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A quasi-static theoretical 1D model is developed to describe the sheath structure of a strongly

emissive plasma-facing material and is subsequently applied to emissive probes’ experimental

data—which are usually supposed to be an efficient tool to directly measure plasma potential

fluctuations. The model is derived following the space-charge limited emission current model

developed in Takamura et al., [Contrib. Plasma Phys. 44(1–3), 126–137 (2004)], adding the contri-

bution of secondary emission due to back-diffusion of plasma electrons at the emitting surface.

From this theory, current-voltage characteristics of emissive probes are derived. A theoretical rela-

tion between the floating potential of an emissive probe and plasma parameters is obtained and a

criterion is derived to determine the threshold between the thermoemission limited current regime

and space-charge limited current regime. In the space-charge limited regime, a first order expansion

is then applied to the quasi-static relation to study the effect of plasma fluctuations on emissive

probe measurements. Both the mean values and the fluctuations of the floating potential of an emis-

sive probe predicted by the model, as well as the potential value at which the transition between

emission current regimes occurs, are compared to three sets of experimental data obtained in two

different plasma devices. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973557]

I. INTRODUCTION

The study of electron emitting surfaces is of great inter-

est for plasma physics. First, an emissive enough floating

conducting surface has a mean electric potential close to that

of the surrounding plasma. This has led to the wide use of

emissive probes20,21 in which the floating potential of a

strongly emissive material is interpreted as a direct measure-

ment of plasma potential—up to frequencies low compared

to the ion plasma frequency. Second, when a surface

becomes emissive, emitted electrons modify the electric

potential in the sheath ahead, which in turn affect thermal

fluxes on the surface. This question has strong implications

in the field of magnetic controlled fusion. For instance, the

divertor in ITER (that will receive most of the thermal flux

from the plasma) is expected to reach temperatures so high

that it could be strongly emissive.

A precise understanding of the sheath structure facing

emissive material surface is thus required to model incident

particles and heat fluxes on the surface. Restricting ourselves

to electrostatic probes, this is a recurrent problem for the

analysis of emissive probes heated by an external controlled

process, often used in low-temperature plasmas to measure

the plasma potential and its low-frequency fluctuations.20

This is also an important issue for reciprocating probes, used

to study edge plasma in tokamaks, which are plunged during

a very short time into hot plasmas that makes them occasion-

ally self-emissive.2 In the context of fusion plasmas, a pre-

cise estimation of particle and heat transport requires a

precise measurement of the phase between plasma density

and plasma potential fluctuations, and emissive probes are

considered for the measurement of the latest (see the under-

going development of a probe head for TCV and ASDEX

UG plasma devices under the WPMST2 project1 and a newly

developed emissive probe18). A precise understanding of the

behavior of emissive probe is thus a key issue when address-

ing turbulent plasma transport, especially in the case of drift

wave turbulence.

While it is now widely accepted that the time-averaged

value of the floating potential of emissive probes can equal

the surrounding plasma potential in cold plasmas,3 it has

been recently shown that the fluctuations of the floating

potential can differ significantly from the fluctuations of the

plasma potential, both in phase and amplitude.4,5 Moreover,

the experimental investigation reported in Ref. 5 demon-

strated that the fluctuation level of the floating potential of

emissive probes follows a thermoemission limited current

model only for low emission currents. Above a critical value

of the emission current, fluctuations of the floating potential

go clearly off the model curve. This non-monotonic evolu-

tion of the floating potential evolution is suspected to be the

signature of a transition to a space-charge limited current

regime.

In this article, we develop a theoretical framework to

account for the above two observations. More specifically,

we derive current-voltage characteristics of emissive probes

in the space-charge limited regime, as the classical model for

thermoemission limited current regime did not account for

experimental measurements described in Refs. 4 and 5. The

thermoemission regime exists as long as the potential profile

in the sheath is monotonic (see Fig. 1(a)), so that the
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emission current density reaching the plasma is only limited

by the wall emissivity (usually controlled by its tempera-

ture). The transition to the space-charge regime is observed

when the low energy electrons emitted from the surface

would have a too high current density or would not be accel-

erated enough by the sheath drop, so that their density at the

plasma/sheath edge would be too large and, eventually,

break plasma quasineutrality, if the potential profile were to

be monotonic. Before that occurs, a virtual cathode appears

in front of the wall that has a lower potential than the wall

potential. It filters out the low energy emitted electrons in

such a way that a given current density of passing emitted

electrons is associated with a lower density at the plasma/

sheath boundary. Note that the potential drop also repels a

fraction of incoming electrons. The existence of virtual cath-

odes was postulated and demonstrated by the pioneering

work of Langmuir,12 and then investigated in details by

Kemp and Sellen.10 More recently, detailed measurements of

virtual cathode structures caused by secondary electron

emission13 have been reported in low density plasmas. In

this article, we extend the work presented in Ref. 23 by add-

ing the effect of secondary electron emission by retrodiffu-

sion of primary electrons. The addition of this new

ingredient is motivated by the fact that between 10% and

40% of primary electrons reaching a tungsten wall could

bounce on it.11 Recently, even larger values have been mea-

sured on the carbon fiber composite (CFC) component in the

plasma edge of a tokamak.8 This has implication on the

mean floating potential value of the probe as well as on its

fluctuations as the rebound current would follow plasma fluc-

tuations. The model developed in this work enables us to

provide predictions for the relations between fluctuations of

the floating potential of emissive probes and fluctuations of

the plasma potential in the space-charge regime. It is then

compared to experimental results.

The article is organized as follows. In Section II, a

model for the space-charge limited emission current regime

is derived, following the calculation given in Ref. 23 and

adding retrodiffusion of primary electrons. In this section,

we also derive an analytical expression of the potential drop

between the wall and the virtual cathode potentials. We then

show how to obtain I-V characteristics from the model and

discuss the implications of the rebound electrons on the

sheath characteristics, and hence floating potentials, virtual

cathode potential drop or particles fluxes at the emissive sur-

face. In Sections III and IV, this model is compared to exper-

imental results. In Section III, the onset temperature at which

the emissive wall enters the space-charge limited regime is

derived and compared to experimental data from emissive

probes. In Section IV, we compare fluctuations from the

space-charge model developed in this article and experimen-

tal data. In Section V, results are discussed and we come to a

conclusion.

II. CURRENT LIMITED BY SPACE-CHARGE REGIME

This section is devoted to the derivation of a 1D model

of a plasma sheath in front of an emissive wall when the

emission current is large enough to be limited by the space-

charge effect. In short, when the current density of electron

emitted from the wall is low enough, the potential profile in

the sheath is monotonic; this regime is usually referred to as

the thermoemission current limited regime since the amount

of emitted electrons reaching the plasma is controlled by the

emissivity of the wall (which is usually set by the tempera-

ture for a given type of emissive material such as tungsten or

LaB6). On the other hand, when the current density of elec-

tron emitted from the wall is large enough, the potential pro-

file in the sheath is non monotonic. The minimum value of

the potential profile is no more reached at the wall, but

within the sheath, giving rise to a so-called virtual cathode
(in other words, this is obtained when the equilibrium rela-

tions require a negative electric field at the wall). The exis-

tence of this virtual cathode leads to a reflection of part of

the emitted electrons back to the wall; this regime is usually

referred to as the space-charge current limited regime since

the amount of emitted electrons reaching the plasma is

mainly controlled by the potential drop between the wall

potential and the virtual cathode. Fig. 1 shows a schematic

view of the sheath structure and associated particles fluxes in

both regimes, in which the minimum of the sheath potential

is located at x¼ 0. Fig. 1(a) displays the thermoemission cur-

rent limited regime: the potential profile is monotonic and

the electric is oriented towards the wall at the wall location.

Fig. 1(b) displays the space-charge current limited regime:

the potential profile is non-monotonic and the electric is ori-

ented outwards of the wall at the wall location. The transition

between both regimes is observed for a zero electric field at

FIG. 1. Schematic of 1-D static sheath under (a) thermoemission limited

regime (b) space-charge limited regime. See text for details.
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the wall. In the remaining of this section, one will restrict

oneself to the space-charge current limited regime and derive

a model for the sheath including rebound electrons, which

are shown to strongly influence the sheath characteristics.

A. Hypothesis of the model and outline

Most of the hypothesis and conventions necessary for

the derivation of this model are summarized in Fig. 1(b),

which displays typical spatial evolutions of the sheath poten-

tial. A hot emissive wall at a wall temperature Tw and poten-

tial uw is facing a plasma, supposed to be at infinity, of

density n0, whose plasma potential is up. The distribution

function of electrons from the plasma is assumed to be a

Maxwellian with electron plasma temperature Tp
e and the

ions, of mass mi, are considered cold. A Maxwellian distribu-

tion function is also assumed for the electrons emitted by

the hot emissive wall, with a temperature Te
e ¼ Tp

e=C. We

assume that the plasma is hot enough so that Tp
e is greater

than Te
e , and hence the constant C is greater than one. Note

also that Te
e could differ from Tw. In the remaining, the super-

script p stands for plasma or primary electrons, and the

superscript e stands for emitted electrons at the wall, while

Takamura and co-workers used a superscript s standing for

secondary electrons; our choice was motivated to avoid con-

fusion with true secondary emission. The sheath is assumed

to be collisionless, implying energy and flux conservation.

The electron mass will be denoted as me, and the elementary

charge as e. Normalized potentials U are defined as

U ¼ ðu� upÞ=Tp
e ; dimensional potentials and temperatures

are given in volts and in electron-volts, respectively.

For simplicity, the problem is assumed to be one dimen-

sional and static. The hot emitting surface emits a sufficient

amount of electrons so that a drop of potential occurs in front

of the wall. The space potential UðxÞ is equal to Uw at the

wall location x ¼ xw � 0 and reaches a minimum Uvc at the

virtual cathode location x¼ 0. The sheath entrance or plasma

limit is at x! �1. Following the notations of Ref. 23 (see

also Fig. 1(b)), the sheath region at x< 0 is labeled a (i.e.,

between the plasma and the virtual cathode), while the

sheath region at x> 0 is labeled b (i.e., between the virtual

cathode and the wall).

We follow the lead of Takamura and co-workers23 and

add to the calculation a new population of electrons: the pri-

mary electrons that have rebounded elastically on the mate-

rial as their contribution could be non-negligible. As a

novelty, we also derive a model for the potential of a floating

material by establishing numerically the dependence of the

virtual cathode potential with the different plasma parame-

ters. In addition, we give a method for calculating the emis-

sion electron temperature at which the transition occurs

between current limited by thermoelectron emission and the

space-charge limited regime.

For the sake of clarity, and before detailing the deriva-

tion, we first provide a brief outline in Subsections II B–II E

which establish a relation between Uw and Uvc, as well as a

framework for numerical integration of I–V characteristic of

emissive probes in the space-charged limited regime. From

the dynamics of charged particle populations in regions a and

b, we seek expressions of the current densities associated with

each of these populations in Subsection II B. In Subsection

II C, these current densities are then expressed as a function of

Uvc; Uw, M, c, where M is the Mach number and c is the ratio

of passing emitted electrons current density over the passing

plasma electron current density. In Subsection II D, a modified

Bohm criterion, derived from Poisson’s equation in region a,

enables us to express M as a function of c and Uvc, and a rela-

tion between c and Uvc is also obtained from the condition of

zero electric field at the virtual cathode (or equivalently mini-

mum of potential). Finally, in Subsection II E, matching the

current densities computed for each population at the virtual

cathode leads to an explicit relation between Uvc and Uw that

leads to a theoretical expression of the wall floating potential

or to numerical integration of I–V characteristic of emissive

probes under the space-charge regime.

B. Densities in region a and current densities of
passing particles

In this subsection, particle densities for each population

are expressed in the region a. The current densities of pass-

ing particles, those able to override the potential barrier

created by the virtual cathode, are then derived.

1. Cold plasma ions

Let us first deal with the dynamics of ions. Assuming

that cold ions of mass mi are accelerated from the plasma in

the sheath potential with no collisions, the ion density niðxÞ
and ion velocity viðxÞ are derived from flux conservation

dðniviÞ=dx¼ 0 and energy conservation miviðxÞ2þ2eTp
e UðxÞ

¼Cte, as

vi xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 �
2eTp

e U xð Þ
mi

s
and

ni xð Þ ¼ n0 1� 2U xð Þ
M2

� ��1=2

;

(1)

where n0 is the ion density in the plasma (at x! �1), V0 is

the ion velocity at the sheath entrance, and the Mach number

at the sheath entrance M is defined as M ¼ V0=cs with the

sound speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTp

e=mikB

p
, kB being the Boltzmann con-

stant. Since ions are collisionless, the ion current density

jiðxÞ is constant in the region a and reads

jiðxÞ ¼ jis ¼ en0Mcs; (2)

where jis is the ion saturation current.

2. Electrons emitted by the wall

In the space-charge limited regime, only part of the elec-

trons emitted by the wall, those having a sufficiently high

velocity to override the virtual cathode potential barrier

ðUvc � UwÞ, reach the a region. The calculation, detailed in

the work by Takamura and coworkers,23 is only briefly

recalled here. Assuming energy and flux conservation and a

Maxwellian distribution function f eðveÞ of emitted electrons

at the wall location x ¼ xw, the density of passing emitted

electrons reads

013506-3 Cavalier et al. Phys. Plasmas 24, 013506 (2017)



ne
e;pass xð Þ ¼ N0

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C U xð Þ � Uvcð Þ

p� �
exp C U xð Þ � Uwð Þð Þ;

(3)

where N0 is the emitted electron density at the wall and

erfcðyÞ the complementary error function defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4bÞ

p
erfcða

ffiffiffi
b
p
Þ ¼

Ðþ1
a e�bx2

dx. It is worth emphasizing

that the above expression for the density of emitted electrons

ne
e;pass is the total density of emitted electrons in region a,

while it only represents part of the emitted electrons density

in region b. The mean velocity of passing electrons is then

computed as

hve
eipass ¼ �

ð�ve
min

�1
vef e veð Þdveð�ve

min

�1
f e veð Þdve

¼ �
ffiffiffiffiffiffiffiffi
2Te

e

pme

r
exp �C U xð Þ � Uvcð Þð Þ

erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C U xð Þ � Uvcð Þ

p� � ; (4)

where ve
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTp

e ðUw � UvcÞ=me

p
is the minimum velocity

necessary for an electron emitted at the surface to override

the virtual cathode potential barrier. The current density of

passing emitted electrons reads

jee;pass ¼ ene
e;passhve

eipass ¼
1

2
eN0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eTe

e

pkBme

r
exp C Uvc � Uwð Þð Þ:

(5)

It is this emission current that contributes to the probe cur-

rent as the non-passing electrons are counted once positively

when leaving the wall and once negatively when returning,

resulting in a zero net current. This current is also called the

space-charged limited current.

3. Primary plasma electrons

In the region a between the plasma and the virtual cath-

ode, the primary electrons are in equilibrium under the action

of an electrostatic field and therefore their density follows

the Boltzmann law np
eðxÞ ¼ np

e0 expðUðxÞÞ, where np
e0 is the

primary electron density at x! �1. Note that np
e0 6¼ n0 as

some electrons coming from the emissive wall (either emit-

ted or rebound electrons) are also present in the plasma and

are to be accounted for quasi-neutrality. The density np
e;pass

and the density current jp
e;pass of passing primary electrons are

also estimated similarly to the derivation of Eq. (3), as

np
e;pass xð Þ ¼ np

e0

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U xð Þ �Uvc

p� �
exp U xð Þð Þ and

jp
e;pass ¼

1

2
enp

e0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eTp

e

pkBme

s
exp Uvcð Þ:

(6)

4. Rebound electrons

We now add a new ingredient that was not incorporated

in the work by Takamura and coworkers23 by considering

the part of primary electrons that elastically collides with the

wall and go backward. The contribution of such electrons to

the total current can be non-negligible as between 10% and

40% of primary electrons reaching a tungsten wall bounce

on it,11 and up to 80% at low plasma temperature according

to Ref. 8 for CFC wall in tokamaks. Moreover, as we con-

sider collisions to be elastic, all primary electrons bouncing

on the wall have a sufficiently high kinetic energy to over-

ride the potential barrier again. Thus, the rebound electron

density at the wall location xw is defined as nr
eðxwÞ

¼ �crn
p
e;passðxwÞ with cr the rebound coefficient believed to

be between 0.1 and 0.4 as previously stated. Assuming elas-

tic collisions and flux conservation, the current density of

rebound electrons is defined as jr
e ¼ �crj

p
e;pass, and this equal-

ity holds everywhere, leading to

jr
e ¼ �

cr

2
enp

e0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eTp

e

pkBme

s
exp Uvcð Þ: (7)

5. True secondary emission

In this model, the contribution of true secondary elec-

trons is not taken into account. The reason is the following.

Secondary electrons are created by collisions with the wall

either of passing primary electrons either of returning emit-

ted electrons not able to override the potential barrier.

Secondary electrons that are created from passing primary

electrons jp
e;pass lead to a very small current at the wall com-

pared to the emitted current (which will be verified

a posteriori in Section II E), and thus those passing second-

ary electrons are a small fraction of the total passing elec-

trons. Very few secondary electrons are created by low

energy emitted electrons that bounce in the virtual cathode

and come back to the wall as their temperature is low

(Te
e � 0:3 eV maximum) leading to a secondary emission

coefficient close to zero.11 Thus, true secondary emission is

to be taken into account only in regimes where emission cur-

rent is temperature limited.

C. Determination of edge densities

Before using the different densities in Poisson’s equa-

tion, one can notice that two constants are to be determined:

the density of emitted electrons at the surface N0 and the

density of primary electrons at the plasma/sheath boundary

ne0. Quasineutrality at the plasma/sheath edge leads to the

relation

n0 ¼ np
e0 þ ne

e;passð�1Þ þ nr
eð�1Þ; (8)

where we recall that n0 is the plasma ion density. It is useful

to define the ratio c as the ratio of the passing emitted elec-

tron current density over the passing plasma electron current

density as c ¼ �jee;pass=jp
e;pass. This c coefficient is similar to

the true secondary cs or rebound cr emission and may be

understood as an effective coefficient linking the emitted

electron current density reaching the plasma with the plasma

electron current density reaching the wall in the presence of

a virtual cathode. Quasineutrality leads to the following

relations:
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N0 ¼ cnp
e0C�1=2 exp Uvc þ Uw � Uvcð Þ=Cð Þ

np
e0 ¼

n0

1þ AGþ ArGcr=c
;

8><
>: (9)

with

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pCUvc

p
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CUvc

p� �
exp �CUvcð Þ

G ¼ c
2
�pUvcð Þ�1=2

exp Uvcð Þ

Ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pUvc

p
erfc

ffiffiffiffiffiffiffiffiffiffiffi
�Uvc

p� �
exp �Uvcð Þ:

8>>><
>>>:

(10)

D. Bohm criterion

The previous analysis shows that there are still four

independent parameters for estimating the different currents:

the Mach number M, the ratio c, the virtual cathode potential

Uvc, and the wall potential Uw such that the total density cur-

rent flowing through the wall can be expressed as jtot

¼ f ðM; c;Uvc;UwÞ. In this section, a modified Bohm crite-

rion, classically established by integration of the Poisson’s

equation, settles M as a function of Uvc and G—or equiva-

lently as a function of Uvc and c from Eq. (10). Moreover,

using the fact that the virtual cathode is a local minimum of

the potential (equivalently that the electric field is zero at the

virtual cathode) leads to express c as a function of Uvc.

Finally, the total current density may be expressed as a func-

tion of Uw and Uvc, allowing for the computation of the float-

ing potential of the hot wall or for the computation of the I-V
characteristic of emissive probes.

Introducing n as the space variable normalized to the

Debye length kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0eTp

e=ðn0kBÞ
p

with �0 the vacuum per-

mittivity, Poisson’s equation in region a reads

d2U nð Þ
dn2

¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2U nð Þ

M2

r þ 1

1þAGþArGcr=c

� eU nð Þ 1þ cr

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U nð Þ�Uvc

p� �� �	

þG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pUvcC

p
eC U nð Þ�Uvcð Þerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C U nð Þ�Uvcð Þ

p� �

:

(11)

This equation can be integrated between �1 and n by

multiplying each side by dU=dn and employing zero electric

field at the plasma/sheath edge as boundary conditions. As

the left hand side ðdU=dnÞ2 is always positive, a solution of

this equation only exists if the right hand side is positive as

well. This implies a condition on the Mach number M and

so on the ion velocity at the entrance of the sheath. Such a

condition can be found by making a second order Taylor

expansion of the right hand side near the sheath edge

x! �1, where U and dU=dn tend to zero. We then find a

modified Bohm condition for a stable sheath formation

which is

M2 � 1þ AGþ ArGcr=c

1þ C A� 1ð ÞGþ G2 Ar � 1ð Þc2
r=c

2
: (12)

This criterion is similar to the one obtained in Ref. 23,

with additional terms accounting for rebound electrons.

Using the fact that the electric field is zero at the virtual cath-

ode (i.e., dU=dnðU ¼ UvcÞ ¼ 0) and using the marginal con-

dition for the Bohm criterion (i.e., equality condition in Eq.

(12)) a fourth order polynomial expression in c (through G)

is obtained as

ð1þ CðA� 1ÞGþ G2ðAr � 1Þc2
r=c

2Þ
� ðb0 þ b1Gþ b2G2 þ b3G3Þ ¼ 0; (13)

where b0, b1, b2, and b3 are coefficients that are not specified

for conciseness and that depend on A and C and thus only on

Uvc and on the plasma parameters. Solving this polynomial

expression allows us to express c as a function of Uvc, so that

both c and M are only functions of Uvc. Roots of 1þ CðA� 1Þ
Gþ G2ðAr � 1Þc2

r=c
2 have no physical meaning because it

corresponds to M!þ1 (Eq. (12)). The right-hand part of

Eq. (13) can be solved by the Cardan method. It has a positive

discriminant and thus three real solutions, from which only one

satisfies G> 0 (see Eq. (10)).

E. Relation between Uw and Uvc

Plugging N0 from Eq. (9) in Eq. (5) allows us to rewrite

the current density of passing emitted electrons as

jee;pass ¼ jis
G

1þ AGþ ArGcr=c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

mi

me
Uvc

r" #
: (14)

This current density may also be expressed using the

Richardson-Dushmann’s formula. The emitted current den-

sity at the wall x ¼ xw is given by

je;wall ¼
A0

2
T2

w exp �uwork

Tw

� �
; (15)

where A0 the Dushman’s constant and uwork the so-called

work function.

Accounting for the drop of potential in front of the wall,

the current density of passing emitted electrons at the virtual

cathode is

je
e;pass ¼

A0T2
w

2
exp �C0Uworkð Þexp C Uvc � Uwð Þð Þ: (16)

These two expressions enable us to relate Uw and Uvc

Uw ¼ Uvc � Uwork

C0

C

þ 1

C
ln

T2
wA0

jis

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� me

8Uvcmi

r
1þ AGþ ArGcr=c

G

" #
; (17)

where we have introduced C0 ¼ Tp
e=Tw. The influence of

rebound on the virtual potential drop Uw � Uvc is discussed

further in Subsection II F, but Eq. (17) clearly shows that

Uw � Uvc increases with cr and hence with the amount of

rebound electrons.
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F. Virtual cathode potential drop in front of the probe

It is now instructive to examine how the virtual cathode

potential drop Uw � Uvc evolves with the values of the

plasma parameters and the bias of the wall Uw. Note that an

analytical expression for this potential drop cannot be

straightforwardly deduced from Eq. (17), since A;Ar, and G
depend on Uvc. In order to compute this potential drop, a pri-
ori Uvc values are set and corresponding Uw values are calcu-

lated from Eq. (17). Figure 2(a) displays the evolution of the

potential drop Uw � Uvc as a function of the bias Uw for

different values of the plasma parameters (we recall here

that potentials are normalized to the plasma electron temper-

ature Tp
e ).

A first observation is that the potential drop increases

with Uw; in other words, the potential well at the virtual cath-

ode becomes shallower when the probe approaches the

plasma potential. This evolution is coherent with the qualita-

tive explanation for the formation of the virtual cathode,

given in the introduction and extended in the remaining of

this subsection. As Uw increases, all other parameters being

constant, the low temperature emitted electrons are less

accelerated in the sheath potential drop. If the virtual cathode

potential drop were to stay constant, the flux of passing emit-

ted electrons would stay constant (as we assume flux conser-

vation). As their velocity at the plasma/sheath boundary

would be smaller, their density at that location would

increase. To maintain electroneutrality at the plasma sheath

edge, a higher virtual cathode drop is necessary to filter out

the slowest electrons, so that emitted electrons reaching the

plasma have a higher mean velocity. This results in a lower

flux and a lower density of emitted electrons at the plasma/

sheath boundary. A second observation is that when the

probe is significantly emissive and when its potential is close

to the plasma potential, the potential drop is a non-negligible

fraction of the plasma electron temperature. Thus, as the

temperature of emitted electrons is usually much lower than

Tp
e , only a small fraction of the emitted electrons can over-

ride the potential barrier (the queue of the velocity distribu-

tion). It is thus clear that the emitted electron current at the

wall is much larger than the passing emitted electron current,

and thus than the passing plasma electron current, which jus-

tifies the assumption made at the last paragraph of Section

II B—namely, to neglect true secondary emission.

Let us now investigate how the potential drop Uw � Uvc

evolves with the plasma parameters (see Fig. 2(a)). The

plasma density is observed to be a leading parameter: the

potential drop increases with decreasing plasma density.

This can also be qualitatively understood from the fact that

the virtual cathode shields the plasma from a flux of too slow

(cold) emitted electrons. For a given emitted electron flux at

the wall (Tw is fixed) and for a given wall potential, the emit-

ted electron density at the plasma/sheath boundary is set by

the virtual cathode potential drop. Decreasing the electron

plasma density, all other parameters being kept constant,

requires a larger virtual cathode potential drop to filter out

more slow electrons and to reduce the emitted electron den-

sity at the plasma/sheath boundary to ensure quasineutrality.

This evolution is observed in Fig. 2(a): the virtual cathode

potential drop increases by more than 50% when the plasma

density decreases from 1018 m�3 (solid black curve) to

1017 m�3 (red squares). On the other hand, the plasma elec-

tron temperature has a very weak influence on the virtual

cathode potential drop Uw � Uvc: as potentials are normal-

ized to Tp
e , the ratio between the 5 eV (full solid black curve)

and 2.5 eV (blue bullets) data, namely, 2.11 6 0.07, is

weakly significant. We can conclude from this that the

virtual cathode potential drop strongly depends on the elec-

tron plasma density but not on the primary electron current

density, in agreement with the qualitative explanation given

above.

Note that for a lower value of the wall temperature (green

crosses), the computation according to the space-charge lim-

ited regime predicts a negative value for the potential drop;

this indeed means that the current is no more limited by the

space-charge effect but simply by thermoemission.

Let us now focus on the influence of cr on the virtual

cathode potential drop that forms in front of the emissive

wall. Fig. 2(b) displays the evolution of Uw � Uvc as a func-

tion of Uw for the reference plasma parameters and three val-

ues of cr. Clearly, rebound electrons have no influence when

the wall potential is sufficiently negative as most of primary

electrons have not enough energy to reach the wall.

However, when the wall potential approaches the plasma

potential, the virtual cathode potential drop increases with cr

and, near the plasma potential, increasing cr from 0 to 0.8

leads to an increase by 10% of Tp
e of the virtual cathode

potential drop Uw � Uvc for the reference conditions. Since

Tp
e is usually larger than Te

e , it means that the fraction of

emitted electrons able to override the potential barrier drops

significantly, those emitted electron being replaced by pri-

mary electrons that rebound on the wall. It is of importance

when considering a floating emissive probe because a non

negligible part of current leaving the probe would be

replaced by a current fluctuating as the plasma current (see

Fig. 3 for cr¼ 0.3 near the floating potential). This also has

FIG. 2. Evolution of the normalized potential drop Uw � Uvc as a function

of the normalized bias Uw. The solid black lines in (a) and (b) correspond to

an Argon plasma with n0 ¼ 1� 1018 m�3; Te
e ¼ Tw ¼ 0:31 eV, Tp

e ¼ 5 eV,

cr ¼ 0:3; uwork ¼ 4:5 eV, and A0 ¼ 1:2� 106 A m�2 K�2 (tungsten sur-

face). The other curves are plotted for the same parameters except for the

one specified in the legend.
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implication on thermal flux that would reach the wall as less

plasma electrons are able to override the potential barrier

and could be an important effect in the divertor of tokamaks,

for instance.

G. I–V characteristics in the space-charge regime

From the previous computation, the total I–V character-

istic of an emissive probe in the space-charge limited regime

can also be computed. Once the set of parameters ðUvc;UwÞ
is known, the total current jtotðUwÞ ¼ ji þ jpe;pass þ je

e;pass þ jr
e

flowing through an emissive wall biased at the associated

potential Uw is then computed from Eqs. (2), (5), (6), and

(7). An example of two I–V characteristics in the space-

charge limited regime is given in Fig. 3 (solid black line for

cr ¼ 0:3 and dashed purple one for cr ¼ 0). Note that for the

case cr ¼ 0:3 and in the vicinity of the floating potential

(Uw � �0:5), the rebound electron current reaching the

probe is a significant part of the total current, on the order of

the passing electron emission current. The comparison

between the black solid and dashed purple lines shows that

the rebound electron current increases the floating potential

and modifies significantly the total current flowing through

the probe near the plasma potential. It shows the importance

of this electron population when dealing with emissive

probes under the space-charge effect. One benefit of this

computation could be to experimentally measure the coeffi-

cient of rebound electrons cr. Since the I–V characteristic

does not depend on the true secondary emission cs in the

space-charge limited regime, a fitting procedure of experi-

mental characteristics would provide an estimate of cr, pro-

viding that the temperatures of the emissive probe (Tw) and

of the emitted electrons (Te
e ) are known.

H. Virtual cathode potential for a floating hot surface
under the space-charge regime

When the wall is at the floating potential, Uw ¼ Uf l, there

is no net current flowing through the wall, jtotðUf lÞ ¼ 0. For

this peculiar condition, c ¼ �je
e;pass=jp

e;pass may be expressed

as a function of the plasma and material parameters (C, cr,

and mi=me)

c Uf lð Þ ¼ 1� cr�
ffiffiffiffiffiffiffiffiffiffiffi
2pme

mi

r
M 1þAGþArGcr=cð Þexp �Uvcð Þ:

(18)

In that case, the associated virtual cathode potential is

computed as the value of Uvc for which the root of the poly-

nomial equation in G (Eq. (13)) equals the value of G given

from Eq. (10) using the above expression cðUf lÞ for its calcu-

lation. This is done numerically with a precision close to the

computer precision and repeated for different sets of plasma

parameters (C, cr, and mi=me). C is varied from 1 to 100 by

step of 1, cr from 0 to 0.8 by step of 0.01, and mi=me from

1836 to 100 � 1836 by step of 10 � 1836. We then proceed

to a multivariable polynomial fit of the numerical Uvc to the

seventh order of the form

f C; cr;
mi

me

� �
¼
X7

n¼0

X7

m¼0

X7

p¼0

an;m;pCncm
r

mi

me

� �p

; (19)

where ðan;m;pÞðn;m;pÞ2½0;7�3 are polynomial coefficients.

This leads to an estimation of Uvc that can be used to

compute the floating potential Uf l in Eq. (17) for a non zero

electron emission temperature Te
e , extending the work of

Hobbs and Wesson.9 It is worth mentioning that the discrep-

ancy between the numerical value of Uvc and the fit is always

lower than 1% for cr � 0:8 (which covers any practical

situation) and that the numerical procedure ensured that the

computed total current density reaching the floating wall is

lower than 1% of the ion saturation current (jtot � 0).

Numerical computations show that increasing the density n0

and the plasma electron temperature Tp
e or decreasing the

percentage of electrons that rebound on the wall cr decreases

the floating potential value for a given wall temperature.

Consequently, the model predicts that it is more difficult to

reach the plasma potential with a floating emissive material

in tokamaks than in low temperature and density plasmas.

III. CONFRONTATION OF THE MODEL WITH
EXPERIMENTAL RESULTS (STATIC CASE)

A. Main experimental parameters

The above theoretical model will now be compared with

sets of experimental data from two experiments whose

results were reported earlier. The first set of experiment was

conducted in the Mirabelle device4 and the two others on the

von-K�arm�an plasma machine5,16—these latter sets will be

referred to as VKP1 and VKP2. The mean plasma parame-

ters of these experiments are recalled in Table I. These

parameters were obtained using electrostatic probes, consist-

ing of a small tungsten loop wire of diameter 0.2 mm with

4 mm length in the Mirabelle’s case and 8 mm in the VKP

experiment, operated as cold Langmuir probes. In the remain-

ing of this article, we report measurements using theses

probes as emissive probes, i.e., when the tungsten loops are

heated by Joule dissipation of a DC current to reach strong

emission regime. The work function uwork for the tungsten

FIG. 3. Example of the different passing current densities flowing through

an emissive surface under the space-charge regime. The current densities are

normalized to the ion saturation current density. The calculation for the solid

lines (black, green, red, light blue, and dark blue) was performed for an

Argon plasma with n0 ¼ 1� 1018 m�3 Tp
e ¼ 5 eV, Te

e ¼ Tw ¼ 0:31 eV, cr

¼ 0:3; uwork ¼ 4:5 eV, and A0 ¼ 1:2� 106 A m�2 K�2 (tungsten surface).

The dashed purple line corresponds to the same parameters but for cr ¼ 0.
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material is assumed to be 4.5 eV (Refs. 7 and 14) as a rough

estimation, since it highly depends on surface contamination,

crystal lattice, and material deformation. We take the

Dushman’s constant A0 to be equal to 1:2� 106 A m�2 K�2

for tungsten.7 Note that comparing these experimental results

with a 1D space-charge model can only be viewed as a rough

comparison due to the geometry of the tungsten filaments.

However, the present comparison demonstrates the basic fea-

tures of the space-charge limited emission model and the

validity of the hypothesis used.

B. Space-charge criteria

The transition between the emission current limited by

thermoemission and space-charge is controlled by the

amount of emitted electrons relatively to the primary elec-

trons. For a given set of plasma and wall parameters (mate-

rial, area), the control parameter is the wall emissivity, or

equivalently the wall temperature Tw when the emitted cur-

rent follows the Richardson-Dushmann law. The onset for

the development of the virtual cathode, as already mentioned

in Ref. 24, is obtained when applying the above space-

charge limited model for which the virtual cathode is located

at the wall Uw ¼ Uvc. Assuming that the temperature of

emitted electrons is that of the wall Te
e ¼ Tw (or in other

words C ¼ C0), the threshold wall temperature Tw;t is

obtained using Eq. (17)

�Uwork þ
1

C
ln

A0T2
w;t

en0Mcs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�me

8Uvcmi

r
1þ AGþ ArGcr=c

G

" #
¼ 0:

(20)

This equation gives a criterion on Tw for the space-

charge effect to occur depending on the plasma density n0

and primary electron temperature Tp
e (or on jis in Eq. (17))

and on the probe material emissivity (through A0 and uwork).

C. Experimental evidence for a transition from
thermoionic to space-charge regime

In section II, experimental clues of a transition between

thermoemission limited and space-charge limited regimes in

the three experimental dataset mentioned above are analyzed

applying the model developed in the previous section. It pro-

vides a theoretical estimate of the emissive probe tempera-

ture for this transition to occur. In Fig. 3 of Ref. 4 and from

Figs. 5 and 3 of Ref. 5, the experimentally measured stan-

dard deviation of the floating potential of an emissive probe

follows quite well the theoretical standard deviation as calcu-

lated from the model for the temperature limited emission

regime, up to a given emission current (or equivalently a

given wall temperature). Then, the experimental points

depart significantly from this model, meaning that the model

assuming thermoemission limited current is no more valid.

This transition is supposed to be related to a transition to

space-charge limited emission. In particular, this is observed

in Fig. 3 of Ref. 4, as the emission current Iem is greater than

1 mA and in Figs. 5 and 3 of Ref. 5, as Iem � 20 mA for the

dataset VKP2 or less clearly as Iem � 30 mA for the dataset

VKP1.

The key experimental parameters at the transition (i.e.,

the emission current It
em and the corresponding probe poten-

tial uw;t) are reported in the first two columns of Table II.

By inputting in Eq. (20)) the experimental values given in

Table I, the emitted electron temperature at the transition

Tw;t is estimated. We also assume here that Tw ¼ Te
e (lead-

ing to C0 ¼ C). The theoretical value of the wall potential at

the transition is obtained as uw;t ¼ uvcðTw;tÞ using the multi-

variable polynomial fit for calculating uvcðTw;tÞ. These the-

oretical values are reported in the rightmost columns of

Table II. The probe temperatures at the transition computed

from the model lie between 2300 and 2500 K for the three

experiments, which are reasonable values. The theoretical

values of uw;t lie in the transition interval observed experi-

mentally. This is in agreement with the interpretation of the

regime change observed experimentally and the transition

towards space-charge limited regime and with Eq. (17)

holding for values of Iem above It
em.

D. Average emissive probe potential
in the space-charge limited regime

For heating currents above It
em (i.e., in the space-charge

current limited regime), the floating potential of the probe of

the aforementioned experiments is predicted using the poly-

nomial fit of Uvc (Eq. (19)) in Eq. (17). However, this predic-

tion requires the knowledge of Tw and Te
e . Since none of

these parameters were experimentally accessible, the follow-

ing procedure is adopted: we first assume Tw ¼ Te
e and then

the evolution of the floating probe potential is computed for

two values of Tw, namely, at the onset of the space-charge

regime (Tw � 2550 K¼ 0.22 eV), and tungsten melting point

(Tw � 3700 K¼ 0.32 eV). The evolution of the predicted

probe floating potential value as a function of cr is shown in

Fig. 4 for the two aforementioned temperature Tw. Together

with these predicted theoretical values, Fig. 4 displays the

plasma potential value up measured from analysis of cold

TABLE II. Transition parameters It
em and Uw; t estimated from the data of

Refs. 4 and 5 and theoretical values estimated using the criteria of Eq. (20)

assuming Tw ¼ Te
e . The density in the Mirabelle’s case is taken to be

5� 1016 m�3. We assume the parameter cr to be equal to 0.3.

Exp. It
em (mA) Exp. uw;t (V) Th. Tw;t (K) Th. uw;t (V)

Data Mirabelle 0.9–1.1 1.2–1.9 2340 2.2

Data 1 VKP 30–35 3.5–4.1 2450 3.5

Data 2 VKP 15–20 7.1–8.6 2420 8.1

TABLE I. Main average parameters taken from an experiment performed on

the linear plasma device Mirabelle4 and two experiments performed on the

von-Karman plasma experiment.5 Notice that the mean density n0 for the

Mirabelle’s case is a rough estimation as a current leak in the electronic was

affecting the measurement. B is the mean magnetic field at the probe posi-

tion and P the neutral pressure during the discharge.

Gas TP
e (eV) up (V) n0 (�1016 m�3) B (mT) P (mbar)

Mirabelle Ar 3.6 5 [1 to 10] 30 3 �10�4

VKP 1 Ar 4.6 7.1 12 5 4 �10�3

VKP 2 Ar 5.6 12.5 9.2 5 1 �10�3
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Langmuir probes I–V characteristics as well as the average

values of the probe floating potential ufl;max measured

from emissive probes that correspond to the maximum

values of the emission current Iem achieved in the three

experiments.

For the three cases under investigation, the experimental

probe floating potentials lie within the range of floating

potential predicted from theory (which indeed strongly

depends on Tw and cr). In the Mirabelle’s case, the maximum

floating potential achieved experimentally lies in between

the two circled blue and squared red curves even for a zero

cr ¼ 0 (no rebound electrons). However, even for the highest

probe temperature (Tw ¼ 0:32 eV at the melting point), the

model cannot explain the VKP experimental observations if

no rebound electrons are considered. This clearly shows the

importance of taking into account rebound electrons in the

derivation of the model.

IV. INFLUENCE OF PLASMA PARAMETER
FLUCTUATIONS ON FLOATING EMISSIVE PROBE
FLUCTUATIONS IN THE SPACE-CHARGE LIMITED
REGIME

The floating potential of an emissive probe emitting

enough electrons to float near the plasma potential mean

value is usually believed to measure fluctuations of the

plasma potential. However, it has recently been demon-

strated in Refs. 4 and 5 that plasma density and electron tem-

perature fluctuations also play a role in the floating potential

of the probe. In the two aforementioned articles, it has been

explained theoretically why it is so when the emission cur-

rent is limited by thermoemission but not when the probe is

under the space-charge regime. In this section, the sheath

model in the space-charge current limited regime derived in

Section II is applied to the experimental data to see the influ-

ence of both electron density and temperature fluctuations on

using the probe potential. The influence of the rebound elec-

trons on the dynamics of the fluctuations of the floating

potential is also discussed.

A. First order expansion from the model

The model presented in Section II was derived for static

plasma parameters. However, as emissive probe measure-

ments are usually used to probe low frequency fluctuations

of the plasma potential, we use the model to account for the

effect of slow plasma parameter fluctuations (i.e., fluctua-

tions whose frequency is much smaller than the ion plasma

frequency). To get an insight into the influence of the fluctu-

ations of Tp
e and n0 on the probe, a first order expansion of

Eq. (17) is done. In the following, the wall temperature Tw is

assumed to be constant as thermal frequency responses of

the material are much slower than plasma fluctuation fre-

quencies of interest (in the kiloHertz range) and Te
e ¼ Tw is

once again assumed. A first order expansion of the floating

potential reads

Duf l ¼
@uf l

@up

Dup þ
@uf l

@�n
D�n þ

@uf l

@Tp
e

DTp
e

) D�uf l ¼
Duf l

hTp
e i
¼
@uf l

@up

D�up þ
@�uf l

@�n
D�n þ

@uf l

@Tp
e

D �T
p
e ;

where �f means normalized quantities (the density is normal-

ized to hn0i, while potentials and electron temperature are

normalized to hTp
e i), and hi stands for the mean value. The

relative amplitudes of @�uf l=@�n and @uf l=@Tp
e are compared

to @uf l=@up¼ 1 in Subsection IV A 1 and IV A 2.

1. Plasma density fluctuations

The dependence of �uf l on the plasma density is readily

estimated as �uvc depends only on C ¼ Tp
e=Tw (mi=me is a

constant and cr is supposed to remain constant during one

given experiment). The plasma density then only appears in

jis (Eq. (17)). Doing a first order Taylor expansion by setting

n0 ¼ hn0i þ dn0 with dn0 � hn0i, one get @�uf l=@�n
¼ �1=hCi. In low temperature plasmas hCi ¼ hTp

e i=Tw 2
½6� 20� which leads to a discrepancy of about 5%–15% in

the measurement of the plasma potential fluctuations. Note

that in tokamak hCi 	 100 so that according to our 1D

FIG. 4. Average floating potential

obtained with Eq. (17) assuming Tw

¼ Te
e and using data from Table I.

Left: Mirabelle experiment, center:

VKP 1, right: VKP 2. The floating

potential ufl;max corresponds to the

maximum of the probe floating poten-

tial obtained experimentally. The

plasma potential up was obtained from

cold probe analysis.
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model, density fluctuations do not affect emissive probe

measurements in the space-charge limited regime.

2. Plasma temperature fluctuations

The influence of plasma temperature fluctuations on the

floating potential of the probe can only be computed numeri-

cally as the dependence of Uvc upon C is non-trivial.

Looking at Eq. (17), one can notice that five parameters

affect Uf l: Tp
e , Tw, cr, mi=me, n0 as A0 is set to 1:2� 106 A

m�2 K�2 for the tungsten wall. @uf l=@Tp
e is then computed

for different sets of parameters, changing one parameter at a

time and for a wide range of mean plasma temperature value

Tp
e . The results are as follows.

First, @uf l=@Tp
e hardly depends on the wall temperature

Tw (or equivalently C since we assume Tw ¼ Te
e ) nor on the

plasma density hn0i. This has been tested by changing Tw

from 0.22 eV (onset value for space-charge regime to occur)

to its highest value for tungsten (0.32 eV) and by increasing

hn0i by three orders of magnitude (from 1017 m�3 up to

1020 m�3 to reach tokamak values). In all cases, @uf l=@Tp
e

remains quite unchanged, so we conclude that both parame-

ters Tw and n0 have a very weak influence on floating poten-

tial fluctuations.

The effect of the gas mass is rather weak. From an

Argon (like Mirabelle and VKP discharges presented here)

to a Hydrogen plasma (in tokamak for instance), the influ-

ence of temperature fluctuations on uf l would only be dimin-

ished by less than 5%. However, changing the rebound

coefficient cr has a much stronger effect as one can see in

Fig. 5. Increasing the value of cr from 0 to 0.7 decreases the

influence of temperature fluctuations by about 25% when Tp
e

is high enough. For a reasonable value of cr, i.e., 0.3, the

fluctuations would be diminished by more than 10% com-

pared to cr ¼ 0. The fact that the influence of temperature

fluctuations diminishes with cr can be easily understood as

increasing cr results in replacing slow emission electrons by

fast rebound electrons whose current compensates exactly a

fraction of the current of primary electrons that fluctuates

with hTp
e i.

Then, one can notice that @uf l=@Tp
e for all the curves in

Fig. 5 quickly saturates to some constant value by increasing

hTp
e i, meaning that the fluctuations of temperature affect uf l

in low, as well as in high, temperature plasmas. Last but not

least, temperature fluctuations have a much stronger influ-

ence on �uf l than density ones as @uf l=@Tp
e is much greater

(in absolute value) than @�uf l=@�n ¼ �1=hCi shown by a

dashed line in Fig. 5. The contribution of temperature fluctu-

ations on the floating potential is actually quite significant

with respect to the ones of the plasma potential fluctuations

(a bit lower in absolute value). This means that uf l fluctua-

tions are strongly affected by Tp
e fluctuations and thus that

the floating potential fluctuations of an emissive probe dif-

fers from the ones of the plasma potential according to the

model, even though reduced by taking into account cr.

B. Comparison to experimental data: VKP data

In this subsection, the experimental floating potential

fluctuations measured by an emissive probe under the space-

charge limited current regime are compared to the fluctua-

tions given by the model derivated in Section II (Eq. (17)),

the experimental fluctuations of the plasma parameters (Tp
e ,

ne, and up) being the inputs of the model. Data obtained on

Mirabelle could not be processed since the time evolution of

the temperature was not measured and density fluctuations

measurements were not precise enough. We thus focus on

the VKP experiment5 for which, a conditional reconstruction

method of the I–V characteristics17 has been used, enabling

the measurements of all the interesting time series (Tp
e , ne,

uf l; up, and ufl;em). The only drawback of this experiment

could lie in the way the plasma is created in the VKP device:

using radiofrequency coupling. Thus, the electron tempera-

ture could be over estimated and there could be errors on its

phase measurements—although previous measurements with

compensated cold Langmuir probes6,22 did not show signifi-

cant differences with measurements with uncompensated

cold Langmuir probes. The time series used here are those

shown in Fig. 4 of Ref. 5, corresponding to emission regimes

when the mean floating potential was the closest to the

plasma potential (i.e., for the largest emission current). In

both cases, according to results shown in Section III C of this

article, the current is obviously space-charge limited. The

experimental fluctuations of the floating potential obtained in

both regimes are shown as blue square symbols in both pan-

els of Fig. 6. The associated plasma potential fluctuations are

displayed as black circles. In order to compare these time-

series to the space-charge model, Tw ¼ Te
e is assumed and cr

is set to a realistic value of 0.3. Tw is computed to ensure

equality between the mean potential found using the space-

charge model and the experimental data, leading to Tw

¼ 0.31 eV for both experiments. The theoretical curves cor-

respond to the red solid curves in Fig. 6.

In the first experiment, the standard deviation given by

the model is 0.062 V while experimentally it is about

FIG. 5. Variation of the partial derivative of uf l with respect to the plasma

temperature Tp
e as a function of hTp

e i. Each curve was calculated by numeri-

cally differentiating Eq. (17). The black solid line is obtained for an Argon

gas, hn0i ¼ 1� 1017 m�3, cr ¼ 0; Tw ¼ Te
e ¼ 0:25 eV, and A0 ¼ 1:2� 106

A m�2 K�2. The circled blue and the squared red curves are plotted for the

same parameters except for cr that is changed to 0.3 and 0.7, respectively.

For comparison, we also display the partial derivative of �u f l with respect to

the normalized density �n (the black dashed line, �1/C) for hTe
e i¼ 0.32 eV as

well as the hTp
e i boundaries corresponding to low temperature plasmas

(2–6 eV—vertical dashed lines).
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0.035 V, and in the second, the modeled standard deviation

is 0.054 V for an experimental one of 0.069 V (see Table III).

This discrepancy between the model and the experimental

data cannot be explained by the choice of the a priori value

we took for Tw and cr. We have shown in Sec. IV A that

changing Tw does not affect much the standard deviation, in

agreement with the experimental data under the space-

charge regime for which changing Iem, so Tw, does not affect

much the standard deviation (see Figs. 3 and 5 of Ref. 5).

However, we shown in the same section that changing cr

affects the floating potential fluctuations. In Table III, it can

be seen that changing cr from 0 to 0.7 affects the modeled

standard deviation of about 11% in VKP 1 and 5% in VKP

2. Even though significant, the rebound electrons do not suf-

fice to explain the discrepancy between the model and the

experimental data. More experimental verification (where

the 1D assumption would be more accurate to match the

model) or theoretical developments including more complex

geometries should be investigated to draw any clear conclu-

sion. Nevertheless, rebound electrons would certainly be an

important ingredient as they replace part of the emitted cur-

rent by a current fluctuating like the electron plasma current.

V. CONCLUSIONS AND DISCUSSIONS

In this article, an improved version of the 1D model

developed by Takamura23 is presented. Namely, the modeling

of the total current flowing through an emissive probe under

the space-charge regime is modified by taking into account

secondary electron emission due to the retrodiffusion of pri-

mary electrons on the hot surface. We then proceed to obtain

a relation linking the probe potential to the virtual cathode

potential. From this relation, we derive a criterion on the wall

temperature with respect to the plasma and wall parameters

for the transition between thermoemission to space-charge

regimes to occur. Last, in the peculiar case of the floating

potential, a numerical estimation of the virtual cathode poten-

tial is obtained for a large range of experimental parameters.

This allows us to apply the model to experimental floating

potential data from two different experiments.

We first show in Section III the importance of taking into

account rebound electrons in the model derivation to reproduce

the mean floating potential of the experimental observations.

We also show that the transition between the thermoemission

regime to the space-charge one agrees with the previous obser-

vations4,5 and appears for probe temperatures around

2300–2500 K. More systematic experiments could be done to

verify this last point by measuring experimentally the probe

temperature. In addition, tests with different probe materials,

thus changing the work function and the wall temperature tran-

sition value, could also provide useful information.

Then, we study the effect of low frequency plasma

parameter fluctuations (compared to the plasma ion fre-

quency) on the floating potential of an emissive probe given

by the static space-charge model. The model shows that

plasma density fluctuations have a very weak effect for low

temperature plasmas (2–5 eV) and are completely negligible

for high temperature plasmas (>5 eV, tokamaks). Thus,

plasma density fluctuations hardly contribute to floating

potential fluctuations. Plasma temperature fluctuations, how-

ever, have a non-negligible effect on the probe floating poten-

tial meaning that inferring plasma potential fluctuations from

emissive probes would not be straightforward. Nevertheless,

according to this model, taking into account rebound elec-

trons results in a lower influence of plasma electron tempera-

ture fluctuations, whose influence decreases with cr.

We then proceed to compare the 1D model with the

experimental low floating potential fluctuations of an emis-

sive probe under the space-charge regime. Unfortunately, the

theory does not properly model fluctuations of the floating

potential. To gain further insight into the model validity, the

experimental results using controlled driving of harmonic

fluctuations presented here should be extended in the future

to situations where the time evolution of the electron temper-

ature is probed with a high accuracy. Moreover, the 1D theo-

retical model was applied to experiments where 2D effects

are unavoidable (potential gradient along the tungsten fila-

ment).15 In a foreseen work, the plane surface LaB6 probe

heated by the laser, as suggested by Schrittwieser et al.,19

should be used. In that case, the mean potential on the probe

surface is homogeneous, as no strong DC current circulates

in the probe.
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TABLE III. Experimental and theoretical standard deviations of the floating

potential of the emissive probe for the two VKP experiments. The theoreti-

cal ones are calculated using the experimental time series plugged in Eq.

(17) and setting Tw ¼ Te
e to 0.31 eV.

VKP 1 (V) VKP 2 (V)

Experiment 0.035 0.069

Model cr ¼ 0 0.065 0.053

Model cr ¼ 0:3 0.062 0.054

Model cr ¼ 0:7 0.058V 0.056

FIG. 6. Fluctuations of the normalized plasma potential (black dots), experi-

mental floating potential (blue squares), and theoretical floating potential

(red solid lines) as a function of time for (a) VKP1 and (b) VKP2. The theo-

retical red curves are calculated using the experimental time series plugged

in Eq. (17) and assuming Tw ¼ Te
e . In (a) and (b), we used Tw ¼ 0.31 eV and

cr¼ 0.3.
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