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Abstract - The aim of the proposed paper is to present an al- B. Fixed multiprecision libraries

gorithm that solves linear triangular systems accurately and

efficiently. By accurately, we mean that this algorithm should  On the other hand, some applications in scientific comput-
yield a solution as accurate as if it is computed in twice the ing can get full benefit from only using a small multiple of
working precision. By efficiently, we mean that its implemen-  the working precision. A very illustrating example of such
tation should run faster than the corresponding XBLAS rou- 5 need js the iterative refinement technique for improving
tine with the same output accuracy. the accuracy of the computed solutirto a linear system
Keywords— IEEE-754 floating point arithmetic, error-free Az = b. Quoting Higham [HIG 02, p.232]: “if double the
transformations, extended precision, XBLAS, triangular lin-  working precision is used in the computation of the residual
ear system, substitution algorithm. b— Az, and the matrix4 is not too ill-conditioned, then the
iterative refinement produces a solution correct to working
precision”. Other examples illustrating the benefits of such

When we perform computations with finite-precision arith2 targeted increase of the precision are presented in [LI 02].
metic, i.e, floating point arithmetic, the computed val-

ues of the intermediate variables often suffer from th¥Vell known implementations of these fixed multiprecision
rounding errors introduced by each arithmetic operatdioftware are Bailey'slouble-doubleand quad-doubleli-
+,—,%,/,,/- These rounding errors contribute to thebraries [HID O1]. These double-double or quad-double
inaccuracy of the results computed with numerical algosoftware provide floating point numbers (and the associ-

I. IMPROVING THE RESULT ACCURACY

rithms. ated arithmetic) implemented in the multiple-component
format using respectively two and four IEEE-754 double-
A. General multiprecision libraries precision numbers. Bailey’'s double-double algorithms are

) . , ) used by the authors of [LI 02] to implement efficiently the
One natural way to improve this accuracy is 10 inCreasgg, ag jibrary. These extended basic linear algebra sub-
the working precision which is often the IEEE-754 doublg, ines provide the same set of routines as the well known
precision format [IEE 85]. For this purpose, mamul- g Ag pyt allow intermediate computation in extended pre-
tiprecisionlibraries have been developed. These librariegicion  Double-double numbers implement this extended

that only use the fixed precision available on the computeyie cision that improves the accuracy and the convergence
can be divided into two groups according to the chosen regs some BLAS and LAPACK subroutines [AND 99].
resentation of the multiprecision quantities.

. Some multiprecision libraries store the numbers in & Targeted algorithms

multiple-digitformat. It means that the mantissa is repre-
sented as a sequence of digits of arbitrary length, coupléfiother way to enhance the accuracy of computed re-

with an exponent. Examples of such an impIementatioﬁ“'tS exists but is less general than the previous ones since

are Bailey's MPFUN [BAI 93], Brent's MP [BRE 78] or €VerY improvement has to be designed for a given algo-
INRIAS MPFR[MPF] libraries. rithm. A classic example of such targeted accuracy im-

Other libraries st b h luated prfovement is the summation affloating point numbers :
+ Dtherfibranes store a numberas the unevaluate Suml‘ﬁany algorithms have been designed to improve the accu-
ordinary floating point numbers. Thisultiple-component

7 i acy of the computed sum,g, Knuth-Kahan compensated
format is implemented by Priest [PRI 91] and SheWChuchmmati : :
. . . ; on, Kahan-Priest double compensated summation,
[SHE 97] but have been introduced (with slight differ- P

Malcolm or Kulisch large accumulators, ... (see [HIG 02,
ences) from along time in [M@L 65], [DEK 71, [PIC 72], ¢ "ot i g (see |
[LIN 81] for example. ' '

These two types of libraries provide a multiprecision forThese highly accurate algorithms compute correcting terms
mat either with ara priori fixed length or an arbitrary (dy- which take into account the rounding errors accumulated
namic) length. Allowing an arbitrary precision can drasduring the calculus. For instance, letbe the (unknown)
tically reduce the time-performances of the algorithms bugxact result of a given computation aadbe the approxi-

is sometimes necessary, for example when computing ultihate ofz computed in working precision. First we approx-
mate digits of numerical constants or quantities. imate theglobal forward error, Az = x — Z, and then we



correctz by computingz + Ax. The corrected resuft is  for linear algorithms i.e. algorithms such that its global
expected to be more accurate than Of course both the forward error is a linear function of the elementary round-
evaluation of the correcting terdhz and the corrected re- ing errors. In that case, the linearization erfgy is equal
sult z have to be performed in finite precision arithmeticto zero, so that the linear correction is optimal. These lin-
actually Az = fi(Az) andz = fI(Z+ Ax) are com- ear algorithms have been identified in [LAN 01]; let us
puted (f1() denotes floating point computations). The comeite for example the dot-product, the Horner scheme for
putation of these correcting terms relies on well known repolynomial evaluation and the substitution algorithm for
sults about the elementary rounding errors in the arithmetidangular systems. Experimental results exhibit that a cor-
operators namedrror free transformationdy Ogitaet al.  rected result with the CENA method has a similar accuracy
in [OGI 05]. than the one of the not corrected computation performed in
twice the working precision [LAN 04]. It means that the
corrected accuracy is of the order of the condition num-
. : , ber times the square of the working precision. The CENA
Since the propagation of these elementary rounding errors

is tedious to describe for large numerical algorithms, meﬂ?c_orrectlon of the classic substitution algorithm for triangu-

i - lar systems satisfies this accuracy estimate. Recent results
ods that automatically bound or even compute a correctlr}(rz;om Ogitaet al. propose the first proof of this kind of be-
term have been developgd [LIN 83], [KUB.%L [LAN O1] havior for the summation and the dot product algorithms
The CENA method provides an automatic linear corre

tion of the global rounding error (together with a bounEIOGI 05].
of the corrected accuracy) thanks to the following propeiz oy goal
ties [LAN 01].

D. The CENA method

One of the main time overhead introduced by the CENA

Suppose that the functiofi is evaluated at the data = method is the computation of the derivatives with respect
(1,...,zy,). For simplicity, we assume thatis a real to the elementary rounding errors using automatic differ-
function, and that all the; are floating point numbers. A entiation —current implementations of the CENA method
vector function will be considered componentwise. use overloaded operators to implement the reverse mode of

R automatic differentiation [GRI 00]. The algorithm we pro-
f(z) is evaluated by an algorithnf using intermediate pose here is an optimized instantiation of the CENA cor-
variablesz,,11,..., Zn. EachZy is assumed to be the rection applied to the substitution algorithm for triangular
result of an elementary operatien —, x, / or /. We de-  systems.
note byd, the corresponding elementary rounding error.
N In Section Il, we first introduce the notations we use. Then
Then, the numerical evaluation ¢fx) is zy = f(z,d), we recall some properties of the error free transformations,
that is, a function of the data and the elementary round- and next we explicit the correcting term the CENA method
ing errorsé = (0p+1,--.,0n). Afirst-order mathematical computes dynamically. This term represents the global for-
expression of the global forward errar: is formally given  ward error generated by the substitution algorithm when
by the following Taylor expansion with respect to the elesolving a triangular systeffiz = b. We in-line it to provide
mentary rounding errors a corrected version of the substitution algorithm. This algo-
rithm verifies a complexity itD (n?) wheren is the dimen-
8f sion of the unknown vector. In Section Il we present our
Z experimental results, concerning both the accuracy and the
Awy = f(x) = flw,0) = Z 6Tk,(x’ 0) -0+ B timﬁng of our algorithm. Compar?sons with the corrgspond—
ing XBLAS algorithm are proposed. These experimental
results show that our algorithm runs about twice faster than

with £y, the linearization error. The derivatives in this Tay-the corresponding XBLAS routine with the same output ac-
lor expansion are efficiently computable using automatiguracy.

differentiation [GRI 00] in finite precision arithmetic, and

the elementary rounding errors are computable efficiently A \ erriciENT IMPROVEMENT OF THE RESULT ACCURACY

either exactly, or with a good accuracy, also in finite preci- FOR TRIANGULAR LINEAR SYSTEMS

sion arithmetic. Thus a correcting terthz = fi(Az) is

calculated using only the working precision available, and b the sequel of this paper, we assume a floating point

corrected resulit = fI(Z + Ax) is produced. Moreover arithmetic adhering to the IEEE-754 floating point standard

the residual error between the corrected result and the ex@&E 85], with rounding to the nearest floating point value.

result is dynamically bounded using running error analysi®ll the computations are performed in the same working
precision. We make the standard assumption that neither

This linear correction is suitable when the global forwaraverflow, nor underflow occur during the calculuE. de-

error is dominated by the first-order terms and in particulanotes the set of the normalized floating point numbers. Let



u be the relative error unit: i is the number of bits of therefore the output number have at most 1 = 26 bits.

the mantissa in the working precision, then= 279. For  The trick is that one bit sign is used for the splitting.

instance, if the working precision is IEEE-754 double pre-

cision, theny = 53 andu = 27°% ~ 1.11 10716, Algorithm 2: Splitting of a floating point number into two
parts.

As in the previous sectionfl(.) denotes the result of a function [z, y] = Split(a)

floating point computation, where all the operations inside > = a @ (2" + 1)

the parenthesis are performed in the working precision. We x = 2 © (2 © a)

also introduce the symbols, ©, ® and @, representing y=a0Ox

respectively the implemented addition, subtraction, multi-

plication and addition. We adopt MATLAB like notations Then, Algorithm 3 by Veltkamp (see [DEK 71]) can be

for our algorithms. Computed quantitieise( that suffer of ysed for the error free transformation of the product. This

rounding errors) wear a hat. algorithm is commonly calle@woProduct and requires 17

A. Error free transformations flops.

In this subsection, we review well know results concernflgorithm 3: Error free transformation of the product of
o floating point numbers

ing the error free transformations of the elementary roatinFjV )
point operations. unction [z, y] = TwoProduct(a, b)

r=a®b
Leto be an operation if+, —, x, /}, a andb be two float- [an, ] = Sp!it(a)
ing point numbers, an@ = fi(a o b) (b # 0 wheno = /). (b, ba] = Split(b)
Theelementary rounding erran the computation oft is y=a @b o (((zCan®@by) Oa @br) ©an®by)
y=(aob)— fl(aob), (1) TwoProduct can be rewritten in a very straightforward way

. ) with a processor that provides a Fused-Multiply-and-Add
that is the difference between the exact result and the,erai0r, such as with Intel Itanium or with IBM PowerPC.
computed result of the operation. In particular, for€ o 4 ¢ F, the result oF MA(a, b, c) is the exact result
{+,—, x}, the elementary rounding errgrbelongs toF, ., . rounded to the nearest floating point value. Thus
and is computable using only the operations defined on_ a-b—a®b=FMA(a,b, —(a®b)) andTwoProduct
F [LAN 01]. TQUS* foro & {+,—,x}, any pair of in- -5 he replaced by Algorithm 4, requiring only 2 flops.
puts (a,b) € F* can be transformed into an output pair

~ 2
(Z,y) € F~suchthat Algorithm 4: Error free transformation of the sum of two

floating point numbers with an FMA
function [z, y] = TwoProductFMA(a, b)
Ogitaet al. [OGI 05] call such a transformation aror r=a®b

free transformatiorbecause no information is lost. y = FMA(a, b, —2)

aob=Z+y and Z= fl(aob).

For the addition ¢ = +), we have a well known algo- Concerning the division, the elementary rounding error is
rithm by Knuth [KNU 98], generally calledwoSum (Al-  generally not a floating point number, so it cannot be com-
gorithm 1). TwoSum requires 6 flops (floating point oper- puted exactly. Hence we cannot expect to obtain an error
ation). free transformation for the division. However an approxi-
mate elementary error, and an approximation bound can be
Algorithm 1: Error free transformation of the sum of two obtained [PIC 76], [LAN 01]. Given, b € F, Algorithm 5

floating point numbers. computes an approximatiof of the elementary rounding
function [z, y] = TwoSum(a, b) errory = a/b — a @ b such that

r=a®b

z2=z0a ly — 9yl < ulyl.

y=(ac(xc2)®(boz)
This means that the computed approximation is as good as

For the error free transformation of the product, we firstve can expect in the working precision. The key is that the
need to split the input arguments into two parts. It is doneaumerator ofy belongs toF [PIC 76]. Thus the previous
using Algorithm 2 by Dekker [DEK 71]. I is the number error bound only take into account the rounding error of
of bits of the mantissa, let = [2]. Algorithm 2 splits a the last division byb. ApproxTwoDiv requires 21 flops. If
floating point numbeus into two partse andy, both having a Fused-Multiply-and-Add operation is available, then this
at mostr — 1 nonzero bits, such that= x + y. For exam- flop count drops to 6.
ple, with the IEEE-754 double precision,= 53, r = 27,



Algorithm 5: Transformation of the division of two float- correct the computed solutian, it would first compute an

ing point numbers approximation of the vectoAx using automatic differen-

function [z, y] = ApproxTwoDiv(a, b) tiation. But to improve the time performance of the correc-
r=a@b tion process, we want here to avoid the use of automatic
[v, w] = TwoProduct(z, b) differentiation. Our goal is thus to obtain explicit formulas
y=(acvow)b for the computation of the vectahz.

We notice that algorithmsTwoSum, TwoProduct, In Algorithm 6, we indicate after each arithmetic statement
TwoProductFMA and ApproxTwoDiv require only well the symbol denoting the corresponding elementary round-
optimizable floating point operations. They do not uséng error. Thus,foi =1:nandj=1:i—1

branches, nor access to the mantissa that can be time con-

suming. Pij = tij®i = Tij, ®3)
Sij = Sij—1 = Dij — Tijs (4)

B. Explicit formulation of the forward errors and fori =1:n
Ty = Si-1/tii — 0. (5)

For the sake of simplicity, the discussion will be made only

for lower triangular systems. So, we consider a linear sy$-emma 1:Let: be the exact solution of the triangular lin-
tem of the form: ear system considered, and [etbe the approximation of

this solution computed by Algorithm 6. Then, foe= 1 : n
ti1 x1 by

1 1—1
ii:r‘ ) bi, E ti7j§j+ﬂi7j*01‘7j 751'.
tag ot tan )\ T bn =

- . Proof: Insertin ion in ion (4) |
We suppose that all the coefficients of that linear syste 00 serting equation (3) into equation (4) leads

are representable floating point numbers. Throughout the
rest of the paper, will denote the dimension of the trian-
gular systemi,e. the size of the unknown vector. The exactSinces; o = b; we have
solutionz = (z1,...,7,)” can be theoretically computed
using the well known substitution formulas

Sij = Sij—1 = lijTi + Tij — 0 j.

1—1
Sig=bi— Y tijT+m;— oy
=1

i—1
1
T =-—— |b — thljsﬂj ; ) . , , :
i = Applying equation (5) finally gives the result. ]

Now, we can state the following proposition.
fori = 1 : n. Using this formula, we can write the classic

forward substitution algorithm (Algorithm 6), involving®  Proposition 2: We use the same notations as in Lemma 1.

flops. Az; = z; — T, denotes the forward error affecting the
computed resultz;. Then, fori = 1 : n the following
Algorithm 6: Substitution algorithm equation holds
fori=1:n
gi,O =b; )
forj=1:i—1 -

1
Al‘i = = Zti,jAIj —+ 7Ti7]' — Ui,j —+ 51
J=1

iy

Pij = ti; ® T; { rounding errotr; ; }
Si;=8i;-10 @,j { rounding errow;_; }

eAnd . . Proof: SinceAz; = z; — z;, from equation (2) and
T; = 5ii-1 @t { rounding erros;} Lemma 1 it follows that
end

Algorithm 6 computes an approximation of the exact R = N

solution to the triangular system. Each elemént of Az; = T Zt%j(xj = Tj) +mij = 0ige| + 0
the vector ¥ may be affected by a global forward error Tt

Ax; = x; — ;. We denote byAx = = — 7 the vector

of these forward errors. If the CENA method was used tahich proves the result. |
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Fig. 1. Result accuracyy{-axis) fordtrsv (substitution algorithm with IEEE-754 double precisiod);sv_x (XBLAS routine) and
dtrsv_x (corrected substitution) with respect to the condition numBeakis).

C. The corrected algorithm (&, gi) = ApproxTwoDiv(s; ;_1,ti ;)
Az = Ui 1 Oty @ 0y

Proposition 2 gives explicit formulas to compute the ele- end

ments of the vectoAz. Moreover, the quantities; ; and fori=2:n
o;,; are computable exactly in finite precision arithmetic T, =T; D Ax;
using algorithmslwoProduct and TwoSum. The round- end

ing errorsdy, affecting each division in the substitution al-
gorithm are also computable with a good accuracy with alfhe corrected substitution algorithm computes the ex-
gorithm ApproxTwoDiv. Thus it is possible to write an pected accurate solution according to the CENA method in
algorithm that in-lines the correction of the CENA methodO(n?) floating point operations,e., in the same theoret-
First we compute a floating point approximatid: of Az ical complexity as the uncorrected substitution algorithm.
according to Proposmon 2. Then we compute a correctegorithm 7 involves2 n? + 2kn — 1 flops, withn the di-
solutionz = 7 & Ax. mension of the trlangular system TwoProductFMA is
used instead ofwoProduct, then the flop count drops to

We can see that it is not useful to corregt. Indeed, the 67”4 3n — 1. Italso has to be noticed that an extra storage
computed result; is already the best floating point ap-©f 7 floating point numbers is required for the vectdrr.
proximation ofz;. Nevertheless, the correcting terfiz,

will play a part in the computation of the other corrected

resultsz, .. ., Z,. All these remarks leads to Algorithm 7. .

EXPERIMENTAL RESULTS

Algorithm 7: Corrected substitution algorithm A. Resulting accuracy of the corrected algorithm

forf =lin An appropriate condition number for linear system solving
53,0 = bi has been introduced by Skeel (see [HIG 02, chapter 7]). If
uio =0 Az = bis a linear system with real coefficients, its condi-
forj=1:i-1 N tion number is
(Pij>mij) = TwoProduct(t; ;, Z;)
(@J,O’,‘J) TwoSum(s” 1y, — p77])
Ui = Ui 10 (ti; ® Ax; ® i © 01 5) A~ A2 loe

end condA,z) = T
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Fig. 2. Measured execution times on the two architectures

In the particular case of a linear triangular systEm= b, been designed to be exact floating point numbers). Fig-
we have the following inequality, true to the first order  ure 1 presents the relative accurdicy — x4||co /|| dl| 0o Of
the computed solutiorr compared to the condition num-
ber range. We set relative errors greater than one to the
<nxcondT,z) X u, (6) value one, which means that almost no useful information
is left. We observe that both the XBLAS and our corrected
substitution algorithms exhibit the expected behavior: the
whereu denotes the rounding unit, andthe size of the relative accuracy is proportional to the square of the dou-
linear system. But if the computations are performed inteple precisionu. The full precision solution is computed
nally using twice the working precisiong. u®) and then as long as the condition number is smaller tHgln u).
rounded to the working precisiond. u), then we have to Then the computed solution has an accuracy of the order
take this final rounding into account. The relative accuracy x condx u? for systems with a condition number smaller
of the computed solutio’ now satisfies than1/(nu?). Atlast, no computed digit remains exact for
condition number up ta/(n u?).

[z — 2]l

[E41PS

[ = Zlloo

e < u+nxcondT,z) x u’. (7) B. Time efficiency of the corrected algorithm
Z||oo

~

We compare the actual execution of the proposed cor-
Inequalities (6) and (7) are used to discuss the accuracy §cted algorithnutrsv_cor with the classic substitution al-
the computed solutions. gorithm dtrsv, and with the reference implementation of
the XBLAS dtrsv_x routine [LI 02]. The XBLAS library
In all our experiments, we use the IEEE-754 double precive use comes from the reference web site [XBL]. As the
sion as working precision. A family of very ill-conditioned XBLAS library is only available in the C language, all al-
triangular systems has been introduced in [LAN 01]. T@orithms were tested in C code. All the routines have been
perform our experiments here, we have written a randof§sted using IEEE-754 double precision as working preci-
generator of very ill-conditioned triangular systems. Thi§ion. The presented tests have been performed with the
generator has been carefully designed to ensure that bd@owing environments:
]tclhe tmatrix_]’tand tg‘e Ief_tl_ﬁand-si?e \I/et(_:ub_rare dou:alz 1) Intel Celeron: 3.4GHz, 256kB L2 cache,
oating point numbers. The exact solutioris compute . )
thanks to symbolic computation then carefully rounded tg) Inte| Pentium 4: 3.0GHz, 1024kB L2 cache.
double precision:,. On the two computers we used the GNU Compiler Collec-
tion (gcc-3.4.1), with Linux Kernel 2.6.8 and Glibc 2.3.3.
We experiment both the classic substitution algorithm per-
formed in double precisiodtrsv, the XBLAS dtrsv_x and  Figure 2 displays the timing of the three routinergv,
our corrected routinaltrsv_cor. dtrsv_x is the substi- dtrsv_x anddtrsv_cor). The dimensiom of the triangu-
tution algorithm with internal computation processed infar system vary from 5 to 2000. On Figure 3 we present
lining double-double subroutines [HID 01]. The Skeel conthe measured ratios of the actual computing times of the
dition numbers vary from0 to 10%° (these huge condi- XBLAS dtrsv_x and of our corrected routindtrsv_cor
tion numbers have a sense since here Bothndb have over the classic substituti@tirsv. The minimum, the mean
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Fig. 3. Measured ratios on the two architectures

TABLE | trix, causing suboptimal use of the cache, wheiess_x
MEASURED AND THEORETICAL TIME RATIO ON THE TWO or dtrsv_cor perform much more floating point operations
ENVIRONMENTS with each element of the matrix (see [LI 02], [OGI 05]).
Most of these operations are performed at the register level,
without incurring much memory traffic.

Intel Celeron
ratio min. mean max.| theoret.
dtrsv_cor/dtrsv | 2.17 295 9.70| 135
dtrsv_x/dtrsv 402 581 19.66 225
dtrsv_x/dtrsv_cor | 1.81 1.95 2.07| 1.67

However, Figure 3 does not allow us to give a defini-
tive conclusion about the time factors introduced either
by dtrsv_x or dtrsv_cor. The slowdown factor is about 3

Intel Pentium 4 for our corrected algorithm in the first environment (Intel
ratio min.  mean max.| theoret. Celeron), whereas it is about 8 in the second (Intel Pen-
dtrsv_cor/dtrsv | 450 8.14 9.95| 13.5 tium 4). It is partly due to the fact thaltrsv_cor does not
dtrsv_x/dtrsv 8.82 16.10 19.60 22.5 involve exactly the same memory traffic dgsv. Indeed,
dtrsv_x/dtrsv.cor | 1.87 198 2.03| 1.67 in our corrected algorithm we have to deal with the new

vector Az: at each execution of the most inner loop, one
of its element is accessed . So the time ratiaw$v_cor
and the maximum of these ratios are reported in Table $V€r dtrsv strongly depends on the characteristics of the
The last column displays the theoretical ratios, resulting€Mory hierarchy of the computer. The same remark ap-
from the number of flops involved by the most inner loog?¥ {0 dtrsv-x. But a straightforward analysis of the code
of each routine. The Fused-Multiply-and-Add operation i9f drsv-x anddtrsv_cor shows that the two routines in-
not available in our experimental environments. volve almost the same memory traffic. Thus the 'tlme ratio
of dtrsv_x over ofdtrsv_cor is almost constant, as it can be
] ] ] . seen from Figure 3 and Table I. The corresponding theoret-
First, we have to notice that the actual time factor introj.4) ratio is 1.67 and the measured value is on the average
duced either byltrsv_x or dtrsv_cor is always significantly  ¢jgse to 2. From a practical point of view, we can state that
smaller than theoretically expected. This is an astonishie proposed algorithm is about twice faster than the refer-

ing fact since the code for these functions is designed {g,ce time given by the XBLAS current implementation.
be easily portable, and no algorithmic optimizations are

performed, like data blocking, neither gitrsv_cor, nor IV. CONCLUDING REMARKS

in dtrsv_x (see [LI 02]). This interesting property seems

to be due to the fact that the classic substitution algorithi/e presented a new algorithm that solves triangular sys-
performs only one operation with each element of the maems accurately. We used only one working precision for



the floating point computations. The only assumption w#l., BiscHOF C., CorLISS G., GRIEWANK A., Eds., Com-
inA-00i ; ; i tational Differentiation: Techniques, Applications, and Tools

made was that the floating-point arithmetic available on th?.J367—374, SIAM. Philadelphia. Penn.. 1996,

computer conformed to the IEEE-754 standard. Experi-

e ; ; AN 01] LANGLOIS P., Automatic linear correction of round-
mental results exhibit that our algorithm provides correcte! errors BIT Numerical Mathematicsiol. 41, n3, p. 515539,

results as accurate as if computed by the classic algorithygos .

using ,tWi_Ce the working precision. Its low rquirement LAN 04] LANGLOIS P.,More accuracy at fixed precisipdour-
make it highly portable, and our corrected algorithm coul@hal of Computational and Applied Mathematiosml. 162, ni1,
be easily integrated into numerical libraries. p. 57-77, 2004.

[LI02] LI X. S., DEMMEL J. W., BAILEY D. H., HENRY G.,

; ; ; i ; IDA Y., ISKANDAR J., KAHAN W., KANG S. Y., KAPURA.,
The algorithm is an instantiation of the CENA correcno;@ARTlN M. C.. THOMPSONB. J.. TUNG T.. Y00 D. J.. De.

applied to the substitution algorithm. However, we avoiGjgn, implementation and testing of extended and mixed precision
the use of the automatic differentiation to compute th&8LAS ACM Transactions on Mathematical Softwavel. 28, n2,

correction terms, which was one the main time overhedd 1°2-205, 2002.

introduced by the CENA method. As a result, the corfLIN 81] LINNAINMAA S.,Software for doubled precision float-

rected algorithm is efficient. We show that it is fast, nowgrgo\ilgtl C?Tj%“?tizogiggﬂgq%%iawons on Mathematical Soft-

only in terms of flops, but also in terms of measured com- . o .
y P LIN 83] LINNAINMAA S., Error linearization as an effective

puted time. In particular, the measured slowdown factqf for experimental analysis of the numerical stability of algo-
introduced by the correction process is much smaller thaihhms BIT, vol. 23, n3, p. 346-359, 1983.

the expected one. Our experimental results show that OMigL 65] M@LLER O., Quasi Double-Precision in Floating
algorithm runs about twice faster than the correspondingpint Addition Nordisk tidskrift for informationsbehandling

XBLAS routine. Even more interesting results should b&©!- 5. n1, p. 37-50, 1965.
obtained on computers with a Fused-Multiply-and-Add opfMPF] The MPFR Library, Available atttp://www.mpfr.org.
erator. [OGI 05] OGITA T., RumP S. M., OsHI S.,Accurate Sum and

Dot Product SIAM Journal of Scientific Computin@005, (to
appear).
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