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Abstract - The aim of the proposed paper is to present an al-
gorithm that solves linear triangular systems accurately and
efficiently. By accurately, we mean that this algorithm should
yield a solution as accurate as if it is computed in twice the
working precision. By efficiently, we mean that its implemen-
tation should run faster than the corresponding XBLAS rou-
tine with the same output accuracy.
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I. I MPROVING THE RESULT ACCURACY

When we perform computations with finite-precision arith-
metic, i.e, floating point arithmetic, the computed val-
ues of the intermediate variables often suffer from the
rounding errors introduced by each arithmetic operator
+,−,×, /,

√. These rounding errors contribute to the
inaccuracy of the results computed with numerical algo-
rithms.

A. General multiprecision libraries

One natural way to improve this accuracy is to increase
the working precision which is often the IEEE-754 double
precision format [IEE 85]. For this purpose, manymul-
tiprecision libraries have been developed. These libraries
that only use the fixed precision available on the computer
can be divided into two groups according to the chosen rep-
resentation of the multiprecision quantities.

• Some multiprecision libraries store the numbers in a
multiple-digit format. It means that the mantissa is repre-
sented as a sequence of digits of arbitrary length, coupled
with an exponent. Examples of such an implementation
are Bailey’s MPFUN [BAI 93], Brent’s MP [BRE 78] or
INRIA’s MPFR[MPF] libraries.

• Other libraries store a number as the unevaluated sum of
ordinary floating point numbers. Thismultiple-component
format is implemented by Priest [PRI 91] and Shewchuck
[SHE 97] but have been introduced (with slight differ-
ences) from a long time in [MØL 65], [DEK 71], [PIC 72],
[LIN 81] for example.

These two types of libraries provide a multiprecision for-
mat either with ana priori fixed length or an arbitrary (dy-
namic) length. Allowing an arbitrary precision can dras-
tically reduce the time-performances of the algorithms but
is sometimes necessary, for example when computing ulti-
mate digits of numerical constants or quantities.

B. Fixed multiprecision libraries

On the other hand, some applications in scientific comput-
ing can get full benefit from only using a small multiple of
the working precision. A very illustrating example of such
a need is the iterative refinement technique for improving
the accuracy of the computed solution̂x to a linear system
Ax = b. Quoting Higham [HIG 02, p.232]: “if double the
working precision is used in the computation of the residual
b−A x̂, and the matrixA is not too ill-conditioned, then the
iterative refinement produces a solution correct to working
precision”. Other examples illustrating the benefits of such
a targeted increase of the precision are presented in [LI 02].

Well known implementations of these fixed multiprecision
software are Bailey’sdouble-doubleand quad-doubleli-
braries [HID 01]. These double-double or quad-double
software provide floating point numbers (and the associ-
ated arithmetic) implemented in the multiple-component
format using respectively two and four IEEE-754 double-
precision numbers. Bailey’s double-double algorithms are
used by the authors of [LI 02] to implement efficiently the
XBLAS library. These extended basic linear algebra sub-
routines provide the same set of routines as the well known
BLAS but allow intermediate computation in extended pre-
cision. Double-double numbers implement this extended
precision that improves the accuracy and the convergence
of some BLAS and LAPACK subroutines [AND 99].

C. Targeted algorithms

Another way to enhance the accuracy of computed re-
sults exists but is less general than the previous ones since
every improvement has to be designed for a given algo-
rithm. A classic example of such targeted accuracy im-
provement is the summation ofn floating point numbers :
many algorithms have been designed to improve the accu-
racy of the computed sum,e.g., Knuth-Kahan compensated
summation, Kahan-Priest double compensated summation,
Malcolm or Kulisch large accumulators, . . . (see [HIG 02,
chap.4] for entries).

These highly accurate algorithms compute correcting terms
which take into account the rounding errors accumulated
during the calculus. For instance, letx be the (unknown)
exact result of a given computation and̂x be the approxi-
mate ofx computed in working precision. First we approx-
imate theglobal forward error, ∆x = x− x̂, and then we



correctx by computingx̂ + ∆x. The corrected resultx is
expected to be more accurate thanx̂. Of course both the
evaluation of the correcting term∆x and the corrected re-
sult x have to be performed in finite precision arithmetic:
actually ∆̂x = fl(∆x) and x = fl( x̂ + ∆̂x) are com-
puted (fl() denotes floating point computations). The com-
putation of these correcting terms relies on well known re-
sults about the elementary rounding errors in the arithmetic
operators namederror free transformationsby Ogitaet al.
in [OGI 05].

D. The CENA method

Since the propagation of these elementary rounding errors
is tedious to describe for large numerical algorithms, meth-
ods that automatically bound or even compute a correcting
term have been developed [LIN 83], [KUB 96], [LAN 01].
The CENA method provides an automatic linear correc-
tion of the global rounding error (together with a bound
of the corrected accuracy) thanks to the following proper-
ties [LAN 01].

Suppose that the functionf is evaluated at the datax =
(x1, . . . , xn). For simplicity, we assume thatf is a real
function, and that all thexi are floating point numbers. A
vector function will be considered componentwise.

f(x) is evaluated by an algorithm̂f using intermediate
variables x̂n+1, . . . , x̂N . Each x̂k is assumed to be the
result of an elementary operation+, −, ×, / or√. We de-
note byδk the corresponding elementary rounding error.

Then, the numerical evaluation off(x) is x̂N = f̂(x, δ),
that is, a function of the datax and the elementary round-
ing errorsδ = (δn+1, . . . , δN ). A first-order mathematical
expression of the global forward error∆x is formally given
by the following Taylor expansion with respect to the ele-
mentary rounding errors

∆xN = f(x)− f̂(x, δ) =
N∑

k=n+1

∂ f̂

∂δk
(x, δ) · δk + EL

with EL the linearization error. The derivatives in this Tay-
lor expansion are efficiently computable using automatic
differentiation [GRI 00] in finite precision arithmetic, and
the elementary rounding errors are computable efficiently
either exactly, or with a good accuracy, also in finite preci-
sion arithmetic. Thus a correcting term̂∆x = fl(∆x) is
calculated using only the working precision available, and a
corrected resultx = fl( x̂ + ∆̂x) is produced. Moreover
the residual error between the corrected result and the exact
result is dynamically bounded using running error analysis.

This linear correction is suitable when the global forward
error is dominated by the first-order terms and in particular

for linear algorithms, i.e. algorithms such that its global
forward error is a linear function of the elementary round-
ing errors. In that case, the linearization errorEL is equal
to zero, so that the linear correction is optimal. These lin-
ear algorithms have been identified in [LAN 01]; let us
cite for example the dot-product, the Horner scheme for
polynomial evaluation and the substitution algorithm for
triangular systems. Experimental results exhibit that a cor-
rected result with the CENA method has a similar accuracy
than the one of the not corrected computation performed in
twice the working precision [LAN 04]. It means that the
corrected accuracy is of the order of the condition num-
ber times the square of the working precision. The CENA
correction of the classic substitution algorithm for triangu-
lar systems satisfies this accuracy estimate. Recent results
from Ogitaet al. propose the first proof of this kind of be-
havior for the summation and the dot product algorithms
[OGI 05].

E. Our goal

One of the main time overhead introduced by the CENA
method is the computation of the derivatives with respect
to the elementary rounding errors using automatic differ-
entiation –current implementations of the CENA method
use overloaded operators to implement the reverse mode of
automatic differentiation [GRI 00]. The algorithm we pro-
pose here is an optimized instantiation of the CENA cor-
rection applied to the substitution algorithm for triangular
systems.

In Section II, we first introduce the notations we use. Then
we recall some properties of the error free transformations,
and next we explicit the correcting term the CENA method
computes dynamically. This term represents the global for-
ward error generated by the substitution algorithm when
solving a triangular systemTx = b. We in-line it to provide
a corrected version of the substitution algorithm. This algo-
rithm verifies a complexity inO(n2) wheren is the dimen-
sion of the unknown vector. In Section III we present our
experimental results, concerning both the accuracy and the
timing of our algorithm. Comparisons with the correspond-
ing XBLAS algorithm are proposed. These experimental
results show that our algorithm runs about twice faster than
the corresponding XBLAS routine with the same output ac-
curacy.

II. A N EFFICIENT IMPROVEMENT OF THE RESULT ACCURACY
FOR TRIANGULAR LINEAR SYSTEMS

In the sequel of this paper, we assume a floating point
arithmetic adhering to the IEEE-754 floating point standard
[IEE 85], with rounding to the nearest floating point value.
All the computations are performed in the same working
precision. We make the standard assumption that neither
overflow, nor underflow occur during the calculus.F de-
notes the set of the normalized floating point numbers. Let



u be the relative error unit: ifq is the number of bits of
the mantissa in the working precision, thenu = 2−q. For
instance, if the working precision is IEEE-754 double pre-
cision, thenq = 53 and u = 2−53 ≈ 1.11 10−16.

As in the previous section,fl(.) denotes the result of a
floating point computation, where all the operations inside
the parenthesis are performed in the working precision. We
also introduce the symbols⊕, 	, ⊗ and�, representing
respectively the implemented addition, subtraction, multi-
plication and addition. We adopt MATLAB like notations
for our algorithms. Computed quantities (i.e. that suffer of
rounding errors) wear a hat.

A. Error free transformations

In this subsection, we review well know results concern-
ing the error free transformations of the elementary floating
point operations.

Let ◦ be an operation in{+,−,×, /}, a andb be two float-
ing point numbers, and̂x = fl(a ◦ b) (b 6= 0 when◦ = /).
Theelementary rounding errorin the computation of̂x is

y = (a ◦ b)− fl(a ◦ b), (1)

that is the difference between the exact result and the
computed result of the operation. In particular, for◦ ∈
{+,−,×}, the elementary rounding errory belongs toF,
and is computable using only the operations defined on
F [LAN 01]. Thus, for ◦ ∈ {+,−,×}, any pair of in-
puts (a, b) ∈ F2 can be transformed into an output pair
( x̂, y) ∈ F2 such that

a ◦ b = x̂ + y and x̂ = fl(a ◦ b).

Ogita et al. [OGI 05] call such a transformation anerror
free transformationbecause no information is lost.

For the addition (◦ = +), we have a well known algo-
rithm by Knuth [KNU 98], generally calledTwoSum (Al-
gorithm 1).TwoSum requires 6 flops (floating point oper-
ation).

Algorithm 1: Error free transformation of the sum of two
floating point numbers.
function [x, y] = TwoSum(a, b)

x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

For the error free transformation of the product, we first
need to split the input arguments into two parts. It is done
using Algorithm 2 by Dekker [DEK 71]. Ifq is the number
of bits of the mantissa, letr = d q

2e. Algorithm 2 splits a
floating point numbera into two partsx andy, both having
at mostr− 1 nonzero bits, such thata = x + y. For exam-
ple, with the IEEE-754 double precision,q = 53, r = 27,

therefore the output number have at mostr − 1 = 26 bits.
The trick is that one bit sign is used for the splitting.

Algorithm 2: Splitting of a floating point number into two
parts.
function [x, y] = Split(a)

z = a⊗ (2r + 1)
x = z 	 (z 	 a)
y = a	 x

Then, Algorithm 3 by Veltkamp (see [DEK 71]) can be
used for the error free transformation of the product. This
algorithm is commonly calledTwoProduct and requires 17
flops.

Algorithm 3: Error free transformation of the product of
two floating point numbers
function [x, y] = TwoProduct(a, b)

x = a⊗ b
[ah, al] = Split(a)
[bh, bl] = Split(b)
y = al ⊗ bl 	 (((x	 ah ⊗ bh)	 al ⊗ bh)	 ah ⊗ bl)

TwoProduct can be rewritten in a very straightforward way
with a processor that provides a Fused-Multiply-and-Add
operator, such as with Intel Itanium or with IBM PowerPC.
Fora, b, c ∈ F, the result ofFMA(a, b, c) is the exact result
a× b + c rounded to the nearest floating point value. Thus
y = a · b− a⊗ b = FMA(a, b,−(a⊗ b)) andTwoProduct
can be replaced by Algorithm 4, requiring only 2 flops.

Algorithm 4: Error free transformation of the sum of two
floating point numbers with an FMA
function [x, y] = TwoProductFMA(a, b)

x = a⊗ b
y = FMA(a, b,−x)

Concerning the division, the elementary rounding error is
generally not a floating point number, so it cannot be com-
puted exactly. Hence we cannot expect to obtain an error
free transformation for the division. However an approxi-
mate elementary error, and an approximation bound can be
obtained [PIC 76], [LAN 01]. Givena, b ∈ F, Algorithm 5
computes an approximation̂y of the elementary rounding
errory = a/b− a� b such that

|y − ŷ| ≤ u|y|.

This means that the computed approximation is as good as
we can expect in the working precision. The key is that the
numerator ofy belongs toF [PIC 76]. Thus the previous
error bound only take into account the rounding error of
the last division byb. ApproxTwoDiv requires 21 flops. If
a Fused-Multiply-and-Add operation is available, then this
flop count drops to 6.



Algorithm 5: Transformation of the division of two float-
ing point numbers
function [x, y] = ApproxTwoDiv(a, b)

x = a� b
[v, w] = TwoProduct(x, b)
y = (a	 v 	 w)� b

We notice that algorithmsTwoSum, TwoProduct,
TwoProductFMA and ApproxTwoDiv require only well
optimizable floating point operations. They do not use
branches, nor access to the mantissa that can be time con-
suming.

B. Explicit formulation of the forward errors

For the sake of simplicity, the discussion will be made only
for lower triangular systems. So, we consider a linear sys-
tem of the form:

 t1,1

...
...

tn,1 · · · tn,n


 x1

...
xn

 =

 b1

...
bn


We suppose that all the coefficients of that linear system
are representable floating point numbers. Throughout the
rest of the paper,n will denote the dimension of the trian-
gular system,i.e. the size of the unknown vector. The exact
solutionx = (x1, . . . , xn)T can be theoretically computed
using the well known substitution formulas

xi =
1

ti,i

bi −
i−1∑
j=0

ti,jxj

 , (2)

for i = 1 : n. Using this formula, we can write the classic
forward substitution algorithm (Algorithm 6), involvingn2

flops.

Algorithm 6: Substitution algorithm
for i = 1 : n

ŝi,0 = bi

for j = 1 : i− 1
p̂i,j = ti,j ⊗ x̂j { rounding errorπi,j}
ŝi,j = ŝi,j−1 	 p̂i,j { rounding errorσi,j}

end
x̂i = ŝi,i−1 � ti,i { rounding errorδi}

end

Algorithm 6 computes an approximation̂x of the exact
solution to the triangular system. Each elementx̂i of
the vector x̂ may be affected by a global forward error
∆xi = xi − x̂i. We denote by∆x = x − x̂ the vector
of these forward errors. If the CENA method was used to

correct the computed solution̂x, it would first compute an
approximation of the vector∆x using automatic differen-
tiation. But to improve the time performance of the correc-
tion process, we want here to avoid the use of automatic
differentiation. Our goal is thus to obtain explicit formulas
for the computation of the vector̂∆x.

In Algorithm 6, we indicate after each arithmetic statement
the symbol denoting the corresponding elementary round-
ing error. Thus, fori = 1 : n andj = 1 : i− 1

p̂i,j = ti,j x̂i − πi,j , (3)

ŝi,j = ŝi,j−1 − p̂i,j − σi,j , (4)

and fori = 1 : n

x̂i = ŝi,i−1/ti,i − δi. (5)

Lemma 1:Let x be the exact solution of the triangular lin-
ear system considered, and letx̂ be the approximation of
this solution computed by Algorithm 6. Then, fori = 1 : n

x̂i =
1

ti,i

bi −
i−1∑
j=1

ti,j x̂j + πi,j − σi,j

− δi.

Proof: Inserting equation (3) into equation (4) leads
to

ŝi,j = ŝi,j−1 − ti,j x̂i + πi,j − σi,j .

Sinceŝi,0 = bi we have

ŝi,j = bi −
i−1∑
j=1

ti,j x̂j + πi,j − σi,j .

Applying equation (5) finally gives the result.

Now, we can state the following proposition.

Proposition 2: We use the same notations as in Lemma 1.
∆xi = xi − x̂i denotes the forward error affecting the
computed result̂xi. Then, fori = 1 : n the following
equation holds

∆xi = − 1
ti,i

i−1∑
j=1

ti,j∆xj + πi,j − σi,j

 + δi.

Proof: Since∆xi = xi − x̂i, from equation (2) and
Lemma 1 it follows that

∆xi = − 1
ti,i

i−1∑
j=1

ti,j(xj − x̂j) + πi,j − σi,j .

 + δi,

which proves the result.
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Fig. 1. Result accuracy (Y -axis) for dtrsv (substitution algorithm with IEEE-754 double precision),dtrsv x (XBLAS routine) and
dtrsv x (corrected substitution) with respect to the condition number (X-axis).

C. The corrected algorithm

Proposition 2 gives explicit formulas to compute the ele-
ments of the vector∆x. Moreover, the quantitiesπi,j and
σi,j are computable exactly in finite precision arithmetic
using algorithmsTwoProduct andTwoSum. The round-
ing errorsδk affecting each division in the substitution al-
gorithm are also computable with a good accuracy with al-
gorithm ApproxTwoDiv. Thus it is possible to write an
algorithm that in-lines the correction of the CENA method.
First we compute a floating point approximation̂∆x of ∆x
according to Proposition 2. Then we compute a corrected
solutionx̄ = x̂⊕ ∆̂x.

We can see that it is not useful to correctx̂1. Indeed, the
computed result̂x1 is already the best floating point ap-
proximation ofx1. Nevertheless, the correcting term̂∆x1

will play a part in the computation of the other corrected
resultsx̄2, . . . , x̄n. All these remarks leads to Algorithm 7.

Algorithm 7: Corrected substitution algorithm

for i = 1 : n
ŝi,0 = bi

ûi,0 = 0
for j = 1 : i− 1

( p̂i,j , πi,j) = TwoProduct(ti,j , x̂j)
( ŝi,j , σi,j) = TwoSum( ŝi,j−1,− p̂i,j)
ûi,j = ûi,j−1 	 (ti,j ⊗ ∆̂xj ⊕ πi,j 	 σi,j)

end

( x̂i, δ̂i) = ApproxTwoDiv( ŝi,i−1, ti,i)
∆̂xi = ûi,i−1 � ti,i ⊕ δ̂i

end
for i = 2 : n

x̄i = x̂i ⊕ ∆̂xi

end

The corrected substitution algorithm computes the ex-
pected accurate solution according to the CENA method in
O(n2) floating point operations,i.e., in the same theoret-
ical complexity as the uncorrected substitution algorithm.
Algorithm 7 involves27

2 n2 + 21
2 n− 1 flops, withn the di-

mension of the triangular system. IfTwoProductFMA is
used instead ofTwoProduct, then the flop count drops to
6n2 +3n− 1. It also has to be noticed that an extra storage
of n floating point numbers is required for the vector∆̂x.

III. E XPERIMENTAL RESULTS

A. Resulting accuracy of the corrected algorithm

An appropriate condition number for linear system solving
has been introduced by Skeel (see [HIG 02, chapter 7]). If
Ax = b is a linear system with real coefficients, its condi-
tion number is

cond(A, x) =
‖|A−1||A||x|‖∞

‖x‖∞
.
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Fig. 2. Measured execution times on the two architectures

In the particular case of a linear triangular systemTx = b,
we have the following inequality, true to the first order

‖x− x̂‖∞
‖x‖∞

. n× cond(T, x)× u, (6)

whereu denotes the rounding unit, andn the size of the
linear system. But if the computations are performed inter-
nally using twice the working precision (i.e. u2) and then
rounded to the working precision (i.e. u), then we have to
take this final rounding into account. The relative accuracy
of the computed solution̂x now satisfies

‖x− x̂‖∞
‖x‖∞

. u + n× cond(T, x)× u2. (7)

Inequalities (6) and (7) are used to discuss the accuracy of
the computed solutions.

In all our experiments, we use the IEEE-754 double preci-
sion as working precision. A family of very ill-conditioned
triangular systems has been introduced in [LAN 01]. To
perform our experiments here, we have written a random
generator of very ill-conditioned triangular systems. This
generator has been carefully designed to ensure that both
the matrixT and the left hand-side vectorb are double
floating point numbers. The exact solutionx is computed
thanks to symbolic computation then carefully rounded to
double precisionxd.

We experiment both the classic substitution algorithm per-
formed in double precisiondtrsv, the XBLASdtrsv x and
our corrected routinedtrsv cor. dtrsv x is the substi-
tution algorithm with internal computation processed in-
lining double-double subroutines [HID 01]. The Skeel con-
dition numbers vary from10 to 1040 (these huge condi-
tion numbers have a sense since here bothT and b have

been designed to be exact floating point numbers). Fig-
ure 1 presents the relative accuracy‖ x̂− xd‖∞/‖xd‖∞ of
the computed solution̂x compared to the condition num-
ber range. We set relative errors greater than one to the
value one, which means that almost no useful information
is left. We observe that both the XBLAS and our corrected
substitution algorithms exhibit the expected behavior: the
relative accuracy is proportional to the square of the dou-
ble precisionu. The full precision solution is computed
as long as the condition number is smaller than1/(nu).
Then the computed solution has an accuracy of the order
n×cond× u2 for systems with a condition number smaller
than1/(nu2). At last, no computed digit remains exact for
condition number up to1/(nu2).

B. Time efficiency of the corrected algorithm

We compare the actual execution of the proposed cor-
rected algorithmdtrsv cor with the classic substitution al-
gorithm dtrsv, and with the reference implementation of
the XBLAS dtrsv x routine [LI 02]. The XBLAS library
we use comes from the reference web site [XBL]. As the
XBLAS library is only available in the C language, all al-
gorithms were tested in C code. All the routines have been
tested using IEEE-754 double precision as working preci-
sion. The presented tests have been performed with the
following environments:

1) Intel Celeron: 3.4GHz, 256kB L2 cache,

2) Intel Pentium 4: 3.0GHz, 1024kB L2 cache.

On the two computers we used the GNU Compiler Collec-
tion (gcc-3.4.1), with Linux Kernel 2.6.8 and Glibc 2.3.3.

Figure 2 displays the timing of the three routines (dtrsv,
dtrsv x anddtrsv cor). The dimensionn of the triangu-
lar system vary from 5 to 2000. On Figure 3 we present
the measured ratios of the actual computing times of the
XBLAS dtrsv x and of our corrected routinedtrsv cor
over the classic substitutiondtrsv. The minimum, the mean
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TABLE I
MEASURED AND THEORETICAL TIME RATIO ON THE TWO

ENVIRONMENTS

Intel Celeron
ratio min. mean max. theoret.

dtrsv cor/dtrsv 2.17 2.95 9.70 13.5
dtrsv x/dtrsv 4.02 5.81 19.66 22.5

dtrsv x/dtrsv cor 1.81 1.95 2.07 1.67

Intel Pentium 4
ratio min. mean max. theoret.

dtrsv cor/dtrsv 4.50 8.14 9.95 13.5
dtrsv x/dtrsv 8.82 16.10 19.60 22.5

dtrsv x/dtrsv cor 1.87 1.98 2.03 1.67

and the maximum of these ratios are reported in Table I.
The last column displays the theoretical ratios, resulting
from the number of flops involved by the most inner loop
of each routine. The Fused-Multiply-and-Add operation is
not available in our experimental environments.

First, we have to notice that the actual time factor intro-
duced either bydtrsv x or dtrsv cor is always significantly
smaller than theoretically expected. This is an astonish-
ing fact since the code for these functions is designed to
be easily portable, and no algorithmic optimizations are
performed, like data blocking, neither indtrsv cor, nor
in dtrsv x (see [LI 02]). This interesting property seems
to be due to the fact that the classic substitution algorithm
performs only one operation with each element of the ma-

trix, causing suboptimal use of the cache, whereasdtrsv x
or dtrsv cor perform much more floating point operations
with each element of the matrix (see [LI 02], [OGI 05]).
Most of these operations are performed at the register level,
without incurring much memory traffic.

However, Figure 3 does not allow us to give a defini-
tive conclusion about the time factors introduced either
by dtrsv x or dtrsv cor. The slowdown factor is about 3
for our corrected algorithm in the first environment (Intel
Celeron), whereas it is about 8 in the second (Intel Pen-
tium 4). It is partly due to the fact thatdtrsv cor does not
involve exactly the same memory traffic asdtrsv. Indeed,
in our corrected algorithm we have to deal with the new
vector ∆̂x: at each execution of the most inner loop, one
of its element is accessed . So the time ratio ofdtrsv cor
over dtrsv strongly depends on the characteristics of the
memory hierarchy of the computer. The same remark ap-
ply to dtrsv x. But a straightforward analysis of the code
of dtrsv x anddtrsv cor shows that the two routines in-
volve almost the same memory traffic. Thus the time ratio
of dtrsv x over ofdtrsv cor is almost constant, as it can be
seen from Figure 3 and Table I. The corresponding theoret-
ical ratio is 1.67 and the measured value is on the average
close to 2. From a practical point of view, we can state that
the proposed algorithm is about twice faster than the refer-
ence time given by the XBLAS current implementation.

IV. CONCLUDING REMARKS

We presented a new algorithm that solves triangular sys-
tems accurately. We used only one working precision for



the floating point computations. The only assumption we
made was that the floating-point arithmetic available on the
computer conformed to the IEEE-754 standard. Experi-
mental results exhibit that our algorithm provides corrected
results as accurate as if computed by the classic algorithm
using twice the working precision. Its low requirements
make it highly portable, and our corrected algorithm could
be easily integrated into numerical libraries.

The algorithm is an instantiation of the CENA correction
applied to the substitution algorithm. However, we avoid
the use of the automatic differentiation to compute the
correction terms, which was one the main time overhead
introduced by the CENA method. As a result, the cor-
rected algorithm is efficient. We show that it is fast, not
only in terms of flops, but also in terms of measured com-
puted time. In particular, the measured slowdown factor
introduced by the correction process is much smaller than
the expected one. Our experimental results show that our
algorithm runs about twice faster than the corresponding
XBLAS routine. Even more interesting results should be
obtained on computers with a Fused-Multiply-and-Add op-
erator.
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