
How to Ensure a Faithful Polynomial Evaluation
with the Compensated Horner Algorithm

Philippe Langlois, Nicolas Louvet
Universit́e de Perpignan, DALI Research Team

{langlois, nicolas.louvet}@univ-perp.fr

Abstract

The compensated Horner algorithm improves the accu-
racy of polynomial evaluation in IEEE-754 floating point
arithmetic: the computed result is as accurate as if it was
computed with the classic Horner algorithm in twice the
working precision. Since the condition number still governs
the accuracy of this computation, it may return an arbitrary
number of inexact digits. We address here how to compute
a faithfully rounded result, that is one of the two floating
point neighbors of the exact evaluation. We propose ana
priori sufficient condition on the condition number to en-
sure that the compensated evaluation is faithfully rounded.
We also propose a validated and dynamic method to test at
the running time if the compensated result is actually faith-
fully rounded. Numerical experiments illustrate the behav-
ior of these two conditions and that the associated running
time over-cost is really interesting.

1 Introduction

1.1 Motivation

Horner’s rule is the classic algorithm when evaluating a
polynomialp(x). When performed in floating point arith-
metic this algorithm may suffer from (catastrophic) cancel-
lations and so yields a computed value with less exact dig-
its than what the computing precision provides. The rela-
tive accuracy of such computed valuêp(x) verifies the well
known following inequality,

|p(x)− p̂(x)|
|p(x)|

≤ cond(p, x)×O(u). (1)

In the right-hand side of this accuracy bound,u is the com-
puting precision and the condition numbercond(p, x) is a
scalar larger than1 that only depends on the entryx and onp
coefficients —its expression will be given further. This con-
dition number governs the accuracy of the computed result.

It describes the largest magnification factor of the rounding
errors both in the data (here, the entryx and the coefficients
of p) and in the algorithm (up to now, the Horner Algo-
rithm).

In this paper, we will only consider entries and polyno-
mial coefficients that are floating point values. Such cases
appear for example when evaluating elementary functions
[11] and in geometric computations [8]. Even in these
cases, the productcond(p, x) × O(u) may be arbitrarily
larger than1, i.e., when evaluating the polynomialp at the
x entry is ill-conditioned, as for example in the neighbor-
hood of a multiple root.

When the computing precisionu is not sufficient (com-
pared tocond(p, x)) to guarantee a desired accuracy in
p̂(x), several solutions implementing a computation with
more bits exist. Priest-like “double-double” algorithms
are well-known and well-used solutions to simulate twice
the IEEE-754 double precision [13, 9]. The compensated
Horner algorithm introduced in [3] is a fast alternative to the
Horner algorithm implemented with “double-double” arith-
metic. By fast we mean that this compensated algorithm
runs at least twice as fast as the “double-double” counterpart
with the same output accuracy. In both cases the accuracy
of computedp̂(x) is improved and now verifies

|p(x)− p̂(x)|
|p(x)|

≤ u + cond(p, x)×O(u2). (2)

Comparing to Relation (1), this relation means that the com-
puted value is now as accurate as the result of the Horner
algorithm performed in twice the working precision with a
final rounding back to this working precision —the same
behavior is mentioned in [12] for compensated summation
and dot product. As for Relation (1) the accuracy of the
compensated result still depends on the condition number
and may be arbitrarily bad for ill-conditioned polynomial
evaluations. Nevertheless, this bound tells us that the com-
pensated Horner algorithm may yield a full precision ac-
curacy for not too ill-conditioned polynomials, that is for
p andx such that the second termcond(p, x) × O(u2) is
small compared to the working precisionu.

This remark motivates this paper where we consider how
to compute afaithfully rounded polynomial evaluationwith
the compensated Horner algorithm. By faithful rounding
we mean that the computed resultp̂(x) is one of the two
floating point neighbors of the exact resultp(x). Faith-
ful rounding is known to be an interesting property since
for example it guarantees the correct sign determination of
arithmetic expressions,e.g., for geometric predicates.

We first provide ana priori sufficient criterion we sum-
marize as follows. The compensated Horner algorithm pro-
vides a faithful rounding of the exact polynomial evalua-
tion as long as its condition number is less than the upper
bound we identify in Theorem 7; this bound only depends
on the degree of the polynomial and on the working preci-
sion u. With Theorem 9, we also propose a dynamic test
to answer to the following question at the running time: “is
the computed compensated result a faithful rounding of the
exact evaluation?”. If this test is satisfied then the answer
is “yes”. Otherwise, the computed result may or may not
be faithfully rounded. Moreover, this test is validated since
it takes into account the finite precision of its computation
performed in IEEE-754 floating point arithmetic. Numer-
ical experiments show that the dynamic bound is sharper
than thea priori condition and that the corresponding over-
cost is reasonable.

The paper is organized as follows. In the sequel of this
section, we briefly recall the standard model of floating
point arithmetic and we introduce our notations for error
analysis. In Section 2, we first recall some well known facts
about the Horner algorithm and we review the error-free
transformations of the elementary floating point operations
+,− and×. Next we derive an error-free transformation for
the Horner algorithm that allows us to compute the compen-
sated evaluation. We prove a theoretical error bound for the
accuracy obtained thanks to the compensated Horner algo-
rithm in Section 3, and we describe thea priori criterion
we propose to ensure a faithful rounding. Section 4 is de-
voted to the description of the dynamic counterpart of thisa
priori criterion. Finally in Section 5 we present numerical
experiments to exhibit both the numerical behavior and the
practical efficiency of our algorithms.

1.2 Notations

Throughout the paper, we assume a floating point arith-
metic adhering to the IEEE-754 floating point standard [5].
We constraint all the computations to be performed in one
working precision, with the “round to the nearest” rounding
mode. We also assume that no overflow nor underflow oc-
curs during the computations. Next notations are standard
(see [4, chap. 2] for example).F is the set of all normal-
ized floating point numbers andu denotes the unit roundoff,
that is half the spacing between1 and the next representable

floating point value. For IEEE-754 double precision with
rounding to the nearest, we haveu = 2−53 ≈ 1.11 · 10−16.
We define the floating point predecessor and successor of
a real numberr aspred(r) = max{f ∈ F/f < r} and
succ(r) = min{f ∈ F/r < f} respectively. A floating
point numberf is defined to be a faithful rounding of a real
numberr if pred(f) < r < succ(f).

The symbols⊕, 	, ⊗ and� represent respectively the
floating point addition, subtraction, multiplication and divi-
sion. For more complicated arithmetic expressions,fl(·) de-
notes the result of a floating point computation where every
operation inside the parenthesis is performed in the working
precision. So we have for example,a⊕ b = fl(a + b).

When no underflow nor overflow occurs, the following
standard model describes the accuracy of every considered
floating point computation. For two floating point numbers
a andb and for◦ in {+,−,×, /}, the floating point evalua-
tion fl(a ◦ b) of a ◦ b is such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2),
with |ε1|, |ε2| ≤ u. (3)

To keep track of the(1+ε) factors in next error analysis,
we use the classic(1 + θk) andγk notations [4, chap. 3].
For any positive integerk, θk denotes a quantity bounded
according to|θk| ≤ γk := ku/(1− ku). When using these
notations, we always implicitly assumeku < 1. In further
error analysis, we essentially use the following relations,

(1 + θk)(1 + θj) ≤ (1 + θk+j), ku ≤ γk, γk ≤ γk+1.

Next bounds are computable floating point values that will
be useful to derive dynamic validation in Section 4. We
denotesfl(γk) = (ku) � (1 	 ku) by γ̂k. We know that
fl(ku) = ku ∈ F, andku < 1 impliesfl(1 − ku) = 1 −
ku ∈ F. So γ̂k only suffers from a rounding error in the
division and

γk ≤ (1 + u) γ̂k. (4)

The next bound comes from the direct application of Rela-
tion (3). Forx ∈ F andn ∈ N,

(1 + u)n|x| ≤ fl
(

|x|
1− (n + 1)u

)
. (5)

2 From Horner to compensated Horner algo-
rithm

The compensated Horner algorithm improves the classic
Horner iteration computing a correcting term to compensate
the rounding errors the classic Horner iteration generates in
floating point arithmetic. Main results about compensated
Horner algorithm are summarized in this section; see [3] for
a complete description.

2.1 Polynomial evaluation and Horner al-
gorithm

The classic condition number of the evaluation ofp(x) =∑n
i=0 aix

i at a given entryx is [2]

cond(p, x) =
∑n

i=0 |ai||x|i

|
∑n

i=0 aixi|
:=

p̃(x)
|p(x)|

. (6)

For any floating point valuex we denote byHorner (p, x)
the result of the floating point evaluation of the polynomial
p atx using next classic Horner algorithm.

Algorithm 1 Horner algorithm

functionr0 = Horner (p, x)
rn = an

for i = n− 1 : −1 : 0
ri = ri+1 ⊗ x⊕ ai

end

The accuracy of Algorithm 1 verifies introductory in-
equality (1) withO(u) = γ2n and previous condition num-
ber (6). Clearly, the condition numbercond(p, x) can be
arbitrarily large. In particular, whencond(p, x) > 1/γ2n,
we cannot guarantee that the computed resultHorner (p, x)
contains any correct digit.

We further prove that the error generated by the Horner
algorithm is exactly the sum of two polynomials with float-
ing point coefficients. The next lemma gives bounds of the
generated error when evaluating this sum of polynomials
applying the Horner algorithm.

Lemma 1. Let p and q be two polynomials with float-
ing point coefficients, such thatp(x) =

∑n
i=0 aix

i and
q(x) =

∑n
i=0 bix

i. We consider the floating point evalu-
ation of(p+q)(x) computed withHorner (p⊕ q, x). Then,
in case no underflow occurs, the computed result satisfies
the following forward error bound,

|(p+q)(x)−Horner (p⊕ q, x) | ≤ γ2n+1(p̃ + q)(x). (7)

Moreover,

(|p + q|)(|x|) ≤ (1 + u)2n+1Horner (|p⊕ q|, |x|) . (8)

Proof. The proof of the error bound (7) is easily adapted
from the one of the Horner algorithm (see [4, p.95] for ex-
ample). To prove (8) we consider Algorithm 1, where

rn = |an ⊕ bn| and ri = ri+1 ⊗ x⊕ |ai ⊕ bi|,

for i = n− 1, . . . , 0. Then, using the standard model (3) it
is easily proved by induction that, fori = 0, . . . , n,

i∑
j=0

|an−i+j + bn−i+j ||xj | ≤ (1 + u)2i+1|rn−i|, (9)

which in turn proves (8) fori = n.

2.2 EFT for the elementary operations

Now we review well known results concerning error free
transformation (EFT) of the elementary floating point oper-
ations+,− and×.

Let ◦ be an operator in{+,−,×}, a andb be two float-
ing point numbers, and̂x = fl(a ◦ b). Then their exist a
floating point valuey such thata ◦ b = x̂ + y. The dif-
ferencey between the exact result and the computed re-
sult is the rounding error generated by the computation of
x̂. Let us emphasize that this relation between four float-
ing point values relies on real operators and exact equality,
i.e., not on approximate floating point counterparts. Ogita
et al. [12] name such a transformation an error free trans-
formation (EFT).

For the EFT of the addition we use the well known
TwoSum algorithm by Knuth [6, p.236] that requires 6
flop (floating point operations).TwoProd by Veltkamp and
Dekker [1] performs the EFT of the product and requires 17
flop. The next theorem exhibits the previously announced
properties ofTwoSum andTwoProd.

Theorem 2 ([12]). Let a, b in F and x, y ∈ F such that
[x, y] = TwoSum(a, b). Then, ever in the presence of un-
derflow,

a+b = x+y, x = a⊕b, |y| ≤ u|x|, |y| ≤ u|a+b|.

Leta, b ∈ F andx, y ∈ F such that[x, y] = TwoProd(a, b).
Then, if no underflow occurs,

a×b = x+y, x = a⊗b, |y| ≤ u|x|, |y| ≤ u|a×b|.

We notice that algorithmsTwoSum andTwoProd only
require well optimizable floating point operations. They
do not use branches, nor access to the mantissa that can
be time-consuming. We just mention that a significant im-
provement ofTwoProd is defined when a Fused-Multiply-
and-Add operator is available [10].

2.3 An EFT for the Horner algorithm

As previously mentioned, next EFT for the polynomial
evaluation with the Horner algorithm exhibits the exact
rounding error generated by the Horner algorithm together
with an algorithm to compute it.

Theorem 3 ([3]). Let p(x) =
∑n

i=0 aix
i be a polyno-

mial of degreen with floating point coefficients, and let
x be a floating point value. Then Algorithm 2 computes
both Horner (p, x) and two polynomialspπ and pσ of
degreen − 1 with floating point coefficients, such that
[Horner (p, x) , pπ, pσ] = EFTHorner (p, x). If no under-
flow occurs,

p(x) = Horner (p, x) + (pπ + pσ)(x). (10)

Algorithm 2 EFT for the Horner algorithm

function[s0, pπ, pσ] = EFTHorner(p, x)
sn = an

for i = n− 1 : −1 : 0
[pi, πi] = TwoProd (si+1, x)
[si, σi] = TwoSum (pi, ai)
Let πi be the coefficient of degreei in pπ

Let σi be the coefficient of degreei in pσ

end

Moreover,
(˜pπ + pσ)(x) ≤ γ2n p̃(x). (11)

Relation (10) means that algorithmEFTHorner is an
EFT for polynomial evaluation with the Horner algorithm.

Proof of Theorem 3.Since TwoProd and TwoSum are
EFT from Theorem 2 it follows thatsi+1x = pi + πi and
pi +ai = si +σi. Thus we havesi = si+1x+ai−πi−σi,
for i = 0, . . . , n− 1. Sincesn = an, at the end of the loop
we have

s0 =
n∑

i=0

aix
i −

n−1∑
i=0

πix
i −

n−1∑
i=0

σix
i,

which proves (10).
Now we prove relation (11) According to the error anal-

ysis of the Horner algorithm (see [4, p.95]), we can write

Horner (p, x) = (1 + θ2n)anxn +
n−1∑
i=0

(1 + θ2i+1)aix
i,

where everyθk satisfies|θk| ≤ γk. Then using (10) we have

(pπ + pσ)(x) = −θ2nanxn −
n−1∑
i=0

θ2i+1aix
i.

It yields

(˜pπ + pσ)(x) ≤ γ2n|an||x|n+
n−1∑
i=0

γ2i+1|ai||x|i ≤ γ2n p̃(x),

hence(˜pπ + pσ)(x) ≤ γ2n p̃(x).

2.4 Compensated Horner algorithm

From Theorem 3 the forward error in the floating point
evaluation ofp(x) with the Horner algorithm is

c = p(x)− Horner (p, x) = (pπ + pσ)(x),

where the two polynomialspπ andpσ are exactly identified
by EFTHorner (Algorithm 2) —this latter also computes

Horner (p, x). Therefore, the key of the compensated algo-
rithm is to compute, in the working precision, first an ap-
proximate ĉ of the final errorc and then a corrected result

r = Horner (p, x)⊕ ĉ.

These two computations lead to next compensated Horner
algorithmCompHorner (Algorithm 3).

Algorithm 3 Compensated Horner algorithm

function r = CompHorner (p, x)
[r̂, pπ, pσ] = EFTHorner (p, x)
ĉ = Horner (pπ ⊕ pσ, x)
r = r̂ ⊕ ĉ

We say that̂c is a correcting term forHorner (p, x). The
corrected result̄r is expected to be more accurate than the
first resultHorner (p, x) as proved in next section.

3 A priori condition for faithful rounding

We start proving the accuracy of the compensated
Horner algorithm as the first step towards ana priori
sufficient condition for a faithful rounding.

3.1 Accuracy of CompHorner

Next result proves that the result of a polynomial eval-
uation computed with the compensated Horner algorithm
(Algorithm 3) is as accurate as if computed by the clas-
sic Horner algorithm using twice the working precision and
then rounded to the working precision.

Theorem 4 ([3]). Consider a polynomialp of degreen with
floating point coefficients, andx a floating point value. If no
underflow occurs,

|CompHorner (p, x)− p(x)| ≤ u|p(x)|+ γ2
2n p̃(x). (12)

Proof. The absolute forward error generated by Algo-
rithm 3 is

| r − p(x)| = |(r̂ ⊕ ĉ)− p(x)|
= |(1 + ε)(r̂ + ĉ)− p(x)| ,

with |ε| ≤ u. Let c = (pπ + pσ)(x). From Theorem 3 we
have r̂ = Horner (p, x) = p(x)− c, thus

| r − p(x)| = |(1 + ε) (p(x)− c + ĉ)− p(x)|
≤ u|p(x)|+ (1 + u)| ĉ− c|.

Since ĉ = Horner (pπ ⊕ pσ, x) with pπ andpσ two poly-
nomials of degreen − 1, Lemma 1 yields| ĉ − c| ≤
γ2n−1(˜pπ + pσ)(x). Then using (11) we have| ĉ − c| ≤
γ2n−1γ2n p̃(x). Since(1+u)γ2n−1 ≤ γ2n, we finally write
the expected error bound (12).

Remark 1. For later use, we notice that| ĉ − c| ≤
γ2n−1γ2n p̃(x) implies

| ĉ− c| ≤ γ2
2n p̃(x). (13)

It is interesting to interpret the previous theorem in terms
of the condition number of the polynomial evaluation ofp at
x. Combining the error bound (12) with the condition num-
ber (6) of polynomial evaluation gives the precise writing of
our introductory inequality (2),

|CompHorner (p, x)− p(x)|
|p(x)|

≤ u + γ2
2n cond(p, x).

(14)
In other words, the bound for the relative error of the com-
puted result is essentiallyγ2

2n times the condition number
of the polynomial evaluation, plus the inevitable summand
u for rounding the result to the working precision. In par-
ticular, if cond(p, x) < u/γ2

2n, then the relative accuracy
of the result is bounded by a constant of the orderu. This
means that the compensated Horner algorithm computes an
evaluation accurate to the last few bits as long as the con-
dition number is smaller thanu/γ2

2n ≈ 1/4n2u. Besides
that, relation (14) tells us that the computed result is as ac-
curate as if computed by the classic Horner algorithm with
twice the working precision, and then rounded to the work-
ing precision.

3.2 A priori condition for faithful rounding

Now we propose a sufficient condition oncond(p, x) to
ensure that the corrected resultr computed with the com-
pensated Horner algorithm is a faithful rounding of the ex-
act resultp(x).We use the following lemma from [14].

Lemma 5 ([14]). Let r, δ be two real numbers andr =
fl(r). We assume here thatr is a normalized floating point
number. If|δ| < u

2 | r| then r is a faithful rounding ofr + δ.

From Lemma 5, we derive a useful criterion to ensure
that the compensated result provided byCompHorner is
faithfully rounded to the working precision.

Lemma 6. Let p be a polynomial of degreen with float-
ing point coefficients, andx be a floating point value.
We consider the approximater of p(x) computed with
CompHorner (p, x), and we assume that no underflow oc-
curs during the computation. Letc denotesc = (pπ +
pσ)(x). If | ĉ − c| < u

2 | r|, then r is a faithful rounding
of p(x).

Proof. We assume that| ĉ− c| < u
2 | r|. From the notations

of Algorithm 3, we recall thatfl(r̂ + ĉ) = r. Then from
Lemma 5 it follows thatr is a faithful rounding ofr̂ + ĉ +
c − ĉ = r̂ + c. Since[r̂, pπ, pσ] = EFTHorner (p, x),
Theorem 3 yieldsp(x) = r̂ + c. Thereforer is a faithful
rounding ofp(x).

The criterion proposed in Lemma 6 concerns the accu-
racy of the correcting term̂c. Nevertheless Relation (13)
pointed after the proof of Theorem 4 says that the abso-
lute error | ĉ − c| is bounded byγ2

2n p̃(x). This provides
us a more useful criterion, since it relies on the condition
numbercond(p, x), to ensure thatCompHorner computes
a faithfully rounded result.

Theorem 7. Letp be a polynomial of degreen with floating
point coefficients, andx a floating point value. If

cond(p, x) <
1− u
2 + u

uγ2n
−2, (15)

then CompHorner (p, x) computes a faithful rounding of
the exactp(x).

Proof. We assume that (15) is satisfied and we use the
same notations as in Lemma 6. First we notice thatr
and p(x) are of the same sign. Indeed, from (12) it fol-
lows that| r/p(x)− 1| ≤ u + γ2

2n cond(p, x), and there-
fore r/p(x) ≥ 1 − u − γ2

2n cond(p, x). But (15) implies
that1− u− γ2

2n cond(p, x) > 1− 3u/(2 + u) > 0, hence
r/p(x) > 0. Sincer andp(x) have the same sign, it is easy
to see that

(1− u)|p(x)| − γ2
2n p̃(x) ≤ | r|. (16)

Indeed, ifp(x) > 0 then (12) impliesp(x) − u|p(x)| −
γ2
2n p̃(x) ≤ r = | r|. If p(x) < 0, from (12) it follows that

r ≤ p(x) + u|p(x)|+ γ2
2n p̃(x), hence−p(x)− u|p(x)| −

γ2
2n p̃(x) ≤ − r = | r|.

Next, a small computation proves that

cond(p, x) <
1− u
2 + u

uγ2n
−2

if and only if

γ2
2n p̃(x) <

u
2

[
(1− u)|p(x)| − γ2

2n p̃(x)
]
.

Finally, from (13) and (16) it follows

| ĉ−c| ≤ γ2
2n p̃(x) <

u
2

[
(1− u)|p(x)| − γ2

2n p̃(x)
]
≤ u

2
| r|.

From Lemma 6 we deduce thatr is faithfully rounded.

Numerical values for the upper bound (15) to ensure
faithful rounding with the compensated Horner algorithm
are presented in Table 1 for degrees varying from 10 to
500. We assume that the working precision is the IEEE-
754 double precision. For example, when evaluating a
polynomial of degree100, we know from Table 1 that
CompHorner (p, x) is a faithful rounding ofp(x) as long
ascond(p, x) < 1.13 · 1011.

Table 1. A priori bounds on the condition num-
ber w.r.t. polynomial degree n.

n 10 100 200
1−u
2−uuγ2n

−2 1.13 · 1013 1.13 · 1011 2.82 · 1010

4 Dynamic and validated error bounds for
faithful rounding and accuracy

The results presented in Section 3 are perfectly suited
for theoretical purpose, for instance when we cana priori
bound the condition number of the evaluation. However,
neither the error bound in Theorem 4, nor the criterion pro-
posed in Theorem 7 can be easily checked using only float-
ing point arithmetic. Here we provide dynamic counterparts
of Theorem 4 and Proposition 7, that can be evaluated us-
ing floating point arithmetic in the “round to the nearest”
rounding mode.

Lemma 8. Consider a polynomialp of degreen with float-
ing point coefficients, andx a floating point value. We use
the notations of Algorithm 3, and we denote(pπ + pσ)(x)
by c. Then

|c− ĉ| ≤ fl
(

γ̂2n−1Horner (|pπ ⊕ pσ|, |x|)
1− 2(n + 1)u

)
:= α̂. (17)

Proof. Let us denoteHorner (|pπ ⊕ pσ|, |x|) by b̂. Since
c = (pπ + pσ)(x) and ĉ = Horner (pπ ⊕ pσ, x) where
pπ andpσ are two polynomials of degreen − 1, Lemma 1
yields

|c− ĉ| ≤ γ2n−1(˜pπ + pσ)(x) ≤ (1 + u)2n−1γ2n−1 b̂.

From (4) and (3) it follows that

|c− ĉ| ≤ (1 + u)2n γ̂2n−1 b̂ ≤ (1 + u)2n+1 fl(γ̂2n−1 b̂).

Finally we use (5) to obtain the error bound (17).

Remark2. Lemma 8 allows us to compute a validated error
bound for the computed correcting term̂c. We apply this
result twice to derive next Theorem 9. First with Lemma 6 it
yields the expected dynamic condition for faithful rounding.
Then from the EFT for the Horner algorithm (Theorem 3)
we know thatp(x) = r̂ + c. Sincer = r̂ ⊕ ĉ, we deduce
| r−p(x)| = |(r̂⊕ ĉ)− (r̂ + ĉ)+(ĉ− c)|. Hence we have

| r − p(x)| ≤ |(r̂ ⊕ ĉ)− (r̂ + ĉ)|+ |(ĉ− c)|. (18)

The first term|(r̂ ⊕ ĉ)− (r̂ + ĉ)| in the previous inequal-
ity is basically the absolute rounding error that occurs when
computingr = r̂⊕ ĉ. Using only the bound (3) of the stan-
dard model of floating point arithmetic, it could be bounded

by u| r|. But here we benefit again from error free transfor-
mations using algorithmTwoSum to compute exactly the
actual rounding error, which leads to a sharper error bound.
Next Relation (19) improves the dynamic bound presented
in [3].

Theorem 9. Consider a polynomialp of degreen with
floating point coefficients, andx a floating point value. Let
r be the computed value,r = CompHorner (p, x) (Al-
gorithm 3) and letα̂ be the error bound defined by Rela-
tion (17).

• If α̂ < u
2 | r|, then r is a faithful rounding ofp(x) .

• Let e be the floating point value such thatr + e =
r̂ + ĉ, i.e., [r, e] = TwoSum (r̂, ĉ), where r̂ and ĉ
are defined by Algorithm 3. The absolute error of the
computed resultr = CompHorner (p, x) is bounded
as follows,

| r − p(x)| ≤ fl
(

α̂ + |e|
1− 2u

)
:= β̂. (19)

Proof. The first proposition follows directly from
Lemma 6.

By hypothesisr = r̂ + ĉ − e, and from Theorem 3 we
havep(x) = r̂ + c, thus

| r − p(x)| = | ĉ− c− e| ≤ | ĉ− c|+ |e| ≤ α̂ + |e|.

From (3) and (5) it follows that

| r − p(x)| ≤ (1 + u) fl(α̂ + |e|) ≤ fl
(

α̂ + |e|
1− 2u

)
;

which proves the second proposition.

From Theorem 9 we deduce the expected algorithm. It
computes the compensated resultr together with the vali-
dated error bound̂β. Moreover, the boolean valueisfaithful
is set to true if and only if the result is proved to be faith-
fully rounded — if isfaithful is set to false, thenr may or
may not be a faithful rounding ofp(x).

When the check for faithful rounding fails (the boolean
isfaithful is false),r may or may not be a faithful rounding
of p(x), but the error in ther is still bounded byβ̂. Never-
theless, the computation of the error boundβ̂ can be safely
omitted in the previous algorithmCompHornerIsFaithful

sinceisfaithful does not depend on̂β.

5 Experimental results

We consider polynomials with floating point coefficients
and floating point entriesx. We use Matlab codes forCom-
pHorner (Algorithm 3) andCompHornerIsFaithful (Al-
gorithm 4) within the accuracy tests we propose hereafter.

Algorithm 4 Compensated Horner algorithm with check of
the faithful rounding

function[r, β̂, isfaithful] = CompHornerIsFaithful (p, x)
[r̂, pπ, pσ] = EFTHorner (p, x)
ĉ = Horner (pπ ⊕ pσ, x)

b̂ = Horner (|pπ ⊕ pσ|, |x|)
α̂ = (γ̂2n−1 ⊗ b̂)� (1	 2(n + 1)⊗ u)
[r, e] = TwoSum (r̂, ĉ)

β̂ = (α̂⊕ |e|)� (1− 2⊗ u)
isfaithful = (α̂ < u

2 | r|)

CompHorner requires21n + O(1) flop and thatCom-
pHornerIsFaithful requires26n + O(1) flop. For testing
the time performances, the previous algorithms are coded
in C language and several test platforms are described in
next Table 2.

5.1 Accuracy tests

We focus on both thea priori and dynamic bounds with
two sets of tests. We recall that two cases may occur when
the dynamic test for faithful rounding in Algorithm 4 is per-
formed.

1. If the dynamic test is satisfied, this proves that the com-
pensated result is a faithful rounding of the exactp(x).
Corresponding plots are reported with a square (�) in
Figure 1 and Figure 2.

2. If the dynamic test fails then the compensated result
may or may not be faithfully rounded. We distinguish
two sub-cases where we compare the compensated re-
sults to reference ones obtained from high-precision
computation.

(a) If the compensated result is actually faithfully
rounded, the evaluation value is a filled circle (•).

(b) Otherwise the compensated result is not a faithful
rounding of the exactp(x) and we plot a cross (×).

We consider huge condition numbers in the following tests.
This have a sense here since the entries and the coefficients
of every tested polynomial are floating point numbers.

5.1.1 Faithful rounding with compensated Horner

In the first experiment, we evaluate the expanded form of
polynomialspn(x) = (1− x)n, for degreen = 6 and8, in
the neighborhood of the multiple rootx = 1. These eval-
uations are extremely ill-conditioned sincecond(pn, x) =

 1e+25

 1e+20

 1e+15

 1e+10
 0.97 0.98 0.99 1 1.01 1.02 1.03

co
nd

(p
6,

 x
)

argument x

 5e-13

 4e-13

 3e-13

 2e-13

 1e-13

 0
 0.97 0.98 0.99 1 1.01 1.02 1.03

p 6
(x

)

Evaluation of p6(x) = (1-x)6 in expanded form

 1e+25

 1e+20

 1e+15

 1e+10
 0.97 0.98 0.99 1 1.01 1.02 1.03

co
nd

(p
8,

 x
)

argument x

 5e-13

 4e-13

 3e-13

 2e-13

 1e-13

 0
 0.97 0.98 0.99 1 1.01 1.02 1.03

p 8
(x

)

Evaluation of p8(x) = (1-x)8 in expanded form

Figure 1. Accuracy tests for (1 − x)n near
x = 1 with CompHornerIsFaithful. See Subsec-
tion 5.1 for the definition of displayed plots.

|(1+|x|)/(1−x)|n. For a given degree, this condition num-
ber is arbitrarily large as the entryx tends closer to the root
1. These condition numbers are plotted in the lower frames
of Figure 1 whilex varies around the root. The well known
relation between the lost of accuracy and the nearness and
the multiplicity of the root,i.e., the increasing of the con-
dition number, is clearly illustrated. Evaluation is no more
faithfully rounded for entries too close to the root (evalua-
tions for entries out of the range of thex-axis on Figure 1 are
faithfully rounded). Alas the dynamic bound fails to iden-
tify every faithful result and so is pessimistic, even more
and more pessimistic as the condition number increases.

For the next experiment, we first designed a generator of
arbitrarily ill-conditioned polynomial evaluations. It relies
on definition (6) of the condition number. Given a degree
n, a floating point entryx and a targeted valueC for the
condition number, it generates a polynomialp with floating

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Accuracy of polynomial evaluation with the compensated Horner scheme [n=50]

u

1/u 1/u2

u + γ2n
2 cond

(1-u)/(2+u)uγ2n
-2

Figure 2. Accuracy of CompHornerIsFaithful
w.r.t. to the condition number. Leftmost verti-
cal line is the a priori sufficient condition (15)
and broken line is the a priori bound (14).

point coefficients such thatcond(p, x) has the same order
of magnitude asC. The principle of the generator is the fol-
lowing: bn/2c floating point coefficients ofp are randomly
generated such that̃p(x) =

∑
|ai||x|i ≈ C, and then the

remaining coefficients are generated ensuring|p(x)| ≈ 1
thanks to high accuracy computation. Therefore we obtain
polynomialsp such thatcond(p, x) = p̃(x)/|p(x)| ≈ C,
for arbitrary values ofC.

In this test we generate polynomials of degree50 whose
condition numbers vary from about102 to 1035. The results
of the tests performed withCompHornerIsFaithful (Algo-
rithm 4) are reported on Figure 2. On this figure the hor-
izontal axis does not represent anymore thex entry range
but the condition number Relation (6).

We observe that the compensated algorithm exhibits the
expected behavior. The relative error in the compensated re-
sult is smaller than the working precisionu —the horizontal
line— as long as the condition number is smaller than1/u
—the second vertical line. Then, for condition numbers be-
tween1/u and1/u2, this relative error degrades to no accu-
racy at all. As usual, thea priori error bound (14) appears
to be pessimistic by many orders of magnitude —compare
the observed behavior with the comments we provide just
after Relation (14)

Thea priori sufficient condition (15) for faithful round-
ing with respect to the condition number is also represented
on Figure 2 —the leftmost vertical line. As expected, ev-
ery polynomial evaluation with a condition number smaller
than thisa priori bound (15) is faithfully evaluated with
Algorithm 4. We also see that the dynamic test for faith-
ful rounding (Proposition 9) succeeds for condition num-
bers larger than thea priori bound (15) —let us recall
that all the compensated evaluations proved to be faith-
fully rounded thanks to the dynamic test are reported with
a square. Finally we notice that the compensated Horner

 1e-34

 1e-33

 1e-32

 1e-31

 1e-30

 1e-29

 1e-28

 1e-27

 1e-26

 1e-25

 0.994 0.996 0.998 1 1.002 1.004 1.006

ab
so

lu
te

 fo
rw

ar
d

er
ro

r

argument x

Accuracy of the absolute error bounds for CompHorner

A priori error bound
Dynamic error bound

Actual forward error

Figure 3. Significance of the error bounds.

algorithm produces accurate evaluations for condition num-
bers up to about1/u —evaluations reported with a square
or a filled circle.

5.1.2 Significance of the dynamic error bound

We illustrate the significance of the dynamic error
bound (19), compared to thea priori absolute error
bound (12) and to the actual forward error. We evaluate
the expanded form ofp(x) = (1 − x)5 for 400 points
nearx = 1. For each value of the entryx, we compute
CompHorner (p, x) (Algorithm 3), the associated dynamic
error bound (19) and the actual forward error. The results
are reported on Figure 3.

As already noticed, the closer the argument is to the root
1 (i.e., the more the condition number increases), the more
pessimistic becomes thea priori error bound. Our dynamic
error bound is more significant than thea priori error bound
as it takes into account the rounding errors that occur during
the computation.

5.2 Time performances

All experiments are performed using IEEE-754 double
precision. Since the double-doubles [9] are usually con-
sidered as the most efficient portable library to double the
IEEE-754 double precision, we consider it as a reference
in the following comparisons. For our purpose, it suffices
to know that a double-double numbera is the pair(ah, al)
of IEEE-754 floating point numbers witha = ah + al and
|al| ≤ u|ah|. This property implies a renormalisation step
after every arithmetic operation with double-double values.
We denote byDDHorner our implementation of the Horner
algorithm with the double-double format, derived from the
implementation proposed in [9].

We implement the three algorithmsCompHorner,
CompHornerIsFaithful and DDHorner in a C code to
measure their overhead compared to theHorner algorithm.

Table 2. Measured time performances.

CompHorner
Horner

CHIsFaithful
Horner

DDHorner
Horner

P4 gcc 3.3.5 3.77 5.52 10.00

icc 9.1 3.06 5.31 8.88

AMD64 gcc 4.0.1 3.89 4.43 10.48

IA’64 icc 3.4.6 3.64 4.59 5.50

icc 9.1 1.87 2.30 8.78

∼ 2− 4 ∼ 4− 6 ∼ 5− 10

We program these tests straightforwardly with no other op-
timization than the ones performed by the compiler. All
timings are done with the cache warmed to minimize the
memory traffic over-cost.

We test the running times of these algorithms for dif-
ferent architectures with different compilers as described
in Table 2. Our measures are performed with polynomi-
als whose degree vary from 5 to 200 by step of 5. For each
algorithm, we measure the ratio of its computing time over
the computing time of the classic Horner algorithm; we dis-
play the average time ratio over all test cases in Table 2.

The results presented in Table 2 show that the slowdown
factor introduced byCompHorner compared to the classic
Horner roughly varies between 2 and 4. The same slow-
down factor varies between 4 and 6 forCompHornerIs-
Faithful and between 5 and 10 forDDHorner. We can see
that CompHornerIsFaithful runs at most 2 times slower
thanCompHorner: the over-cost due to the dynamic test
for faithful rounding is therefore quite reasonable. Anyway
CompHorner andCompHornerIsFaithful run both signif-
icantly faster thanDDHorner.

We provide time ratios for IA’64 architecture (Itanium
2). Tested algorithms take benefit from IA’64 instructions,
e.g., fma, but are not described here —see [7] for details.

6 Conclusion

Compensated Horner algorithm yields more accurate
polynomial evaluation than the classic Horner iteration. Its
accuracy is similar to a Horner iteration performed in a
doubled working precision. Hence compensated Horner
may perform a faithful polynomial evaluation with IEEE-
754 floating point arithmetic in the “round to the nearest”
rounding mode. Ana priori sufficient condition with re-
spect to the condition number that ensures such faithfulness
has been defined thanks to the error free transformations.

These error free transformations also allow us to derive
a dynamic sufficient condition that is more significant to
check for faithful rounding withCompHorner.

It is interesting to remark here that the significance of this
dynamic bound can be improved easily. Whereas bounding

the error in the computation of the (polynomial) correcting
term in Relation (17), a good approximate of the actual er-
ror could be computed (applying againCompHorner to the
correcting term). Of course such extra computation will in-
troduce more running time while such overhead is not al-
ways useful. So it suffices to run this extra (but costly)
checking only if the previous dynamic one fails —a simi-
lar strategy as in dynamic filters for geometric algorithms.

Compared to the classic Horner algorithm, experimental
results exhibit reasonable over-costs for accurate polyno-
mial evaluation (between 2 and 4) and even for this com-
putation with a dynamic checking for faithfulness (between
4 and 6). Let us finally remark than such computation that
provides as accuracy as if the working precision is doubled
and a faithfulness checking costs no more running time than
the “double-double” counterpart without any check.

Future work will be to consider subnormal results and
also an adaptive algorithm that ensure faithful rounding for
polynomials with an arbitrary condition number.

References

[1] T. J. Dekker. A floating-point technique for extending the
available precision.Numer. Math., 18:224–242, 1971.

[2] J. W. Demmel.Applied Numerical Linear Algebra. SIAM,
1997.

[3] S. Graillat, P. Langlois, and N. Louvet. Compensated Horner
scheme. Technical report, Univ. of Perpignan, France, 2005.

[4] N. J. Higham. Accuracy and Stability of Numerical Algo-
rithms. SIAM, second edition, 2002.

[5] IEEE Standard for binary floating-point arithmetic,
ANSI/IEEE Standard 754-1985. 1985.

[6] D. E. Knuth. The Art of Computer Programming: Seminu-
merical Algorithms. Addison-Wesley, third edition, 1998.

[7] P. Langlois and N. Louvet. Operator dependant compensated
algorithms. InProceedings of the 12th GAMM - IMACS -
SCAN, Duisburg, Germany, 2007.

[8] C. Li, S. Pion, and C.-K. Yap. Recent progress in exact ge-
ometric computation.Journal of Logic and Algebraic Pro-
gramming, 64(1):85–111, 2005.

[9] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida,
J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin,
B. J. Thompson, T. Tung, and D. J. Yoo. Design, implemen-
tation and testing of extended and mixed precision BLAS.
ACM Trans. Math. Software, 28(2):152–205, 2002.

[10] P. Markstein. IA-64 and elementary functions: speed and
precision. Prentice-Hall, 2000.

[11] J.-M. Muller. Elementary functions: algorithms and imple-
mentation. Birkhäuser, second edition, 2006.

[12] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot
product.SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[13] D. M. Priest. Algorithms for arbitrary precision floating
point arithmetic. InProceedings of IEEE ARITH-10, pages
132–144, 1991.

[14] S. M. Rump, T. Ogita, and S. Oishi. Accurate summation.
Technical report, T.U. Hamburg, Germany, 2005.

