
Compensated algorithms
in floating point arithmetic:

accuracy, validation, performances.

Nicolas Louvet

Directeur de thèse:

Philippe Langlois

Université de Perpignan Via Domitia

Laboratoire ELIAUS

Équipe DALI

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 1 / 45

Introduction

Sources of errors when computing the solution of a scientific problem in floating

point arithmetic:

mathematical model,

truncation errors,

data uncertainties,

rounding errors.

Rounding errors may totally corrupt a floating point computation:

accumulation of billions of floating point operations,

intrinsic difficulty to solve the problem accurately.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 2 / 45

Introduction

Sources of errors when computing the solution of a scientific problem in floating

point arithmetic:

mathematical model,

truncation errors,

data uncertainties,

rounding errors.

Rounding errors may totally corrupt a floating point computation:

accumulation of billions of floating point operations,

intrinsic difficulty to solve the problem accurately.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 2 / 45

Example: polynomial evaluation

Evaluation of univariate polynomials with floating point coefficients:

the evaluation of a polynomial suffers from rounding errors

example : in the neighborhood of a multiple root

-1.5e-10

-1e-10

-5e-11

 0

 5e-11

 1e-10

 1.5e-10

 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

Exact value

p(x) = (x − 2)9 in expanded form

near the multiple root x = 2

evaluated with the Horner algorithm

in IEEE double precision.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 3 / 45

Example: polynomial evaluation

Evaluation of univariate polynomials with floating point coefficients:

the evaluation of a polynomial suffers from rounding errors

example : in the neighborhood of a multiple root

-1.5e-10

-1e-10

-5e-11

 0

 5e-11

 1e-10

 1.5e-10

 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

Horner algorithm
Exact value

p(x) = (x − 2)9 in expanded form

near the multiple root x = 2

evaluated with the Horner algorithm

in IEEE double precision.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 3 / 45

Motivation

How to improve and validate the accuracy of a floating point computation,

without large computing time overheads ?

Two case studies:

I polynomial evaluation which occurs in many fields of scientific computing,

I triangular system solving which is one of the basic algorithms in numerical

linear algebra.

Our main tool to improve the accuracy: compensation of the rounding

errors.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 4 / 45

Motivation

1 Improve the accuracy

What to do when the best precision available in hardware is not sufficient?

Increasing the working precision / compensated algorithm.

2 Validate the computed result

How to guarantee the quality of the compensated result?

Validated algorithm = computed result + an a posteriori error bound.

3 Maintain good performances

How to explain good practical performances of compensated algorithms?

Number of floating point operations / instruction-level parallelism.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 5 / 45

Motivation

1 Improve the accuracy

What to do when the best precision available in hardware is not sufficient?

Increasing the working precision / compensated algorithm.

2 Validate the computed result

How to guarantee the quality of the compensated result?

Validated algorithm = computed result + an a posteriori error bound.

3 Maintain good performances

How to explain good practical performances of compensated algorithms?

Number of floating point operations / instruction-level parallelism.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 5 / 45

Motivation

1 Improve the accuracy

What to do when the best precision available in hardware is not sufficient?

Increasing the working precision / compensated algorithm.

2 Validate the computed result

How to guarantee the quality of the compensated result?

Validated algorithm = computed result + an a posteriori error bound.

3 Maintain good performances

How to explain good practical performances of compensated algorithms?

Number of floating point operations / instruction-level parallelism.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 5 / 45

Outline

1 Context

2 Compensated Horner algorithm

3 Validation of the compensated Horner algorithm

4 Performances of the compensated Horner algorithm

5 Other results

6 Summary and future work

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 6 / 45

Floating point numbers

x ∈ F is either 0, or a rational of the form

x = ± 1.x1x2 . . . xp−1︸ ︷︷ ︸
p bit mantissa

×2e ,

with xi ∈ {0, 1}, and e an exponent s.t. emin ≤ e ≤ emax.

Example with p = 4, emin = −2 and emax = 2 :

0 1/4 1/2 1����� 2����� 4����� 7.5�������

F approximates R: how are defined the arithmetic operations on F?

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 7 / 45

Floating point arithmetic
Let a, b ∈ F and ◦ ∈ {+,−,×, /} an arithmetic operation.

fl(x ◦ y) = the exact x ◦ y rounded to the nearest floating point value.

x⊕ yx + y

Every arithmetic operation may suffer from a rounding error.

Standard model of floating point arithmetic :

fl(a ◦ b) = (1 + ε)(a ◦ b), with |ε| ≤ u.

Working precision u = 2−p (in rounding to the nearest rounding mode).

In this talk: IEEE-754 binary fp arithmetic, rounding to the nearest,

no underflow nor overflow.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 8 / 45

Floating point arithmetic
Let a, b ∈ F and ◦ ∈ {+,−,×, /} an arithmetic operation.

fl(x ◦ y) = the exact x ◦ y rounded to the nearest floating point value.

x⊕ yx + y

Every arithmetic operation may suffer from a rounding error.

Standard model of floating point arithmetic :

fl(a ◦ b) = (1 + ε)(a ◦ b), with |ε| ≤ u.

Working precision u = 2−p (in rounding to the nearest rounding mode).

In this talk: IEEE-754 binary fp arithmetic, rounding to the nearest,

no underflow nor overflow.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 8 / 45

How to improve the accuracy?

Condition number measures the difficulty to solve the problem accurately.

The “Rule of thumb” for backward stable algorithms:

accuracy . condition number× u.

Classic solution to improve the accuracy: increasing the working precision u.

Hardware:

I extended precision available in x87 fpu units.

Software:

I arbitrary precision library (working precision fixed by the programmer):

MP, MPFUN/ARPREC, MPFR.

I fixed length expansions libraries:

double-double, quad-double (Briggs, Bailey et al.).

Compensated algorithms: correction of the generated rounding errors.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 9 / 45

How to improve the accuracy?

Condition number measures the difficulty to solve the problem accurately.

The “Rule of thumb” for backward stable algorithms:

accuracy . condition number× u.

Classic solution to improve the accuracy: increasing the working precision u.

Hardware:

I extended precision available in x87 fpu units.

Software:

I arbitrary precision library (working precision fixed by the programmer):

MP, MPFUN/ARPREC, MPFR.

I fixed length expansions libraries:

double-double, quad-double (Briggs, Bailey et al.).

Compensated algorithms: correction of the generated rounding errors.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 9 / 45

How to improve the accuracy?

Condition number measures the difficulty to solve the problem accurately.

The “Rule of thumb” for backward stable algorithms:

accuracy . condition number× u.

Classic solution to improve the accuracy: increasing the working precision u.

Hardware:

I extended precision available in x87 fpu units.

Software:

I arbitrary precision library (working precision fixed by the programmer):

MP, MPFUN/ARPREC, MPFR.

I fixed length expansions libraries:

double-double, quad-double (Briggs, Bailey et al.).

Compensated algorithms: correction of the generated rounding errors.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 9 / 45

Example: compensated summation
IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).

Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed

The rounding errors are computed thanks to error-free transformations.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 10 / 45

Example: compensated summation
IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).

Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed

The rounding errors are computed thanks to error-free transformations.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 10 / 45

Example: compensated summation
IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).

Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed

The rounding errors are computed thanks to error-free transformations.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 10 / 45

Error-free transformations (EFT)

Error-Free Transformations are algorithms to compute the rounding errors

at the current working precision.

+ (x , y) = 2Sum(a, b) 6 flop Knuth (74)

such that x = a⊕ b and a + b = x + y

× (x , y) = 2Prod(a, b) 17 flop Dekker (71)

such that x = a⊗ b and a× b = x + y

with a, b, x , y ∈ F.

Algorithm (Knuth)

function [x,y] = 2Sum(a,b)

x = a⊕ b

z = x 	 a

y = (a	 (x 	 z))⊕ (b 	 z)

Compensated summation algorithms:

Kahan, Møller (1965),
Pichat (1972),
Neumanier (1974),
Priest (1992),
Ogita-Rump-Oishi (2005).

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 11 / 45

Error-free transformations (EFT)

Error-Free Transformations are algorithms to compute the rounding errors

at the current working precision.

+ (x , y) = 2Sum(a, b) 6 flop Knuth (74)

such that x = a⊕ b and a + b = x + y

× (x , y) = 2Prod(a, b) 17 flop Dekker (71)

such that x = a⊗ b and a× b = x + y

with a, b, x , y ∈ F.

Algorithm (Knuth)

function [x,y] = 2Sum(a,b)

x = a⊕ b

z = x 	 a

y = (a	 (x 	 z))⊕ (b 	 z)

Compensated summation algorithms:

Kahan, Møller (1965),
Pichat (1972),
Neumanier (1974),
Priest (1992),
Ogita-Rump-Oishi (2005).

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 11 / 45

Outline

1 Context

2 Compensated Horner algorithm

3 Validation of the compensated Horner algorithm

4 Performances of the compensated Horner algorithm

5 Other results

6 Summary and future work

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 12 / 45

Accuracy of the Horner algorithm

We consider the polynomial

p(x) =
n∑

i=0

aix
i ,

with ai ∈ F, x ∈ F

Algorithm

function r0 = Horner (p, x)

rn = an

for i = n − 1 : −1 : 0

ri = ri+1 ⊗ x ⊕ ai

end

Relative accuracy of the evaluation with the Horner algorithm:

|Horner(p, x)− p(x)|
|p(x)| ≤ γ2n︸︷︷︸

≈2nu

cond(p, x).

cond(p, x) denotes the condition number of the evaluation:

cond(p, x) =

∑ |aix
i |

|p(x)| ≥ 1.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 13 / 45

Accuracy . condition number of the problem × u

1

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

103510301025102010151010105

Condition number

R
el

at
iv

e
fo

rw
ar

d
er

ro
r

u

1/u 1/u2

γ 2n
 c

on
d(

p,
 x

)

Horner

How can we obtain more accuracy for polynomial evaluation?

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 14 / 45

EFT for the Horner algorithm

Consider p(x) =
∑n

i=0 aix
i of degree n, ai , x ∈ F.

Algorithm (Horner)

function r0 = Horner (p, x)

rn = an

for i = n − 1 : −1 : 0

pi = ri+1 ⊗ x % error πi ∈ F
ri = pi ⊕ ai % error σi ∈ F

end

Let us define two polynomials pπ and pσ

such that:

pπ(x) =
n−1∑
i=0

πix
i and pσ(x) =

n−1∑
i=0

σix
i

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 15 / 45

EFT for the Horner algorithm

Consider p(x) =
∑n

i=0 aix
i of degree n, ai , x ∈ F.

Algorithm (Horner)

function r0 = Horner (p, x)

rn = an

for i = n − 1 : −1 : 0

pi = ri+1 ⊗ x % error πi ∈ F
ri = pi ⊕ ai % error σi ∈ F

end

Let us define two polynomials pπ and pσ

such that:

pπ(x) =
n−1∑
i=0

πix
i and pσ(x) =

n−1∑
i=0

σix
i

Theorem (EFT for Horner algorithm)

p(x)︸︷︷︸
exact value

= Horner (p, x)︸ ︷︷ ︸
∈F

+ (pπ + pσ)(x)︸ ︷︷ ︸
forward error

.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 15 / 45

EFT for the Horner algorithm

Consider p(x) =
∑n

i=0 aix
i of degree n, ai , x ∈ F.

Algorithm (Horner)

function r0 = Horner (p, x)

rn = an

for i = n − 1 : −1 : 0

pi = ri+1 ⊗ x % error πi ∈ F
ri = pi ⊕ ai % error σi ∈ F

end

Algorithm (EFT for Horner)

function [r0, pπ, pσ] = EFTHorner (p, x)

rn = an

for i = n − 1 : −1 : 0

[pi , πi] = 2Prod (ri+1, x)

[ri , σi] = 2Sum (pi , ai)

pπ[i] = πi pσ[i] = σi

end

Theorem (EFT for Horner algorithm)

p(x)︸︷︷︸
exact value

= Horner (p, x)︸ ︷︷ ︸
∈F

+ (pπ + pσ)(x)︸ ︷︷ ︸
forward error

.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 15 / 45

Compensated Horner algorithm

(pπ + pσ)(x) is exactly the forward error affecting Horner (p, x).

⇒ we compute an approximate of (pπ + pσ)(x) as a correcting term.

Algorithm (Compensated Horner algorithm)
function r = CompHorner (p, x)

[r̂ , pπ, pσ] = EFTHorner (p, x) % r̂ = Horner (p, x)

ĉ = Horner (pπ⊕pσ, x)

r = r̂⊕ ĉ

Theorem
Given p a polynomial with floating point coefficients, and x ∈ F,

|CompHorner (p, x)− p(x)|
|p(x)| ≤ u + γ2

2n︸︷︷︸
≈(2nu)2

cond(p, x).

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 16 / 45

Accuracy of the result . u + condition number× u2.

1

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

103510301025102010151010105

Condition number

R
el

at
iv

e
fo

rw
ar

d
er

ro
r

u

1/u 1/u2

u
 +

 γ 2n
2 c

on
d(

p,
 x

)

γ 2n
 c

on
d(

p,
 x

)

Horner
CompHorner

The compensated Horner algorithm is as accurate as the classic Horner

algorithm performed in twice the working precision, with a final rounding.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 17 / 45

Outline

1 Context

2 Compensated Horner algorithm

3 Validation of the compensated Horner algorithm

4 Performances of the compensated Horner algorithm

5 Other results

6 Summary and future work

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 18 / 45

Validation of the compensated Horner algorithm
Consider a polynomial p of degree n with floating point coefficients, and x ∈ F.

Algorithm

function r = CompHorner (p, x)

[r̂ , pπ, pσ] = EFTHorner (p, x)

ĉ = Horner (pπ⊕pσ, x)

r = r̂⊕ ĉ

A priori error bound for the compensated evaluation:

|CompHorner(p, x)− p(x)| ≤ u|p(x)|+ γ2
2n︸︷︷︸

≈(2nu)2

p̃(x).

Problem: This a priori error bound

can not be computed at running time, as |p(x)| is “unknown”;

is pessimistic compared to the actual error.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 19 / 45

Validated version of CompHorner
Consider a polynomial p of degree n with floating point coefficients, and x ∈ F.

Algorithm

function r = CompHorner (p, x)

[r̂ , pπ, pσ] = EFTHorner (p, x)

ĉ = Horner (pπ⊕pσ, x)

r = r̂⊕ ĉ % Rounding error δ = r̂ + ĉ − r ∈ F.

Since EFTHorner is as error-free transformation, we have:

|CompHorner(p, x)− p(x)|︸ ︷︷ ︸
error in the

compensated result

≤ |δ| + | ĉ − c |.︸ ︷︷ ︸
error in the

correcting term

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 20 / 45

Validated version of CompHorner
Consider a polynomial p of degree n with floating point coefficients, and x ∈ F.

Algorithm

function [r , β] = CompHornerBound(p, x)

if 2(n + 1)u ≥ 1, error(’Validation impossible’), end

[r̂ , pπ, pσ] = EFTHorner(p, x)

ĉ = Horner(pπ ⊕ pσ, x)

[r , δ] = 2Sum(r̂ , ĉ) % Exact computation of δ

α =
(
γ̂2n−1 ⊗ Horner(|pπ ⊕ pσ|, |x |)

)� (1− 2(n + 1)u)

β = (|δ| ⊕ α)� (1− 2u)

Theorem

Together with the compensated evaluation, CompHornerBound(p, x) computes

an a posteriori error bound β s.t.

|CompHorner(p, x)− p(x)| ≤ β.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 20 / 45

Sharpness of the a posteriori error bound
Evaluation of p6(x) = (1− x)6 in expanded form in the neighborhood of x = 1.

1025

1020

1015

1010

 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008

Argument x

co
nd

(p
6,

 x
)

1/u

cond(p6,x)

10-34

10-33

10-32

10-31

10-30

10-29

10-28

10-27

10-26

10-25

 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008

A
bs

ol
ut

e
fo

rw
ar

d
er

ro
r

A priori error bound
A posteriori error bound

Measured error

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 21 / 45

Conclusion

Compensated Horner algorithm1:

I as accurate as the Horner algorithm performed in doubled working precision,

I very efficient compared to the double-double alternative.

Validated version of the compensated Horner algorithm:

I error bound computed using basic fp arithmetic, in RTN rounding mode.

I runs at most 1.5 times slower than the non validated algorithm.

Other results:

Faithful polynomial evaluation with the compensated Horner algorithm:

I an a priori upper bound on the condition number to ensure faithful rounding,

I an a posteriori test to check if the computed result is faithfully rounded.

Study of the influence of underflow on a priori /a posteriori error bounds.

1
Ph. Langlois & NL. How to ensure a faithful polynomial evaluation with the compensated Horner algorithm. IEEE ARITH 18, June 2007.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 22 / 45

Conclusion

Compensated Horner algorithm1:

I as accurate as the Horner algorithm performed in doubled working precision,

I very efficient compared to the double-double alternative.

Validated version of the compensated Horner algorithm:

I error bound computed using basic fp arithmetic, in RTN rounding mode.

I runs at most 1.5 times slower than the non validated algorithm.

Other results:

Faithful polynomial evaluation with the compensated Horner algorithm:

I an a priori upper bound on the condition number to ensure faithful rounding,

I an a posteriori test to check if the computed result is faithfully rounded.

Study of the influence of underflow on a priori /a posteriori error bounds.

1
Ph. Langlois & NL. How to ensure a faithful polynomial evaluation with the compensated Horner algorithm. IEEE ARITH 18, June 2007.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 22 / 45

Outline

1 Context

2 Compensated Horner algorithm

3 Validation of the compensated Horner algorithm

4 Performances of the compensated Horner algorithm

5 Other results

6 Summary and future work

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 23 / 45

Overhead to obtain more accuracy

We compare:

I CompHorner = Compensated Horner algorithm

I DDHorner = Horner algorithm + double-double (Bailey’s library)

Both provide the same output accuracy.

Practical overheads compared to the classic Horner algorithm1:
CompHorner

Horner
DDHorner

Horner
DDHorner

CompHorner

Pentium 4, 3.00 GHz GCC 4.1.1 2.8 8.6 3.0

(x87 fp unit) ICC 9.1 2.7 9.0 3.4

Athlon 64, 2.00 GHz GCC 4.1.2 3.2 8.7 2.7

Itanium 2, 1.4 GHz GCC 4.1.1 2.8 6.7 2.4

ICC 9.1 1.5 5.9 3.9

2− 4 6− 9 2− 4

CompHorner runs a least two times faster than DDHorner.

1Average ratios for polynomials of degree 5 to 200; wp = IEEE-754 double precision
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 24 / 45

Motivation

Floating point operations (flop) counts are commonly used to compare the

performances of numerical algorithms.

Flop counts for CompHorner and DDHorner are very similar.

CompHorner DDHorner

Flop count 22n + 5 28n + 4

But CompHorner runs at least two times faster than DDHorner.

Flop counts do not explain the performances of CompHorner compared to

DDHorner1:

How to explain the practical performances of our compensated algorithm?

1The same property is identified but unexplained for compensated summation and dot

product by Ogita, Rump and Oishi (05).
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 25 / 45

Instruction-level parallelism (ILP)

Modern processors are designed to exploit the parallelism available among

the instructions of a program, i.e. the instruction-level parallelism (ILP).

Hennessy & Patterson, Computer Architecture – A Quantitative Approach:

All processors since about 1985 [. . .], use pipelining to overlap

the execution of instructions and improve performance. This

potential overlap among instruction is called instruction-level

parallelism since the instruction can be evaluated in parallel.

A wide range of techniques have been developed to exploit ILP,

e.g. pipelining and superscalar architectures.

More ILP implies better performances on modern processors.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 26 / 45

How to quantify instruction-level parallelism in a program?

Compute or estimate its Instruction Per Cycle (IPC) on an ideal processor.

Ideal processor1 = all the “artificial” constraints on the ILP are removed:

I all but true data dependencies are removed;

I an unlimited number of instructions can be executed in the same clock cycle;

I any instruction is executed in one clock cycle;

I memory accesses are perfect.

IPC = average number of instructions executed in one clock cycle:

IPC =
Total number of instructions

Total latency of the program
.

Ideal IPC = IPC on the ideal processor.

The ideal IPC of a given program only depends on

the data dependencies it contains.

1As defined by Hennessy & Patterson.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 27 / 45

How to quantify instruction-level parallelism in a program?

Compute or estimate its Instruction Per Cycle (IPC) on an ideal processor.

Ideal processor1 = all the “artificial” constraints on the ILP are removed:

I all but true data dependencies are removed;

I an unlimited number of instructions can be executed in the same clock cycle;

I any instruction is executed in one clock cycle;

I memory accesses are perfect.

IPC = average number of instructions executed in one clock cycle:

IPC =
Total number of instructions

Total latency of the program
.

Ideal IPC = IPC on the ideal processor.

The ideal IPC of a given program only depends on

the data dependencies it contains.

1As defined by Hennessy & Patterson.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 27 / 45

How to quantify instruction-level parallelism in a program?

Compute or estimate its Instruction Per Cycle (IPC) on an ideal processor.

Ideal processor1 = all the “artificial” constraints on the ILP are removed:

I all but true data dependencies are removed;

I an unlimited number of instructions can be executed in the same clock cycle;

I any instruction is executed in one clock cycle;

I memory accesses are perfect.

IPC = average number of instructions executed in one clock cycle:

IPC =
Total number of instructions

Total latency of the program
.

Ideal IPC = IPC on the ideal processor.

The ideal IPC of a given program only depends on

the data dependencies it contains.

1As defined by Hennessy & Patterson.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 27 / 45

How to quantify instruction-level parallelism in a program?

Compute or estimate its Instruction Per Cycle (IPC) on an ideal processor.

Ideal processor1 = all the “artificial” constraints on the ILP are removed:

I all but true data dependencies are removed;

I an unlimited number of instructions can be executed in the same clock cycle;

I any instruction is executed in one clock cycle;

I memory accesses are perfect.

IPC = average number of instructions executed in one clock cycle:

IPC =
Total number of instructions

Total latency of the program
.

Ideal IPC = IPC on the ideal processor.

The ideal IPC of a given program only depends on

the data dependencies it contains.

1As defined by Hennessy & Patterson.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 27 / 45

Ideal IPC of CompHorner (1/2)

C implementation of CompHorner

double CompHorner(double *P, int n, double x) {

double p, r, c, pi, sig;

double x_hi, x_lo, hi, lo, t;

int i;

/* Split(x_hi, x_lo, x) */

t = x * _splitter_;

x_hi = t - (t - x); x_lo = x - x_hi;

r = P[n]; c = 0.0;

for(i=n-1; i>=0; i--) {

/* TwoProd(p, pi, s, x); */

p = r * x;

t = r * _splitter_;

hi = t - (t - r);

lo = r - hi;

pi = (((hi*x_hi - p) + hi*x_lo)

+ lo*x_hi) + lo*x_lo;

/* TwoSum(s, sigma, p, P[i]); */

r = p + P[i];

t = r - p;

sig = (p - (r - t)) + (P[i] - t);

/* Computation of the error term */

c = c * x + (pi+sig);

}

return(r+c);

}

To evaluate a polynomial of degree n:

I n iterations,

I 22n + 5 flop.

Ideal IPC of CompHorner(p, x):

IPCCompHorner ≈ 22n + 5

Latency for

n iterations

.

The total latency is determined by data

dependencies.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 28 / 45

Ideal IPC of CompHorner (2/2)

We determine the latency for the execution of

n iterations from the data flow graph for one

iteration

=⇒ best scheduling for one iteration.

Study of this data flow graph shows that:

I the latency of one iteration is 10 cycles.

I consecutive iterations overlap by 8 cycles.

The latency for n iterations is 2n + 8, thus

IPCCompHorner ≈22n + 5

2n + 8
≈ 11.

*

* *

*

*

+

+

−

−

−

− −

−

−

−

+

+

+

+

+

x_lo

x_hi

x

P[i]

P[i]

r

c

c

(i)

(i+1)

(i)

* *
x_lo

x_hi

x

(i+1)
r

splitter

1

2

3

4

5

6

7

8

9

10

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 29 / 45

Ideal IPC of CompHorner (2/2)

We determine the latency for the execution of

n iterations from the data flow graph for one

iteration

=⇒ best scheduling for one iteration.

Study of this data flow graph shows that:

I the latency of one iteration is 10 cycles.

I consecutive iterations overlap by 8 cycles.

The latency for n iterations is 2n + 8, thus

IPCCompHorner ≈22n + 5

2n + 8
≈ 11.

(n−1)

(n−2)

(n−3)

(n−4)

(n−5)

(0)

(1)

(2)

(3)

(4)

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 29 / 45

Ideal IPC of DDHorner (1/2)

C implementation of DDHorner

double DDHorner(double *P, int n, double x) {

double r_h, r_l, t_h, t_l, x_hi, x_lo, hi, lo, t;

int i;

/* Split(x_hi, x_lo, x) */

t = x * _splitter_;

x_hi = t - (t - x); x_lo = x - x_hi;

r_h = P[deg]; r_l = 0.0;

for(i=deg-1; i>=0; i--) {

/* (r_h, r_l) = (r_h, r_l) * x */

t = r_h * _splitter_;

hi = t - (t - r_h);

lo = (r_h - hi);

t_h = r_h * x;

t_l = (((hi*x_hi-t_h) + hi*x_lo)

+ lo*x_hi) + lo*x_lo;

t_l += r_l * x;

r_h = t_h + t_l;

r_l = (t_h - r_h) + t_l;

/* (r_h, r_l) = (r_h, r_l) + P[i] */

t_h = r_h + P[i];

t = t_h - r_h;

t_l = ((r_h - (t_h - t)) + (P[i] - t));

t_l += r_l;

r_h = t_h + t_l;

r_l = (t_h - r_h) + t_l;

}

return(r_h);

}

To evaluate a polynomial of degree n:

I n iterations,

I 28n + 4 flop.

Ideal IPC of CompHorner(p, x):

IPCCompHorner ≈ 28n + 4

Latency for

n iterations

.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 30 / 45

Ideal IPC of DDHorner (2/2)

+

−

−

−

+

−

−

+

+

+

−

+

+

x_lox_hi

x_hix_lo

x

P[i]

sh

sh

sl

(i+1)

(i)

(i)

x

(i+1)
sl

**

+

−

−

−

−* *

* *−

+

+

splitter

10

12

19

2

1

3

4

5

6

7

8

9

11

13

14

15

16

17

18

With the same reasoning:

I the latency of one iteration is 19 cycles.

I consecutive iterations overlap by 2 cycles.

The latency for n iterations is 17n + 2, thus

IPCDDHorner ≈22n + 5

17n + 2
≈ 1.65.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 31 / 45

Conclusion

On the ideal processor:

IPCCompHorner ≈ 6.8× IPCDDHorner.

More instruction-level parallelism in CompHorner than in DDHorner.

This gives a qualitative explanation of the practical performances of

CompHorner compared to DDHorner.

Other results1:

This is due to the fact that renormalization steps are avoided in

CompHorner.

The same conclusion holds for other compensated algorithms compared to

their double-double counterparts (e.g. compensated summation and dot

product by Ogita et al.)

1
Ph. Langlois & NL. More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms. Submitted to IEEE TC.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 32 / 45

Outline

1 Context

2 Compensated Horner algorithm

3 Validation of the compensated Horner algorithm

4 Performances of the compensated Horner algorithm

5 Other results

6 Summary and future work

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 33 / 45

Compensated Horner algorithm with a FMA

Fused-Mulitply-and-Add (FMA): given a, b, c ∈ F

FMA(a, b, c) = a× b + c rounded in the current rounding mode.

Motivations:

How to benefit from FMA within the compensated Horner algorithm?

Two known results about EFT in presence of a FMA:

1 FMA is useful to design an efficient EFT for fp multiplication,

2 an EFT for the FMA has been proposed by Boldo and Muller (2005).

Results1 2:

Two improved versions of the compensated Horner algorithm with a FMA.

It is more efficient to compensate the rounding errors generated by

multiplications.

1
S. Graillat & Ph. Langlois & NL. Improving the compensated Horner scheme with a fused multiply and add. ACM SAC 2006.

2
Ph. Langlois & NL. Operator dependant compensated algorithms. SCAN 2006.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 34 / 45

Compensated Horner algorithm with a FMA

Fused-Mulitply-and-Add (FMA): given a, b, c ∈ F

FMA(a, b, c) = a× b + c rounded in the current rounding mode.

Motivations:

How to benefit from FMA within the compensated Horner algorithm?

Two known results about EFT in presence of a FMA:

1 FMA is useful to design an efficient EFT for fp multiplication,

2 an EFT for the FMA has been proposed by Boldo and Muller (2005).

Results1 2:

Two improved versions of the compensated Horner algorithm with a FMA.

It is more efficient to compensate the rounding errors generated by

multiplications.

1
S. Graillat & Ph. Langlois & NL. Improving the compensated Horner scheme with a fused multiply and add. ACM SAC 2006.

2
Ph. Langlois & NL. Operator dependant compensated algorithms. SCAN 2006.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 34 / 45

CompHornerK: K times the working precision

Motivations:

Polynomial evaluation with the compensated Horner algorithm,

cond(p, x) . u−1 =⇒ accuracy of the compensated result ≈ u.

How to deal with condition numbers larger than u−1 ?

Results:

CompHornerK: a new compensated algorithm.

I Recursive application of EFTHorner on K − 1 levels.

I Provides K times the working precision,

relative accuracy . u + cond(p, x)× uK .

More efficient than generic solutions (MPFR, quad-double) for K ≤ 4.

We also propose a validated version of CompHornerK.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 35 / 45

CompHornerK: K times the working precision

Motivations:

Polynomial evaluation with the compensated Horner algorithm,

cond(p, x) . u−1 =⇒ accuracy of the compensated result ≈ u.

How to deal with condition numbers larger than u−1 ?

Results:

CompHornerK: a new compensated algorithm.

I Recursive application of EFTHorner on K − 1 levels.

I Provides K times the working precision,

relative accuracy . u + cond(p, x)× uK .

More efficient than generic solutions (MPFR, quad-double) for K ≤ 4.

We also propose a validated version of CompHornerK.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 35 / 45

K = 4 : accuracy . u + condition number× u4

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 1e+10 1e+20 1e+30 1e+40 1e+50 1e+60 1e+70 1e+80 1e+90

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Accuracy of polynomial evaluation with CompHornerK [n=25]

u

1/u 1/u2 1/u3 1/u4 1/u5
K

=4

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 36 / 45

Triangular linear system and substitution algorithm
Motivations:

Consider a nonsingular triangular lower matrix T ∈ Fn×n, and bT ∈ Fn
t1,1

...
. . .

tn,1 · · · tn,n

x1

...

xn

 =

b1

...

bn

 .

Classic substitution algorithm solves Tx = b according to,

xk =
1

tk,k

(
bk −

k−1∑
i=1

tk,ixi

)
for k = 1, . . . , n.

Accuracy of the computed solution:

‖ x̂ − x‖∞
‖x‖∞ . nu× cond(T , x),

where cond(T , x) denotes Skeel’s condition number.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 37 / 45

Accuracy of the solution computed by substitution

1

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

1035103010251020101510101051

cond(T, x)

Erreur relative en fonction de cond(T,x) [n=40]

er
re

ur
 r

el
at

iv
e

u

u
-1

u
-2

Bo
rn

e
po

ur
 T

R
SV

TRSV

How to compensate the rounding errors generated by the substitution algorithm?

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 38 / 45

Compensated triangular system solving

Results1:

A compensated substitution algorithm : CompTRSV.

I Same practical accuracy

I and two times faster

than substitution with double-double arithmetic from the XBLAS library.

Algorithmic equivalence between

I computing a compensated solution to a triangular system

I and performing one step of iterative refinement to improve the solution

computed by classic substitution algorithm.

A priori error analysis of CompTRSV.

1
Ph. Langlois & NL. Solving triangular systems more accurately and efficiently. 17th IMACS World Congress, 2005.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 39 / 45

Practical accuracy w.r.t. cond(T , x)

1

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

1035103010251020101510101051

cond(T, x)

Erreur relative en fonction de cond(T,x) [n=40]

er
re

ur
 r

el
at

iv
e

u

u
-1

u
-2

Bo
rn

e
po

ur
 T

R
SV

Bo
rn

e
po

ur
 B

LA
S_

dt
rs

v_
x

TRSV

BLAS_dtrsv_x

CompTRSV

The compensated solution x is in practice as accurate as if it was computed by

the substitution algorithm in twice the working precision.
N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 40 / 45

Outline

1 Context

2 Compensated Horner algorithm

3 Validation of the compensated Horner algorithm

4 Performances of the compensated Horner algorithm

5 Other results

6 Summary and future work

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 41 / 45

Improving the accuracy

Summary:

Efficient alternatives to generic solutions (double-double, quad-double, MPFR):

Compensated Horner algorithm

I twice the working precision,

I improved version with a FMA,

I K times the working precision.

Compensated triangular system solving.

Future work:

Generalization of the compensated Horner algorithm:

I evaluation of multivariate polynomials,

I more accurate evaluation of the derivatives of a polynomial.

One step of iterative refinement for general linear systems: a priori results ?

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 42 / 45

Validation of numerical quality

Summary:

Validated version of the compensated algorithm,

I a posteriori error bound for the compensated Horner algorithm,

I dynamical test for faithful rounding of the compensated evaluation,

I a posteriori error bound for CompHornerK.

Good performances: only classic fp arithmetic in round-to-nearest.

Future work:

Comparison of our methods with state of art methods (interval arithmetic):

sharpness of the error bounds vs. cost of the computation.

Validation of the compensated substitution algorithm.

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 43 / 45

Performances

Summary:

Performances of compensated algorithms justifies their practical interest:

twice faster than generic solutions with the same accuracy (double-double).

Detailed study of the performances of the compensated Horner algorithm:

I more Instruction level parallelism than with double-double arithmetic.

I we shown it is due to the absence of “renormalization steps”.

Same conclusions hold for other compensated algorithms.

Future work:

New processors designed for floating point computations:

Cell (IBM, Sony, Toshiba), GPU, fp coprocessors (CSX600 Clear Speed).

How to implement compensated algorithms efficiently?

How do they perform on these new architectures?

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 44 / 45

Compensated algorithms
in floating point arithmetic:

accuracy, validation, performances.

Nicolas Louvet

Directeur de thèse:

Philippe Langlois

Université de Perpignan Via Domitia

Laboratoire ELIAUS

Équipe DALI

N. Louvet (Université de Perpignan) Nicolas Louvet – Compensated algorithms in floating point arithmetic: accuracy, validation, performances.February 25, 2008 45 / 45

	Context
	Floating point arithmetic
	Improving the accuracy
	Example: compensated summation
	Error-free transformations (EFT)

	Compensated Horner algorithm
	Accuracy of the Horner algorithm
	Compensated Horner algorithm

	Validation of the compensated Horner algorithm
	Validated version of CompHorner
	Conclusion

	Performances of the compensated Horner algorithm
	Overhead to obtain more accuracy
	Instruction-level parallelism (ILP)
	How to quantify Instruction-Level Parallelism?
	Conclusion

	Other results
	Compensated Horner algorithm with a FMA
	CompHornerK
	Triangular system solving

	Summary and future work
	Improving the accuracy
	Validation of numerical quality
	Performances

