
Phys. Plasmas 29, 032306 (2022); https://doi.org/10.1063/5.0078860 29, 032306

© 2022 Author(s).

The dynamo properties of the reversed field
pinch velocity field
Cite as: Phys. Plasmas 29, 032306 (2022); https://doi.org/10.1063/5.0078860
Submitted: 16 November 2021 • Accepted: 12 February 2022 • Published Online: 10 March 2022

 Robert Chahine,  Wouter J. T. Bos and  Nicolas Plihon

https://images.scitation.org/redirect.spark?MID=176720&plid=1650557&setID=377252&channelID=0&CID=601062&banID=520541066&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=dbfa8be07b118451e51be8792a6c6154e48e7ddf&location=
https://doi.org/10.1063/5.0078860
https://doi.org/10.1063/5.0078860
https://orcid.org/0000-0002-9838-0042
https://aip.scitation.org/author/Chahine%2C+Robert
https://orcid.org/0000-0003-3510-0362
https://aip.scitation.org/author/Bos%2C+Wouter+J+T
https://orcid.org/0000-0001-8874-3674
https://aip.scitation.org/author/Plihon%2C+Nicolas
https://doi.org/10.1063/5.0078860
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0078860
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0078860&domain=aip.scitation.org&date_stamp=2022-03-10


The dynamo properties of the reversed field pinch
velocity field

Cite as: Phys. Plasmas 29, 032306 (2022); doi: 10.1063/5.0078860
Submitted: 16 November 2021 . Accepted: 12 February 2022 .
Published Online: 10 March 2022

Robert Chahine,1 Wouter J. T. Bos,1 and Nicolas Plihon2,a)

AFFILIATIONS
1Univ. Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Univ. Claude Bernard Lyon 1, LMFA, UMR5509, 69340 Ecully, France
2Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

a)Author to whom correspondence should be addressed: nicolas.plihon@ens-lyon.fr

ABSTRACT

Reversed field pinch (RFP) is a toroidal device aiming at magnetic confinement of a plasma in order to reach conditions of thermonuclear
reactions. In RFPs, the magnetic and velocity fields self-organize to a saturated state determined by their nonlinear interplay and the values
of the transport-coefficients. The question addressed in this article is whether this saturated velocity field is capable of amplifying a seed mag-
netic field, the so-called dynamo-effect for the astrophysical community. It is shown, using numerical simulations in periodic cylinders, that
the RFP velocity field can amplify a passively advected seed-field, but this is only observed for values of the magnetic Prandtl number above
unity. These observations are reported for both laminar and turbulent RFP flows. We further assess the difference in behavior between a pas-
sively advected vector field and the true magnetic field and show that their difference is associated with the detailed alignment properties of
the fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0078860

I. INTRODUCTION

In the context of geophysics and astrophysics, dynamo instability
is the process, now widely accepted, to be at the origin of magnetic
fields of astrophysical bodies.1 Dynamo instability converts kinetic
energy into magnetic energy for certain types of flows of electrically
conducting fluids.2 There exist a number of anti-dynamo theorems,
which restrict the occurrence of dynamo instability to specific classes
of flows,2,3 and the observation of dynamo instability in experiments is
currently restricted to a few realizations in liquid metals4 or plasma
flows,5 which were carefully optimized to obtain critical values for the
magnetic Reynolds number of the order of a few dozens. While there
has been a great deal of interest for dynamo features in spherical
geometries in the context of the geodynamo6 or the solar dynamo,7

dynamos were also investigated in toroidal geometries. Torus dynamos
were, in particular, proposed as a paradigm for the accretion disk
dynamo.8,9 At the experimental level, several studies considered the
screw dynamo in a torus.10 In this configuration, a liquid metal helical
flow is generated from the sudden deceleration of the torus, and the
critical magnetic Reynolds was determined to be above 18 after careful
optimization of the liquid flow.11,12

The dynamical growth of dynamo magnetic energy is usually
separated as a two-step evolution. During a first step, also called the
kinematic dynamo, a small magnetic field is amplified by a velocity

field, which is negligibly influenced by the Lorentz force. During this
first step, we can, therefore, individually evolve the velocity field and
the magnetic field, since the latter is too weak to influence the former.
The second step consists of the saturation phase, where the magnetic
field has grown strong enough to back-react on the velocity field by
means of the Lorentz force. In this second phase, the simultaneous
evolution of both fields should, therefore, be considered in detail to
correctly describe the coupled dynamics of the fields.

In the fusion plasma community, dynamo regimes usually refer
to regimes where an electromotive force is induced by flow and mag-
netic field fluctuations due to turbulence and has been reported for
most of the magnetically confined fusion plasma configurations, such
as reversed field pinches (RFPs), spheromaks, or tokamaks. The cur-
rent profile observed in RFPs was proposed to be sustained by a
dynamo regime due to continuous chaotic or turbulent motion.13–15

Investigations in various regimes were reported over the last two deca-
des.16–20 More recently, a dynamo electromotive force was proposed
to explain stationary non-sawtoothing regimes in tokamaks, often
referred to as “flux pumping.”21–23 However, in essence, in the context
of fusion plasmas, the nature of the dynamo is fairly different from the
astrophysical dynamo, in particular, in the kinematic phase, since the
initial magnetic field is not a weak small-scale background but a strong
large-scale imposed field.
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The astrophysical and fusion plasma communities, therefore, do
not address exactly the same subject when they discuss the dynamo
effect. It is this semantic difference that motivated the present study,
but we think that the findings might be important beyond this seman-
tic motivation. The precise question we address is whether the velocity
field, spontaneously generated through MHD instabilities in RFP
geometries can give rise to a dynamo effect in the astrophysical sense.
To do so, we carry out MHD simulations in a periodic cylinder in the
RFP regime and characterize its capacity to amplify a seed field. For
this, we will consider an auxiliary magnetic field, which is passively
advected by the plasma flow.

Our approach is similar to the one adopted in the investigation
by Cattaneo and Tobias24 who investigated a convectively driven satu-
rated dynamo-velocity field. Indeed, this approach allows exploring
how the capacity of a velocity field to amplify a seed-field changes
when the induced magnetic field is large enough to saturate the veloc-
ity field. In the present investigation, we transpose these ideas to the
flow generated in an RFP.

The remainder of this article is constructed as follows. The gov-
erning equations and normalization are given in Sec. II, together
with a description of the numerical method, setup, and boundary
conditions. The results are presented in Secs. III and IV, where we
consider the kinematic dynamo in a frozen laminar velocity field and
for a turbulent velocity field, respectively. Section V concludes this
investigation.

II. RFP SIMULATIONS AND ADVECTION OF PASSIVE
VECTOR FIELDS

The goal of this article is to investigate whether the velocity field
spontaneously generated through MHD instabilities in RFPs may sus-
tain a dynamo effect. We, thus, adopted the following methodology:

• A first set of MHD equations [Eqs. (1)–(4) below] are solved for
the magnetic field B and the velocity field u in a cylindrical
geometry, with initial and boundary conditions corresponding to
that of an RFP (applied axial magnetic field and imposed axial
electric current). The initial condition for the velocity field is
small random noise and, as time evolves, a kink instability devel-
ops and generates a flow. The resulting RFP flow back reacts on
the magnetic field and finally reaches a statistically stationary
state, referred to as the RFP velocity field.

• We then use this statistically stationary RFP velocity field as an
externally prescribed flow in an induction equation for an auxil-
iary passive magnetic field D [Eqs. (5) and (6) below]. The ques-
tions addressed in this article are, thus, similar to a kinematic
dynamo study: (i) does the RFP velocity field lead to the expo-
nential growth of passive magnetic energy starting from an ini-
tially infinitesimal seed passive magnetic field? and (ii) what are
the growing eigenmodes of the passive induction equation?

Let us now describe in detail the set of equations, numerical
methods, and the boundary and initial conditions.

A. MHD simulations of the RFP magnetic
and velocity fields

The simplest geometry in which the RFP can be investigated the-
oretically and numerically is the periodic cylinder. By solving the
MHD equations in such a domain, combined with imposed axial

magnetic and electric fields, the resulting dynamics bear a resemblance
with actual RFP dynamics. Indeed, for certain values of the imposed
fields, MHD instabilities lead to the generation of a velocity field,
which in turn back-reacts on the magnetic field by means of the
Lorentz force. The periodic cylinder constitutes, therefore, a paradigm
in RFP research, which originates from pioneering works25–28 but is
still actively considered,23,29 since it allows disentangling the effects of
curvature or toroidicity from the already complex dynamics.30

In the following, we will, thus, consider MHD simulations in a
periodic cylinder. The RFP velocity field u is generated by a kink-
instability resulting from its interaction with the RFP magnetic field B
and current density j. These fields are governed by the equations:

@u
@t
þ ðu � rÞu ¼ �rP þ j� Bþ �r2u; (1)

@B
@t
¼ r� ðu� BÞ þ kr2B; (2)

$ � u ¼ 0; (3)

$ � B ¼ 0; (4)

where � is the kinematic viscosity, k is the magnetic diffusivity, and P
is the pressure. This form of the equations corresponds to a normaliza-
tion of the velocity by the Alfv�en velocity CA ¼ Bð0Þ=

ffiffiffiffiffiffiffiffi
l0q
p

, with Bð0Þ

the imposed magnetic field, q the fluid density, and l0 the vacuum
magnetic permeability. Analogously, an Alfv�en timescale is introduced
as tA ¼ L=CA. The magnetic field consists of a freely evolving compo-
nent plus an imposed mean field, described below. The characteristic
length scale L is equal to the diameter of the cylinder 2R. The control
parameter of these equations is the Lundquist number S ¼ CAL=k,
which controls the amplitude of the velocity field and thus of the
kinetic Reynolds number Re ¼ UL=�, where the characteristic velocity
U is chosen equal to the RMS velocity. For simplicity, and following a
long-standing practice in the dynamo community,3,24 we restrict our-
selves to the case where � ¼ k, or in other words, the magnetic
Prandtl number is taken to be equal to unity. This assumption allows
avoiding scale separation between the magnetic and velocity fields,
thus limiting the already large computational cost and allowing to
explore several regimes. Note that since the magnetic Prandtl number
is unity, the magnetic Reynolds number Rm associated with the B-field
is equal to the kinetic Reynolds number Re.

Equations (1)–(4) are solved in a periodic cylinder of length 8p
and diameter 2R ¼ 2. The MHD-domain is solved in a larger rectan-
gular box of p� p� 8p, where the solid boundaries are imposed
using a penalization method. The evolution equations are computed
using a pseudo-spectral solver with a third-order Adams-Bashforth
time-integration scheme. The details on the numerical methods and
its convergence properties can be found in a previous publication.31 In
the present simulations, the resolution is 64� 64� 512 grid-points in
the x, y, and z directions, respectively. The pressure is computed from
the resolution of the Poisson equation in the spectral domain.32 The
initial magnetic field is a combination of an axial field Bð0Þz ¼ 0:2 and
a poloidal field Bð0Þp ðRÞ ¼ 1:4 at the wall, associated with a uniform
imposed axial current density jð0Þz ðrÞ ¼ 2:8. The axial component of
the magnetic field at the boundaries is left unconstrained. The
velocity-field is satisfying no-slip boundaries at the wall.

For all simulations, the initial conditions are small amplitude ran-
dom noise for the velocity field and zero value for the non-imposed
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contribution of the magnetic field. After a short transient, the non-
linear interactions between the velocity field u and the magnetic field
B lead to the generation of flows uRFP in the RFP, whose features are
discussed in Secs. IIIA and IV for different values of the Lundquist
number S, which is varied through the value of the diffusivities k ¼ �.
The resulting statistically stationary velocity field is then used as a pre-
scribed velocity field in the auxiliary passive induction equation (see
next subsection) in kinematic dynamo simulations.

B. Auxiliary passive magnetic field dynamics

In addition to the set of Eqs. (1)–(4), we solve the evolution of an
auxiliary passive field D, satisfying the equations,

@D
@t
¼ r� ðu� DÞ þ k0r2D; (5)

$ � D ¼ 0: (6)

where k0 is the magnetic diffusivity of the passive field D (quantities
related to the passive magnetic field D are primed to avoid any confu-
sion with quantities related to B). Note that the equations governing
the dynamics of D are identical to the induction equations [Eqs. (2)
and (4)]. The three differences between D and B are that first, D does
not back-react on the velocity field by the Lorentz force, and second,
that D does not contain an imposed contribution. The third difference
is that the magnetic diffusivities k, related to B, and k0, related to D,
are not equal. This is also a difference with the investigation by
Cattaneo and Tobias,24 which focused on flows sustaining a dynamo
field and for which k ¼ k0.

The question that we will answer is whether the velocity field result-
ing from the interplay of u and B is able to amplify a small seed-field D.
The control parameter for dynamo action is the magnetic Reynolds
number, which compares the induction term to the dissipative term,
here for the passive magnetic field D, and defined as Rm0 ¼ UL=k0. For
a given value of the Lundquist number, the amplitude and structure of
the RFP velocity field uRFP is prescribed by the values of the imposed
axial field Bð0Þz and axial current jð0Þz ; thus, the ability of uRFP to sustain a
dynamo is assessed by changing Rm0 by a change of k0. The initial pas-
sive magnetic field D is a random noise similar to the velocity field but
with initial energy hD2i ¼

Ð
VD

2dV � 10�10, where V is the total vol-
ume. At the boundary, the poloidal component of D is set to zero.

The set of Eqs. (5) and (6) are solved similar to Eqs. (1)–(4) in a
rectangular box of p� p� 8p using the same pseudo-spectral numer-
ical method, and where the solid boundaries are imposed using a
penalization method.

Depending on the value of the Lundquist number S, two types of
statistically stationary RFP flows are observed after a transient. At low
values of S, the flows are steady and laminar, as reported in Sec. III. In
this regime, the laminar steady-state flow uRFP is prescribed and fixed in
time for the auxiliary passive induction equation. Thus, once the lami-
nar flow has been computed, we stopped the computation of the set of
MHD equations (1)–(4) and only evolve the auxiliary induction equa-
tions (5) and (6). At higher values of the Lundquist number S, the RFP
flows uRFP are dynamical and the velocity field exhibits strong fluctua-
tions, as reported in Sec. IV. In this regime, the flow uRFP prescribed for
the auxiliary passive induction equation evolves with time and the set of
MHD equations (1)–(4) and passive induction equations (5) and (6) are
solved simultaneously. We recall here that the velocity field u and mag-
netic field B are fully coupled and that the velocity and magnetic modes
reported here are non-linearly saturated. On the other hand, the passive
field D does not back react on the velocity field: the modes presented
here for the passive field are, thus, linearly stable or unstable modes,
similarly to usual kinematic dynamo computations.

III. LAMINAR DYNAMO SIMULATION FOR THE PASSIVE
FIELD

In this section, we will consider cases at low values of the
Lundquist number S, for which a steady laminar RFP flow is gener-
ated. The features of the velocity field u and magnetic field B are first
described, before discussing the onset of dynamo action and the fea-
tures of the unstable growing mode for the passive dynamo field D.

A. A steady quasi-single-helicity state

At first, the steady-state laminar flow is computed from the
MHD equations (1)–(4), which are solved over a time interval equal to
1500 sA. A steady state was reached typically after 200 sA. At
t ¼ 1500 sA, the RFP magnetic field BRFP and the flow uRFP are
extracted from the simulations.

The structures of the magnetic field BRFP and velocity field uRFP

are displayed in Figs. 1(a) and 1(b) for S¼ 150, where isocontours of
the magnetic energy (respectively kinetic energy) are color-coded by

FIG. 1. Visualizations of the kinematic dynamo system. The subfigures (a), (b), and (c) show iso-surfaces of B2, u2, and D2, respectively. These isosurfaces are colored by the
sign of the axial component. For instance, in (a) Bz > 0 is colored in red, Bz < 0 in blue.
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the sign of the axial component of the field (which would correspond
to the toroidal component in a torus). The magnetic field B has a
strong constant axial component (the applied magnetic field), which
has been subtracted from the total field in Fig. 1 for the sake of clarity.
Both the velocity and the magnetic fields display a strong n¼ 9 com-
ponent, where the mode-number n denotes the axial frequency.

In particular, the flow has a complex structure: it consists of two
strongly interlaced helical flows of opposite polarities, as shown by the
two red and blue screwed tubes, with a strong shear at the interface
between the red and the blue tubes. The steady-state MHD fields gener-
ated at S¼ 150 correspond to an intensity of the velocity field leading to a
value of the Reynolds number Re¼ 6.37. Such helical flow fields are
observed in all simulations, but at low values of S, these fields are station-
ary and laminar, whereas at large values, they become time-dependent.

Equations (1)–(4) conserve total energy, magnetic helicity, and
cross helicity in the limit of vanishing dissipation. The process by
which the RFP velocity field uRFP is created is a conversion of magnetic
energy to kinetic energy through a kink instability.17 As expected for a
RFP equilibrium, the field reversal parameter F ¼ Bz=hBzi decreases
as a function of the pinch ratio, where Bz denotes the wall averaged
and hBzi the volume-average axial magnetic field. In the present inves-
tigation, in both the laminar and turbulent statistically steady states,
the equilibrium profile is characterized by a reduced axial magnetic
field at the walls Bz as compared with the imposed field. This is the
characteristic of RFPs. However, no reversal is observed (F remains
positive), and details on this can be found in Ref. 30.

The flow intensity is measured through the kinetic Reynolds
number, shown as a function of the Lundquist number in Fig. 2. The
kinetic Reynolds number increases with the Lundquist number, with
an empirical scaling Re / S0:74. Since in these simulations the integral
length scale and imposed magnetic field are fixed, this scaling is associ-
ated with a dependence of the RMS velocity on the magnetic diffusiv-
ity, U � k0:26. For the lowest values of S and Re, this corresponds to
steady laminar flow and for the largest values to fluctuating movement
with several dominating modes.

B. The laminar kinematic dynamo

In this subsection, we investigate the capability of the laminar
RFP velocity field uRFP described in the previous subsection, to induce
dynamo action.

The steady-state flow uRFP extracted from the simulations of Eqs.
(1)–(4) at t ¼ 1500sA is used as a prescribed field for the passive
induction equation (5) starting at time t ¼ 1500sA. The initial condi-
tion for the passive field D at t ¼ 1500sA is small Gaussian white noise
with initial energy hD2i � 10�10. The control parameter governing
Eq. (5) is the passive magnetic Reynolds number Rm0, which depends
upon the passive magnetic diffusivity k0, or equivalently the passive
magnetic Prandtl number Pm0. Dynamos are usually observed above a
critical magnetic Reynolds number; for a given flow uRFP, we thus
expect to excite a passive dynamo field D when increasing Pm0. As an
illustration, for S¼ 150, i.e., Re¼ 6.37, the time evolution of the total
passive magnetic energy hD2i is displayed in the inset of Fig. 3 for four
values of the passive magnetic Prandtl number Pm0. The passive mag-
netic energy decreases with time for Pm0 � 3 and increases for
Pm0 � 4. For Pm0 � 4, after a small transient (around 150 sA), i.e., for
t > 1650sA, the energy of the passive magnetic field increases expo-
nentially with time. For each value of the passive magnetic Prandtl
Pm0, the growth rate of the passive magnetic energy is computed
from the exponential fit of the time evolution of hD2i. The critical
passive magnetic Prandtl number Pm0c is then defined from the
linear interpolation of the growth rates between the last negative
value and the first positive value, e.g., Pm0c ¼ 3:2 for Re¼ 6.37.
This leads to a critical passive magnetic Reynolds number Rm0c

¼ Re Pm0c ¼ 20:4.
A first important observation is that the RFP flow has favorable

properties for dynamo generation on a passive magnetic field, which
can be qualitatively understood since RFP flows are characterized by
high helicity and high shear, two properties, which are not necessary
but enhance dynamo action.2,3

FIG. 2. Lundquist dependence of the Reynolds number in the kinematic dynamo
investigation. The Reynolds number is based on the root mean square velocity in
the domain.

FIG. 3. Evolution of the critical magnetic Reynolds number R0cm as a function of the
(kinematic) Reynolds number Re. The red, circular data points correspond the kine-
matic dynamo simulations with a fixed velocity field. The blue, star-shaped data-
point corresponds to the result for a fully dynamic simulation, discussed in Sec. IV.
The inset shows the time evolution of the passive magnetic energy for different val-
ues of P0m of a given flow with Re¼ 6.37.
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Similar simulations have been run for several values of S from
150 to 550 in the laminar regime, and the evolution of the critical pas-
sive magnetic Reynolds number as a function of Re is shown in Fig. 3
(only the red points correspond to laminar regimes).

Let us now describe the spatial features of the passive dynamo
mode. Figure 1(c) shows the isocontours of the passive magnetic
energy D2, color-coded by the sign of the axial component of the pas-
sive field Dz (which would correspond to the toroidal component in a

torus). The spatial structure of the passive magnetic field is more com-
plex than the spatial structure of the velocity field. This is further
investigated in Fig. 4, left column, where the axial spectra of the mag-
netic, kinetic, and passive magnetic energy are displayed, from top to
bottom, for Re¼ 6.37. The discrete modes observed in the spectra for
the magnetic and kinetic energies are identical: the dominant RFP
mode is the n¼ 9 mode, and harmonics of this mode are clearly
observed. The strong harmonics observed in the spectrum of B2 are a

FIG. 4. Normalized axial spectra of B2 (top), u2 (center), and D2 (bottom) for different values of Re and for P0m ¼ 4.
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signature of the complex spatial structure observed in Fig. 1(a) where
the blue stripes are larger than the red stripes. We stress here that
most of the magnetic energy is contained in the applied n¼ 0 mode
(which is not displayed in Fig. 4), less than 11% of the magnetic energy
is present at positive mode numbers (precisely 11%, 6.5%, and 4.2%
for Re ¼ 6:37; 10:2, and 15.3, respectively). The dominant mode for
the passive magnetic energy hD2i is the n¼ 2 mode, as clearly
observed in Fig. 1(c). The induction term r� ðu� DÞ in the passive
induction equation (5) leads to mode mixing between u and D, which,
for the case at Re¼ 6.37, leads to a complex spectrum for hD2i, with
strong contributions of modes 7, 11, 16, 20, etc.

The central column of Fig. 4 displays the spectra for the case
S¼ 276, e.g., Re¼ 10.2, while the right column corresponds to the case
S¼ 417, e.g., Re¼ 15.3. The dominant RFP mode is at n¼ 8, which
couples with the dominant n¼ 0 or n¼ 10 modes for hD2i, also lead-
ing to a complex spectrum for hD2i.

We have observed in our simulations that the influence of Pm0

on the spectra of D is very weak: the same modes are excited for simu-
lations with values Pm0 ¼ 2; 4; 7, and only small variations are
observed in the relative amplitudes of the modes (not shown).

The strong coupling between the velocity field u and the passive
magnetic field D is emphasized in Fig. 5, in which isocontours of the
kinetic energy and of the passive magnetic energy are displayed simul-
taneously for S¼ 150, e.g., Re¼ 6.37. A first observation is that the
structure of the passive magnetic field, which is dominated by an n¼ 2
mode is strongly affected by the n¼ 9 dominant velocity mode. This is
observed in the zoom of Fig. 5, where the separation between black
and white ribbons for the passive magnetic energy (opposite values of
Dz) is a zone of strong shear for the velocity field (transition between
the red and blue ribbons of the kinetic energy isosurfaces). A second
observation is that the kinetic energy is mostly concentrated in the
central part of the cylindrical domain, while most of the passive mag-
netic energy is concentrated in outer radial regions. Another

observation is that the structures of the passive magnetic field connect
in high velocity shear regions, and the axial component of passive
magnetic field reverses sign at the same location as the reversals of the
axial component of the velocity field.

To summarize, the laminar RFP flow is a kinematic dynamo velocity
field for high enough Pm0. The next question is how the passive and mag-
netic fields act when the flow is not steady, and how the back-reaction of
the magnetic field on the velocity field changes the dynamics.

IV. TURBULENT DYNAMO SIMULATIONS

In this section, we address a regime at large Lundquist number,
for which the RFP velocity field uRFP is no longer steady and laminar.
Thus, similarly to the case of convectively driven turbulence investi-
gated by Cattaneo and Tobias,24 simulations are carried out with all
three fields u; B and D evolving in time. We will first focus on the
flow characterization, then we will assess the dynamo threshold, and
we will finish by evaluating the alignment properties of the system.

A. Flow characterization

Simulations at S¼ 2000, resulting in an RFP flow with Re¼ 50,
are carried out, and a snapshot of the kinetic energy is shown in Fig. 6
(top). The velocity field clearly shows a trace of a periodic structure,
but small scales are also observed. This assessment of the flow-
behavior from the flow-visualizations is however of qualitative nature.

A more quantitative characterization of the turbulent nature of
the different fields is given by the energy spectra. The axial-mode spec-
tra are shown in Fig. 7. These spectra illustrate that the dynamics of

FIG. 5. Visualization of the normalized kinetic energy isosurface, u2=hu2i ¼ 6:6
and the normalized passive magnetic energy isosurface D2=hD2i ¼ 9, colored by
the axial velocity field uz and axial passive magnetic field Dz, respectively, for
Re¼ 6.37 and P0m ¼ 4.

FIG. 6. Visualizations of an instantaneous snapshot of the (a) iso-surfaces of the
kinetic energy u2 and (b) passively advected magnetic energy D2, colored by the
axial component, in the turbulent RFP simulation. Whereas the velocity field seems
to be dominated by a small number of energetic modes, the advected field shows a
more turbulent behavior.
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the fields u and B are not restricted to a small number of excited
modes. Indeed, the broad-band characteristic of these spectra suggests
that the flow is in a turbulent state. Nevertheless, the power-spectra of
the velocity and the magnetic field show some well-defined peaks.
These peaks are associated with the close to periodic-structure
observed in the visualization. Altogether, these broad-band spectra
over two decades in wavenumber show that the dynamics in this sec-
tion are turbulent in the presence of close-to-periodic velocity and
magnetic field structures.

In Subsection IVB , we will determine the dynamo-threshold for
the present RFP flow.

B. Dynamo growth rate and threshold

The evolution of the passive vector D was solved simultaneously
to the dynamical evolution of the u and D fields for P0m ¼ 1:43 and

P0m ¼ 2. The time evolution of the mean passive magnetic energy hD2i
for these two runs is plotted in Fig. 8. It is observed that for P0m ¼ 2,
the RFP field in the dynamic regime is capable of amplifying a seed
magnetic field, and the RFP velocity field can, therefore, be called, as
for the laminar case, a dynamo velocity field. In the case of P0m ¼ 1:43,
the passive magnetic energy fluctuates around a constant value over a
long-time interval. The threshold for dynamo action at Re¼ 50 is,
therefore, close to P0m ¼ 1:43, corresponding to a critical magnetic
Reynolds number R0mc ¼ 71:5. The new result is added to the data pre-
viously obtained in the laminar regime (Fig. 3). The critical magnetic
Reynolds number in this dynamical case is, therefore, somewhat
higher but of comparable magnitude to the critical value of the laminar
kinematic dynamo, observed around Re¼ 15, where R0mc � 50. We
stress here that the resolutions required to well resolve the dynamics of
the passive field D are higher than that required to resolve the u and B
fields, resulting in high computational-resource-requirement for tur-
bulent dynamo simulations. As a consequence, higher Re regimes are
not explored in this manuscript.

A snapshot of the passive magnetic energy at P0m ¼ 2 is shown in
Fig. 6 at the same time as the kinetic energy shown in the top panel.
As for laminar dynamos, the structure of the passive vector-field D is
much more complex than that of the velocity field u and shows a less
periodic behavior. This is highlighted by the energy spectrum shown
in Fig. 7, which does not display energetic peaks.

The fact that we observe the growth of the amplitude of D2 in
Fig. 8 is in agreement with the observations of Ref. 24, who showed
that the saturation of the magnetic field B does not modify the velocity
field in such a way that dynamo-action is prohibited. Rather, it modi-
fies the simultaneous dynamics of B and u, such as the alignment
properties described later in this section.

We stress here that although the velocity field is able to amplify a
seed-field for certain parameters, this is not the case for Pm0 ¼ 1. This
shows that the diffusive effects acting upon the passive field need to be
smaller in our simulations than those acting upon the RFP magnetic
field. This seems to indicate that in our simulations the B-field in the
statistically steady state is unaffected by the dynamo effect, since its
magnetic Reynolds number is below the threshold for dynamo action.
This is a major difference compared with the results of Ref. 24, where
dynamo amplification of a passive field by the saturated velocity field
was observed for Pm0 ¼ 1.

C. Alignment of the different fields

As mentioned above, in Ref. 24, the same system of equations
was investigated as in the present study, but in a different geometry,
using a different forcing. It was observed that the variance of the D-
field continues to increase after the saturation of the B-field. One of
the key insights obtained thereby is that the saturation is not only due
to the modification of the flow-field by the Lorentz force. Indeed, if
this was the case, the strength of D would saturate simultaneously
with that of B. Rather, it is due to some intricate interplay between
the velocity field and the magnetic field. It is, therefore, not visible
from the velocity field alone that the magnetic field saturates, and at
which level. One should, thus, consider the simultaneous dynamics of
u and B.

One way to consider the simultaneous dynamics of the velocity
and the magnetic field is to introduce the Elsasser variables, defined as
z6 ¼ u 6 B, and the passive Elsasser variables, defined as n6 ¼ u 6 D.

FIG. 7. Normalized spectra of u2, B2, and D2 for Re¼ 50 and P0m ¼ 2. The velocity
and passive-vector spectra are shifted upward for clarity by one and two decades,
respectively.

FIG. 8. Time evolution of the variance of the passive field in the dynamic runs for
Re¼ 50 and P0m ¼ 1:43; 2.
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The dynamical equations for the Elsasser variables are obtained
from the sum and the difference of Eqs. (1) and (2) yielding

@tz
6 þ z7 � $z6 ¼ �r2z6 � $P	; (7)

with P	 ¼ P þ B2=2. The dynamical equations for the passive Elsasser
variables are obtained from the sum and the difference of Eqs. (1) and
(5), and, using the simplifying assumption Pm ¼ P0m ¼ 1 write

@tn
6 þ n7$n6 ¼ �r2n6 � $P	 � 1

4
ðnþ � n�Þ
�

�rðnþ � n�Þ � ðzþ � z�Þ � $ðzþ � z�Þ
�
: (8)

It is insightful to look at the structure of Eqs. (7) and (8), which
explicitly expresses the coupling of the different fields. The equations
for the Elsasser variables [Eq. (7)] is more symmetric than the equa-
tions for the passive Elsasser variables [Eq. (8)], due to the presence of
the Lorentz force (and the absence of its passive counterpart).

What this difference exactly implies for the dynamics is not
straightforward to infer from the equations. We can however mention
the specific case where strong correlations exist between the magnetic
field and the velocity field,33,34 such as observed in the solar-wind. In
the extreme case of u ¼ 6B, the nonlinear term vanishes for the case
of the full system but does not for the passive advected system. This
shows a concrete example of different behaviors of the two systems: if
the fields are aligned and of equal magnitude, the nonlinearity of the
full system is decreased, but not for the passive case.

If the fields align, but are not of equal magnitude, the nonlinearity
is weakened, but does not vanish. The tendency for rapid alignment
was reported in several studies of incompressible MHD.35–37 We will
here investigate whether the alignment shows a qualitatively different
behavior. For this, we show in Fig. 9 the probability functions of the
cosine of the angle between the different fields at t ¼ 1200sA. At
instant t¼ 0, the PDF is almost constant (not shown), hence no (u;D)
alignment is observed. At instant t ¼ 1200sA, the PDF reaches two
peaks at 61 for all three quantities, reflecting preferential alignment
and anti-alignment between all three quantities. This local alignment
is the strongest between the velocity field and the passive field D.

This illustrates that all three vectors locally align with each other.
However, the quantitative difference is not enormous, and the fact that
the saturated velocity field is able to amplify the passive seed field is
likely to depend on subtle correlations between the magnetic field and
the velocity field. We recall that, for the numerical simulations
reported here, P0m ¼ 1:43 > Pm ¼ 1 and that the simplifying assump-
tions leading to the formulation of Eq. (8) are not strictly fulfilled, and
that the study of these correlations would require reaching a dynamo
regime at P0m ¼ 1.

V. CONCLUSION

The question which motivated the present study was whether the
RFP velocity field can amplify a seed-field and can thereby be called a
dynamo field. The answer to the question is not straightforward. If we
do not put any constraints on the diffusivity of the passively advected
field, the answer is yes, since both in the laminar, steady case and in
the dynamic case we have succeeded to determine a finite value of the
critical Reynolds number, as shown in Fig. 3.

In all our simulations, we needed, however, to raise the magnetic
Prandtl number of the passive field Pm0 above the unity value of the
corresponding value for the RFP magnetic field. This shows that fluc-
tuations of the B-field are not subject to the dynamo-effect in the pre-
sent setup.

We also traced down a difference in the description of the B and
the D field, by considering the Elsasser variables. In particular, we
showed that alignment of the velocity field and the B-field reduces
more strongly the nonlinear interactions than alignment of the D-field
with the velocity does.

Exploring in more detail the saturation-mechanism of the turbu-
lent dynamo in terms of detailed alignment properties and Elsasser-
dynamics seems a promising direction for further research.
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