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When a half-empty bottle of water is pushed to roll on a flat surface, the oscillations of the fluid inside

the bottle induce an overall jerky motion. These velocity fluctuations of the bottle are studied through

simple laboratory experiments accessible to undergraduate students and can help them to grasp

fundamental concepts in mechanics and hydrodynamics. We first demonstrate through an astute

experiment that the rotation of the fluid and the bottle is decoupled. The equations of motion are then

derived using a mechanical approach, while the hydrodynamics of the fluid motion is explained. Finally,

the theory is tested against two benchmark experiments. VC 2018 American Association of Physics Teachers.

https://doi.org/10.1119/1.5009664

I. INTRODUCTION

When a half-empty bottle initially resting horizontally on
a flat table is pushed, the fluid it contains is set into motion,
which leads to an oscillatory rolling motion of the bottle.
Figure 1 shows an example of the trajectory of a 1-l glass
bottle half-filled with water, manually pushed at the time
indicated by the dashed line. The space-time diagram
showing the position of the cap as a function of time clearly
illustrates the intermittent overall motion of the bottle. In the
particular case shown in Fig. 1, the bottle undergoes a stop-
and-go motion with a typical frequency of a few Hertz. The
goal of the present paper is to understand and model this
oscillatory motion.

The phenomenon of surface gravity waves on water and
oscillations of fluid has been studied for a wide variety of
container shapes,1,2 and the dependence of frequency on the
curvature in a vertical cylinder is known.3 However, when
the container is subjected to an external force and free to
move, the problem becomes more complex and the free sur-
face of the fluid adopts different shapes, depending on the
excitation and the geometry of the container. This issue is of
great importance in a wide range of applications involving
liquid transport, from the problems encountered by space
agencies in aerospace vehicles4,5 to tank carriages on high-
way or rail roads.6,7

The motion of a soft drink can on an incline was studied
by Jackson et al.8 The authors used water (and varied the fill-
ing fraction of the can) as well as granular matter (lead shots
and glass marbles) and proposed a model that describes the
limiting cases of non-viscous and infinitely viscous fluids.
Later, Lin et al.9 compared the rolling dynamics of cans fully
filled with liquid water and solid ice, Ireson and Twidle10

showed that shaking a can of soda noticeably affects its roll-
ing speed, and Micklavzina11 investigated the influence of
the fluid viscosity. In this article, the bottles are modeled by
simpler cylindrical tubes. The main goal of this article is to
study the oscillating speed of a half-empty bottle. The ratio
of filling is therefore fixed to one half, and the fluid used in
all of our experiments is tap water.

The oscillatory motion of a bottle is a simple hands-on
experiment which can illustrate important concepts in solid
and fluid mechanics. The Euler-Lagrange equations12 are
used to investigate the motion of a coupled system, and the
conservation of energy during an elastic shock allows one to

predict the bounce of a bottle on a wall. Moreover, the phe-
nomenon exposes hydrodynamics concepts to explain a fluid
motion: characteristic times relevant to the phenomenon are
identified, the validity of a potential flow approach13 is dis-
cussed, and the eigenmodes of fluid motion in a container
are studied.

In order to model the overall oscillating motion of a half-
empty cylinder, we begin in Sec. II by focusing on the cou-
pling between the water and the solid and show that their
rotation is decoupled for short times. The motion of the fluid
within a half-empty still cylinder, known as sloshing, is pre-
sented in Sec. III and allows one to define the moment of

Fig. 1. Picture of a half-empty glass bottle and a space-time plot showing

the motion of the cap after the bottle was given a push. The oscillations in

speed, adding to the overall forward motion at constant velocity, are clearly

visible. The diagram is obtained from a 1500-pixel line video at 500 fps.
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inertia of the water, which can be used in the equations of
motion derived from the purely mechanical model developed
in Sec. IV. Finally, in Sec. V, we show experimental results
of oscillations obtained when a bottle bounces on a wall or
rolls down a gentle slope.

II. ROTATIONAL COUPLING

A. Race down a slope

The study of a bottle rolling down an incline8–11 is
extremely informative regarding the motion of the fluid
inside the rolling container. In particular, Jackson et al.8

showed that the velocity of an empty can is noticeably less
than that of a can filled with water. This indicates that the
relative moment of inertia of an empty can (i.e., normalized
by mass� radius squared) must be larger than that of a full
or half-empty can. Indeed, although the fluid clearly contrib-
utes to the overall mass of the system (and therefore its
weight), it may not contribute significantly to the total
moment of inertia since, in general, it is not in solid-body
rotation within the container.

We have reproduced these experiments by releasing four
“bottles” of identical radius (3 cm) and length (12 cm) on a
2� slope: a hollow tube (or empty bottle) with 5 mm-thick
walls, a solid Plexiglass cylinder, a half-empty bottle, and a
full bottle. Note that on this gentle slope, all objects roll with
no slip. A picture taken 2 s after the start of the race is shown
in Fig. 2, while Fig. 3 displays the position and speed of the
various bottles. These data were obtained from a video using
the “Analyze Particle” tool of ImageJ, a free software pro-
gram developed by NIH.

Figure 3 shows that the velocities increase roughly line-
arly with time, which indicates that friction plays a negligi-
ble role. As expected, the hollow tube accelerates more
slowly than the solid cylinder. The behavior of the half-
empty and full bottles is surprising: both roll down the slope
with a larger acceleration than the hollow tube and the empty

bottle, which indicates a smaller moment of inertia. Their
motion is close to that of a frictionless sliding block (indi-
cated by a dashed line in Fig. 3). Note that the velocity is
computed from the position (obtained through particle track-
ing) using a simple first-order differentiation scheme (finite
differences). This explains why the velocity data are “noisy,”
while the position data seem to be surprisingly smooth.
Again, these results indicate that the water inside the bottle
(whether half-empty or full) undergoes little rotation but is
instead simply translated. In conclusion, this simple experi-
ment shows that the rotation of the bottle is decoupled from
that of the fluid (over the short duration of the race).

B. Diffusion time

The discussion in the previous paragraph indicates that a
bottle can spin without inducing significant rotation within
the water. This behavior only holds for short times, less than
the typical diffusion time of momentum. Indeed, over longer
times, the viscosity of the fluid should induce motion of the
fluid. In this paragraph, we discuss the momentum diffusion
in a vertical rotating bottle. We have performed a simple
experiment in which a tall cylinder (height 400 mm and
radius R¼ 50 mm) is placed on a rotating table (an old
record-player). The motion of the water is followed using
neutrally buoyant tracers (700 lm polystyrene beads) from a
1000� 1000 pixel video recorded at 30 fps. At time t¼ 0,
the rotation is started at 33 rpm.

Fig. 3. Experimental measurements of the positions (top) and velocities

(bottom) along a 2� slope for empty, half-empty, and full bottles, as well as

a solid cylinder. The full and half-empty bottles are the fastest, whereas the

empty bottle is the slowest. The greater acceleration of the half-empty and

full bottles is due to their reduced moment of inertia. The dashed line indi-

cates a constant acceleration of g sinð2�Þ.

Fig. 2. Picture showing four bottles racing down a 2� slope. The initial posi-

tions are shown by the dashed line, and the picture is taken after 2 s of roll-

ing. The race shows that the moments of inertia of half-empty and full

bottles are lower than those of the solid cylinder, which indicates that the

water undergoes little rotation and only a simple translation.
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Figure 4 shows the time evolution of the local rotation
speed of the water (normalized by that of the rotating sup-
port) measured at various distances from the outer wall
(R/10¼ 5 mm, R/5¼ 10 mm, and R/2¼ 25 mm). It takes
roughly 5 s for the fluid near the bottle wall (at R/10) to be
set into motion. Therefore, one can conclude that over short
times (typically less than 5 s), the vast majority of fluid is not
affected by the rotation of the bottle. Therefore, as a first-
order approximation, we will consider in the rest of this
paper that there is no noticeable coupling between the rota-
tion of the container and that of the liquid.

As a side-note, it is worth mentioning that the moment of
inertia of a half-empty bottle set into motion on an incline
should increase in time. One might design and perform
experiments to show that the resulting acceleration is not
constant but instead decreases over time due to the increas-
ing inertia of the system.

An estimate of the diffusion length d of the velocity within
the fluid (or its momentum) over the time T of a typical experi-
ment can be found knowing the kinematic viscosity � of the
fluid:14,15 d ¼

ffiffiffiffiffiffi
�T
p

’ 3 mm for T¼ 10 s, which is compatible
with the experimental data of Fig. 4 and negligible compared
to the radius of the bottle. For an oscillatory motion of typical
frequency 1/T¼ 3 Hz (see Fig. 1), the boundary layer is given
by the penetration length14,15 (analogous to the electromag-
netic skin-depth16–18) d ¼

ffiffiffiffiffiffiffiffiffiffiffi
�T=p

p
’ 0:3 mm, which is an

order of magnitude smaller.
In conclusion, we have shown that the rotation of the fluid

and of the bottle is decoupled as long as the experiment lasts
for less than about 10 s.

III. SLOSH DYNAMICS IN A STILL BOTTLE

In this section the motion of the fluid in a still bottle is dis-
cussed. This “slosh dynamics” was studied as early as the
XIXth century by Rayleigh,19 and a comprehensive review
can be found in the study by Lamb20 and in the study by
Ibrahim.21

A. Potential flow

In a horizontal cylinder, the first eigenmode of sloshing
displays a flat (although not constantly horizontal) free sur-
face that oscillates up and down. Rayleigh19 showed that

under the assumption of potential flow (where in particular
the viscosity of the fluid can be neglected), the moment of
inertia of the fluid around the center of the bottle is given by

Is ¼ pqR4L
4

p2
� 1

4

� �
’ 0:31mR2; (1)

where q is the density of the fluid and L the length of the
bottle.

The potential from which the velocity is derived is given in
terms of a series,20,21 and the corresponding velocity field is
plotted in Fig. 5(b). A few comments can highlight the differ-
ences with a rigid-body rotation. First, the velocity clearly
decays with the increasing distance from the free surface,
whereas it increases linearly in the case of a rigid-body
rotation. Second, one can notice that the streamlines are not
half-circles centered on the center of the bottle. Instead, the
streamlines are flatter near the free surface. Finally, the veloc-
ity at the center of the bottle is not zero. It is purely horizontal
and oscillates back and forth. The theoretical velocity field is
remarkably similar to the experimental observations. The pic-
ture in Fig. 5(a) shows neutrally buoyant markers, indicating
the motion of the fluid in a bottle pushed and held against a
wall. This excellent agreement supports the assumption that
the viscosity of the fluid plays no major role in the slosh
dynamics, aside from the boundary layer discussed earlier.

B. Experimental validation

Experiments were performed by pushing a half-empty
cylinder against a wall in order to induce fluid motion. The
cylinder is then firmly held still against the wall, and the
slosh dynamics of the water is studied. The altitude of
the free surface against the curved side of the cylinder was
recorded at 500 fps and measured through particle tracking
(see the inset in Fig. 6).

A simple way to check whether the potential flow is an
accurate description of the actual flow is to measure the fre-
quency of the oscillations. The Fourier transform of the sig-
nal is shown in Fig. 6. The frequencies of the first three
modes of sloshing can be analytically predicted21 (x1

’ 1:17
ffiffiffiffiffiffiffiffi
g=R

p
; x2 ’ 2:17

ffiffiffiffiffiffiffiffi
g=R

p
, and x3 ’ 2:82

ffiffiffiffiffiffiffiffi
g=R

p
) and

are indicated by vertical lines.
A decay of the amplitude of oscillations is visible in the

inset and is a long-term effect of the viscosity of the fluid.
However, the agreement between the observed frequency
and the prediction under the assumption of an ideal fluid is
excellent, again supporting the hypothesis that the viscosity
plays no major part in the flow (although it causes a slow
damping). Moreover, even if the force initially applied to the
bottle induces a sloshing motion which is more complex
than an oscillating flat surface, the first sloshing mode is
always dominant. The second or third modes could be
observed if the cylinder were shaken at the corresponding
resonance frequency, but in the case of an inherently asym-
metrical initial push, the first mode always dominates.
Therefore, in the following, only the first mode—in which
the free surface remains flat, although obviously not horizon-
tal—will be considered.

IV. A SOLID BODY TOY MODEL

Having understood that the rotation of the fluid and of the
bottle is decoupled over short times (less than 10 s), one can

Fig. 4. Rotation speed of water (measured at R/10, R/5, and R/2 from the

wall) in a tall vertical cylinder initially at rest and set into rotation (33 rpm)

at t¼ 0. The lines are guides to the eye.
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propose a mechanical model for the motion of a half-empty
bottle in which the fluid is seen as a solid half-cylinder. This
simplification is obviously inappropriate (as discussed in
Sec. III) but allows for a derivation and analysis of the equa-
tions of motion of a half-cylinder, representing the water,
mounted on wheels, representing the bottle [see Fig. 7(a)].
The mass and moment of inertia of the water are denoted m
and IG (computed around its center of mass G), while those
of the bottle alone are denoted M and J. The horizontal posi-
tion of the bottle is described by x and the inclination of the
half-cylinder h. The distance between the center of the bottle
and the center of mass of the water is given by l¼OG¼ 4R/
3p. The model presented here is very similar to that pre-
sented by Jackson et al.,8 in which further technical details
can be found.

Assuming a slip-free rotation of the bottle allows one to
express its rotation speed as _x=R, with the overdot represent-
ing differentiation with respect to time. If all sources of dissi-
pation are neglected (air drag, solid and rolling friction,
viscosity of the fluid, etc.), the equations of motion can be
derived from the Euler-Lagrange equations with kinetic T
and potential V energies

T ¼ 1

2
M _x2 þ 1

2
J

_x

R

� �2

þ 1

2
m ~_x þ ~

l _h

� �2

þ 1

2
IG

_h
2
; (2)

V ¼ mglð1� cos hÞ: (3)

In the small-angle approximation, the equations of motion
then read

M þ J

R2

� �
€x þ m €x þ l€h

� �
¼ 0; (4)

ðIG þ ml2Þ €h ¼ �mglh� ml€x: (5)

Interestingly, these equations are equivalent to a system con-
sisting of a pendulum with an effective moment of inertia
Ieff¼ IGþml2 attached to a block sliding with no friction
[see Fig. 7(b)] with an effective mass Meff¼Mþ J/R2. Note
that the effective moment of inertia Ieff is simply equal to the
moment of inertia IO of the half-cylinder about the symmetry
axis O of the bottle.

The equations of motion (4) and (5) can be combined and
solved (see Ref. 8 for details) to give

€h ¼ A sinðXtþ uÞ; (6)

€x ¼ �A
m

mþMeff

� �
l sin Xtþ uð Þ; (7)

where A (in rad/s–2) and u (in rad) are constants that depend
on the initial conditions and

X�2 ¼ l

g

IO

ml2
� m

Meff þ m

� �
: (8)

V. SLOSH DYNAMICS IN A ROLLING BOTTLE

A. Adaptation of the theory to a rolling bottle

The results presented above can be combined to study the
motion of a half-empty bottle. The moment of inertia IO in
Eq. (8) simply needs to be replaced by that of the first mode
of sloshing given in Sec. III: Is ¼ pqR4Lðð4=p2Þ � ð1=4ÞÞ.
Moreover, for simplicity, the moment of inertia of the bottle

Fig. 5. (a) Picture of the sloshing motion of water within a still cylinder (radius R¼ 5 cm and exposure time¼ 1/10 s). The picture shows neutrally buoyant

tracers (polystyrene spheres of density 1.06 g/cm3 and diameter 700 lm). (b) Velocity field computed from the potential flow given by Ibrahim (Ref. 21). Note

that the velocity decreases with the increasing distance from the free surface.

Fig. 6. Fourier power spectrum of the motion of the free surface in a bottle

first pushed and then held still. The experimental maximum coincides with

the theoretical frequency of the first sloshing mode. The inset shows the

damping of the amplitude over long times.
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itself is assumed to be J¼MR2 and the effective mass
defined in Sec. IV is then simply Meff¼ 2M. The angular fre-
quency of oscillations is therefore given by

X�2 ¼ l

g

Is

ml2
� m

2M þ m

� �
: (9)

Note that the ratio Is/ml2 is only a geometrical constant (’ 1.73)
since l¼ 4R/3p. Moreover, the right-hand side is ensured to
be positive since the term in parentheses can be rewritten as
IG/ml2þ 2M/(2Mþm).

Knowing the initial conditions therefore allows one to
determine the constants A and u in Eqs. (6) and (7) and to
integrate them forward in time. In what follows we will dis-
cuss the motion in two different situations: a half-empty bot-
tle bouncing off a wall and a half-empty bottle rolling down
a gentle slope.

B. Soft collision of a half-empty bottle

1. Theoretical prediction

As explained above, the motion strongly depends on initial
conditions. When a bottle is manually pushed, it is difficult
to accurately determine what force (i.e., acceleration) or
velocity is imposed and the corresponding initial conditions
remain unclear. In order to study a well-defined set of initial
conditions, a half-empty bottle rolling on a flat surface with
speed v0 and without any oscillations is sent to bounce off a
wall (Fig. 8).

When an empty bottle hits a wall, it rapidly bounces back
and much of its energy is dissipated in the collision.
However, in the case of a half-empty bottle, the water it con-
tains rises (as the free surface tilts) and its initial kinetic
energy is converted into gravitational potential energy. If the
mass of the liquid is noticeably larger than that of the bottle
itself, the contact is not instantaneous and the energy of the
water is essentially conserved (as long as viscous effects are
neglected as discussed in Sec. II B). This procedure is a
reproducible and controlled way to set initial conditions at
the time when the bottle leaves the wall (see Fig. 8): x0¼ 0,
_x0 ¼ 0, and h0¼ 0, where the initial rotation speed _h0 is
given by

1

2
Is

_h
2

0 ¼
1

2
mv2

0: (10)

Note that Eq. (10) must be seen as a first-order approxima-
tion, only valid if the mass of the water dominates over that
of the empty bottle. Let us emphasize again that viscous dis-
sipation is neglected, that the water is assumed to be at rest

prior to the collision (i.e., the thin boundary layer set in
motion is neglected), that the inelasticity of the collision of
the bottle itself is neglected, that only the first mode of slosh-
ing is considered, and that we focus only on the case of small

Fig. 7. Schematic diagrams of (a) a half-cylinder mounted on wheels and (b) an equivalent system consisting of a pendulum attached to a sliding block with

the effective moment of inertia and masses.

Fig. 8. A half-empty bottle is sent to bounce off a wall. During the impact,

the fluid is set into rotation, which triggers oscillations in the velocity when

the bottle leaves the wall.
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amplitude oscillations. In a more thorough and comprehen-
sive analysis, these effects should be taken into account
although this would likely preclude a simple physical under-
standing. Moreover, as we will show, the agreement with
experimental measurements is excellent, which in retrospect
supports the simplifying assumptions made.

Under the conditions described above, the motion of the
fluid and the bottle given in Eqs. (6) and (7) read

_h ¼ _h0 cosðXtÞ; (11)

_x ¼ bv0

m

2M þ m

� �
1� cos Xtð Þ½ �; (12)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=Is

p
’ 1:32.

2. Experimental validation

A cylindrical Plexiglas bottle with a radius (R) of 50 mm,
a thickness of 4 mm, and a length (L) of 50 cm was used to
test the theoretical predictions. The mass of the empty bottle
(including the end caps) was M¼ 0.910 kg, and the mass of
water used (corresponding to a half-empty bottle) was
m¼ 1.74 kg. The bottle’s position was determined using
video analysis (at 30 fps), and the velocity was computed as
its numerical derivative. The results are presented in Fig. 9.
The velocity prior to the impact, v0, is seen to be approxi-
mately constant (with small fluctuations, in part due to the
image processing), while after the impact (indicated by the
vertical dashed lines), the velocity is oscillatory. One can see
that the bottle undergoes a stop-and-go motion since the
velocity periodically reaches zero. This feature is visible in
the space-time diagram in Fig. 1.

The prediction given by Eq. (12) is shown in Fig. 9 by
the solid curve (red online). It is worth noting that there are
no fitting parameters to this prediction. The initial velocity
v0 is measured as the average before impact, while the
oscillation frequency X is determined from the duration of
the impact, which corresponds to one half-period. The
agreement between the experimental data and the theory is
excellent, supporting the validity of the numerous assump-
tions made.

C. Half-empty bottle on a gentle slope

1. Theoretical prediction

Another protocol used to produce reproducible and con-
trolled initial conditions consists of letting a half-empty bot-
tle roll down an inclined plane of slope a (which must
remain small enough to ensure no-slip motion of the bottle).
Here, the inclination of the free surface, h, is measured with
respect to the plane angle a. The gravitational potential
energy of the bottle and the fluid needs to be included in the
Euler-Lagrange equations, which yield equations of motion
(in the small-angle approximation)

2M€x þ mð€x þ l€hÞ ¼ ðM þ mÞga; (13)

Is
€h ¼ �mglðh� aÞ � ml€x: (14)

For a bottle initially at rest (with h0¼ a), the solution is
found to be

_x ¼ M þ m

2M þ m
agtþ m M þ mð Þ

2M þ mð Þ2
alX sin Xtð Þ: (15)

The velocity is composed of two separate terms: the first is
an average (constant) acceleration (smaller than ag as dis-
cussed in Sec. II), while the second is oscillatory.

2. Experimental validation

A cylindrical Plexiglas bottle of radius R¼ 44 mm and
length L¼ 170 mm was used to test the theoretical predic-
tions. The mass of the empty bottle was M¼ 0.140 kg, and
the mass of water used (corresponding to a half-empty bot-
tle) was m¼ 0.510 kg. The bottle was placed on a table
inclined at an angle of a¼ 15�, and its position was deter-
mined using video analysis (at 500 fps) with the velocity
computed as its numerical derivative. The results are pre-
sented in Fig. 10.

The experimental data confirm the basic theoretical pre-
dictions: the bottle rolls down the slope with an average con-
stant acceleration and oscillations in the speed are clearly
visible. The average experimental acceleration is in excellent
agreement with the predicted value. The velocity fluctuations
D _x defined as the difference in velocity from the linear
behavior are shown in the bottom of Fig. 10, where the solid
curve (red online) shows the theoretical predictions. The
agreement for the oscillations is fairly good initially but gets
worse as time goes on. The discrepancy might be due to the
failure of the decoupling assumption. It should be empha-
sized once again that there are no fitting parameters: all val-
ues are deduced from the simple measurement of the masses
and sizes. The amplitude, frequency (X/(2p)), and phase are
those given by Eqs. (8) and (15).

VI. CONCLUSION

In conclusion, we have investigated and modeled the
motion of a half-empty bottle rolling on a flat surface. We
showed that over the duration of a typical experiment, the
rotation of the water and of the bottle is decoupled, which
can also be predicted from the Navier-Stokes equation. A
simple mechanical toy-model allowed for the derivation of
the equation of motion, while the exact motion of the fluid is
well described by the first mode of sloshing under the

Fig. 9. Velocity of the half-empty bottle experiencing a soft collision with a

wall. The velocity is constant before the impact (first dashed line), and oscil-

lations are triggered after the bottle leaves the wall (second dashed line).

The solid curve (red online) shows the velocity predicted using Eq. (12);

there are no fitting parameters, and the agreement is excellent.
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assumption of an inviscid fluid. Experiments performed on a
bottle bouncing off a wall and rolling down a gentle slope
provided experimental support for the assumptions used in
the models.

The limitations of our work deserve further attention. For
example, the decoupling of the rotation of the fluid and the
bottle will not hold for smaller radii. Thus, if a test-tube of
radius R¼ 1 cm is used, the diffusion time is of the order of a
few seconds and the entire fluid can be set into a rigid-body
rotation. The same conclusion can be drawn if a more vis-
cous fluid is used; vegetable oils are typically 50 times more
viscous than water, leading to a diffusion time of the order of
one second. Finally, we should recall that the equations were
derived in the small-angle approximation and that an exact
study of larger amplitudes could reveal surprising results.

The potential flow gives an accurate description of the
motion of the water in the bottle, but the effect of the viscos-
ity is visible in Fig. 6. A comprehensive study of the viscous
dissipation in the boundary layer might deserve further atten-
tion. Similarly, the effect of static and rolling friction of a
bottle rolling on a surface, as well as that of drag caused by
the surrounding air, could be studied to provide one with a
more realistic description of the motion over long times.

It would be interesting to vary the filling fraction of the
bottle. Obviously, there can be no oscillations in a bottle
either completely full or empty. Therefore, there must exist
an optimal filling fraction for the oscillatory motion studied

in this paper. It is unclear whether the optimal value should
correspond to a filling fraction of one half.

Finally, whether the bottle should be seen as half-empty or
half-full remains an open question which goes far beyond
the scope of this paper and certainly deserves further
investigation.
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Fig. 10. Top: velocity of a bottle released on a 15� incline. On average, the

bottle undergoes a constant acceleration, but oscillations in the velocity are

clearly visible. The solid line (red online) shows the predicted average accel-

eration. Bottom: deviation from the constant acceleration highlighting the

oscillations. The solid curve (red online) shows the theoretical prediction.
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