2(n−1))γ2n p̃1(x) ≤ γ2n+1 p̃1(x).

Therefore
∑

i∈NT
|hi| ≤ |p1(x)|+γ2n(1+(2K−2)γ2n+1) p̃1(x). By assumption (2K−2)γ2n+1 ≤ 1,

so that γ2n(1 + (2K − 2)γ2n+1) ≤ 2γ2n ≤ γ4n, which proves the lemma. �

Proof of Theorem 20. De�ning the terms e1 :=
∣∣∣p1(x)−

∑
i∈NT

hi

∣∣∣ and e2 :=
∣∣∣∑i∈NT

hi − r
∣∣∣,

we have | r − p1(x)| ≤ e1 + e2. According to Proposition 17 it follows that e1 ≤ γ2nγK−1
4n p̃1(x).

The second term e2 denotes the error occurring in the �nal summation with algorithm SumK.
Using the error bound (23), we deduce e2 ≤ (u+3γ2

2K−2
)|s|+γK

2K+1−4
s̃, with s =

∑
i∈NT

hi and

s̃ =
∑

i∈NT
|hi|. Using Theorem 16 and Proposition 17, we have |s| ≤ |p1(x)| + γ2nγK−1

4n p̃1(x).
On the other hand s̃ is bounded according to Lemma 21. Thus we write

e2 ≤ (u + 3γ2
2K−2)

(
|p1(x)|+ γ2nγK−1

4n p̃1(x)
)

+ γK
2K+1−4 (|p1(x)|+ γ4n p̃1(x))

≤
(
u + 3γ2

2K−2 + γK
2K+1−4

)
|p1(x)|+

(
γ4nγK

2K+1−4 + γK+1
4n

)
p̃1(x).

Therefore we have the inequality

| r − p1(x)| ≤
(
u + 3γ2

2K−2 + γK
2K+1−4

)
|p1(x)|+

(
γ2nγK−1

4n + γ4nγK
2K+1−4 + γK+1

4n

)
p̃1(x),

which proves Theorem 20. �

6.3 Numerical behavior of CompHornerK

To exhibit the numerical behavior of CompHornerK (Algorithm 19) with respect to the condition
number we have generated 700 polynomials of degree 25 with condition number ranging from
102 to 10100. The coe�cients of these polynomials are double precision values [12].

We report with Figure 4 the relative accuracy of every polynomial evaluation performed with
Horner and CompHornerK for successive iterates K = 2, 3, 4, compared to the condition number
cond(p, x). We also represent the a priori relative error bounds (1) and (22).

As expected from the previous error bounds, the algorithm CompHornerK is in practice as
accurate as the Horner algorithm performed in K times the working precision with a �nal round-
ing to the working precision. For every considered value of K (more than those here represented
have been tested) the relative accuracy of the compensated evaluation is of the order of the

16



10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

1

1 10
16

10
32

10
48

10
64

Condition number cond(p,x)

Accuracy of polynomial evaluation [n=25]

R
e
la

ti
v
e
 f
o
rw

a
rd

 e
rr

o
r

u

H
o

rn
e
r 

(K
=
1
)

1/u

K
=
2

1/u
2

K
=
3

1/u
3

K
=
4

1/u
4

Figure 4: Relative accuracy of Horner and of the compensated evaluations Com-
pHornerK (Algorithm 19) with respect to cond(p, x), for K = 2, 3, 4. A priori error bounds
are represented as continuous lines.

working precision u as long as cond(p, x) is smaller than u−K . Of course CompHornerK exhibits
the same numerical behavior as CompHorner when K = 2.

We also observe that the a priori bound (22) of the relative error in the computed evaluation
is always pessimistic compared to the actual (measured) error by many orders of magnitude.
Moreover this error bound is more and more pessimistic when the parameter K increases �this
phenomenon is also observed in [18] for the compensated dot product algorithm DotK.

7 Running time performances

In this last Section we demonstrate the practical e�ciency in terms of running time com-
paring our algorithms and up-to-date challengers on several signi�cant computing environments.

Let us �rst emphasize that the running time of these algorithms does not depend on the
coe�cients of the polynomial, nor on the argument x, but only on the degree n. All experiments
are performed using IEEE-754 double precision with the following environments.

(I) Intel Pentium 4, 3.0 GHz, GNU Compiler Collection 4.1.2, fpu x87;
(II) AMD Athlon 64, 2.0 GHz, GNU Compiler Collection 4.1.2, fpu sse;
(III) Itanium 2, 1.5 GHz, GNU Compiler Collection 4.1.1;
(IV) Itanium 2, 1.5 GHz, Intel C Compiler 9.1.

We consider separately the experiments with CompHorner and CompHornerK.

7.1 CompHorner runs at least twice as fast as double-double Horner

Since double-doubles [1] are usually considered as the most e�cient portable library to double
the IEEE-754 double precision, we consider it as a reference in the comparisons with Com-
pHorner. For our purpose, it su�ces to know that a double-double number a is the pair (ah, al)
of IEEE-754 �oating point numbers with a = ah + al and |al| ≤ u|ah|. This property implies
a renormalisation step after each arithmetic operation on double-double values. We denote by
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DDHorner our implementation of the Horner algorithm with the double-double format, derived
from the implementation proposed by the authors of [15].

We implement the three algorithms CompHorner, CompHornerIsFaithful and DDHorner in
a C code to measure their overhead compared to the Horneralgorithm. We program these
tests straightforwardly with no other optimization than the ones performed by the compiler.
All timings are done with the cache warmed to minimize the memory tra�c over-cost. The
measures are performed with polynomials whose degree vary from 5 to 200 by step of 5. For
every algorithm, we measure the ratio of its computing time over the computing time of the
Horner algorithm; we display the average time ratio over all test cases in Table 2.

Table 2: Measured running time ratios to double the accuracy of the Horner algorithm.

CompHorner
Horner

CompHornerIsFaithful
Horner

DDHorner
Horner

(I) P4 gcc 4.1.2 2.8 3.5 8.6

(II) AMD64 gcc 4.1.2 3.2 3.6 8.7

(III) IA'64 gcc 4.1.1 2.8 3.4 6.7

(IV) icc 9.1 1.5 1.7 5.9

∼ 2− 3 ∼ 2− 4 ∼ 5− 9

The results in Table 2 show that the slowdown factor introduced by CompHorner compared
to Horner roughly varies between 2 and 3. The same slowdown factor varies between 2 and 4
for CompHornerIsFaithful and between 5 and 9 for DDHorner. Therefore we can see that the
over-cost due to the dynamic test for faithful rounding is quite reasonable. Anyway CompHorner
and CompHornerIsFaithful run both signi�cantly faster than DDHorner.

We provide time ratios for IA'64 architecture (Itanium 2). Tested algorithms take bene�t
from IA'64 instructions (as FMA) but are not described here �see [5] for details.

7.2 CompHornerK runs faster than challengers for K ≤ 4.

First experiments study the performances of algorithm CompHornerK (Algorithm 19) assuming
that K is an argument of the implemented routine. Since double precision is the working
precision, CompHornerK simulates a precision of about K×53 bits. We compare CompHornerK to
the Horner algorithm implemented with the MPFR library [16] using a precision of K×53 bits;
we denote by MPFRHornerK this implementation. We use a 39 random polynomials of degree
from 10 to 200, by step of 5. For every considered degree n we measure the overhead introduced
by the algorithms CompHornerK and MPFRHornerK compared to the classic Horner algorithm
(we measure the ratio of the running time of CompHornerK over the running time of Horner, and
we perform the same measurement for MPFRHornerK). We report the average overheads for both
algorithms with respect to K on the left side of Figure 5.

CompHornerK is clearly not competitive compared to MPFRHornerK for large values of
K. The exponential complexity with respect to K of CompHornerK we previously exhibit
certainly justi�es this limitation. Nevertheless, in our experiments CompHornerK runs always
faster than MPFRHornerK while K is smaller than 4. This illustrates the practical interest of
CompHorner for simulating a small improvement of the working precision.

Next we study an optimized version of CompHornerK a priori setting a value for K. We name
CompHorner4 the corresponding implementation for K = 4. Setting the parameter K to a par-
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Figure 5: Average measured running time ratios compared to Horner of CompHornerK and
MPFRHornerK (left) and for CompHorner4, QDHorner and MPFRHorner4 (right).

ticular value does not change the principle of the algorithm but allows the compiler to perform
more optimizations and provide better practical performances. We compare CompHorner4 to
QDHorner, the Horner algorithm implemented with quad-double arithmetic �that also simu-
lates 4 times the IEEE-754 double precision [1]. For a fair comparison, our implementation of
QDHorner inlines the quad-double arithmetic described in [6] and is also compiled with the same
optimizing option as CompHorner4. We also compare CompHorner4 to MPFRHorner4 using the
MPFR library with a working precision of 212 bits.

As before we use 39 random polynomials of degree varying from 10 to 200 by step of 5. For
every polynomial, we measure the overhead of CompHorner4 compared to the classic Horner
algorithm. For every environment listed above we report the minimum, the average and the
maximum values of this overhead on the right side of Figure 5. We also report the same average
overheads for QDHorner and MPFRHorner4.

Our CompHorner4 is always signi�cantly faster than both QDHorner and MPFRHorner. In
particular CompHorner4 runs about 8 times faster than QDHorner in the environment (IV) which
is the Itanium architecture with the Intel compiler. -
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