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Abstract
We apply a new threshold detection method based on the extreme value theory
(EVT) to the von Kármán sodium (VKS) experiment data. The VKS experiment
is a successful attempt to get a dynamo magnetic field in a laboratory liquid-
metal experiment. We first show that the dynamo threshold is associated with a
change of the probability density function of the extreme values of the magnetic
field. This method does not require the measurement of response functions from
applied external perturbations and thus provides a simple threshold estimate. We
apply our method to different configurations in the VKS experiment, showing
that it yields a robust indication of the dynamo threshold as well as evidence of
hysteretic behaviors. Moreover, for the experimental configurations in which a
dynamo transition is not observed, the method provides a way to extrapolate an
interval of possible threshold values.
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It is generally accepted that the planetary magnetic field is generated by dynamo action, an
instability mechanism inside the liquid conducting fluid of the planetary core. There is,
however, presently no general theory providing an estimate for the corresponding dynamo
threshold, except in some particular cases [1–3]. The main difficulties in computing the
threshold derive from the turbulent nature of the flow, which makes the dynamo action akin to a
problem of instability in the presence of a multiplicative noise [4]. As more and more data from
experiments are available [5–7], the possibility of devising precise, almost automated methods
for dynamo threshold detection would be welcome. The statistical approach to this question
traditionally involves so-called indicators of criticality [8]. Some of these indicators are based
on modifications of the auto-correlation properties of specific observables when parameters
controlling the system approach some critical value. Others are based on the fact that an
increase of the variance and the skewness is observed when moving towards tipping points [9].
Still other approaches are based on the definition of ad hoc susceptibility functions or critical
exponents [10–12]. In [12, 13], the decay of external applied magnetic field pulses is studied,
and the transition is detected through the divergence of the decay times near the dynamo
threshold. Although interesting for controlled laboratory applications, this approach cannot be
extended to problems involving planetary scales. In this paper, we suggest that the statistical
approach based on the extreme value theory (EVT) proposed in [14] could provide a robust
determination of the threshold even in the presence of turbulence. The main advantage of the
present method is that it yields to a precise and unique determination of the threshold as the
location of zero crossing of a statistical parameter κ. It therefore works even in the case of the
imperfect bifurcation that usually occurs in experimental dynamo due to the ambient magnetic
field (mainly the Earth field), residual magnetization of the disks, and other magnetic
perturbations of the setup. To illustrate the possibilities of the method, we analyse data from the
VKS experiment consisting of a von Kármán swirling flow of liquid sodium. In this experiment,
turbulent effects are roughly of the same order as the mean flow. The control parameter of the
system is the magnetic Reynolds number Rm, which is proportional to the driving impellers,
rotation frequency F. Several dynamo and non dynamo configurations have been obtained by
changing the material of the impellers and of the cylinder [12, 15] and by varying the impellers,
rotation frequency. This versatility allows for reproducing a spectrum of magnetic field
dynamics that can be observed for the planetary magnetic fields such as reversal [5], bistability
[11, 16], or localization [17]. Applying our method to several different configurations, we show
in the present article that it provides a robust indication of the dynamo threshold as well as
evidence of hysteretic behaviors.

1. Method

We use the statistical approach based on the EVT proposed in [14] as a criterion allowing
the determination of the dynamo threshold. We briefly recall the basic intuition beyond the
method referring to [14] for further discussions. Classical EVT states that, under general
assumptions, the statistics of maxima = −M X X Xmax { , ,..., }m m0 1 1 of independent and
identically distributed variables −X X X, ,..., m0 1 1, with cumulative distribution function (cdf)
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F(x) in the form:

= − ⩽{ }( )F x P a M b x( ) ,m m m

where am and bm are normalizing sequences, asymptotically obeys a generalized extreme value
(GEV) distribution with cumulative distribution function:
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with κ μ σ+ − >x1 ( )/ 0. The location parameter μ ∈ and the scale parameter σ > 0 in
equation (1) account for the normalization of the data, avoiding the recourse to scaling constants
am and bm [18].

The sign of κ discriminates the kind of tail decay of the parent distribution: When κ = 0,
the distribution is of Gumbel type (type 1). This is the asymptotic extreme value law (EVL) to
be expected when the parent distribution shows an exponentially decaying tail. The Fréchet
distribution (type 2), with κ > 0, is instead observed when the parent distribution possess a fat
tail decaying as a power law. Eventually, the Weibull distribution (type 3), with κ < 0,
corresponds to a parent distribution having a finite upper endpoint. When properties of maxima
and minima are of interest, respectively corresponding to the exploration of the right or left tails
of the parent distribution, they can be treated on an equal footing by considering the minima as
maxima of the variables after sign reversal [19]. Physical observables have generally bounded
fluctuations, and their extremes follow Weibull distributions [20, 21]. Gaussian fluctuations
(featuring Brownian motion of microscopic degrees of freedom) would yield the formal
possibility of infinite extremes and thus Gumbel distributions, but the convergence towards this
law is logarithmically slow [22] so that a Weibull law is observed in these cases as well.

The interest of the EVL statistics in bifurcation detection relies on the change of the nature
of the fluctuations of a given system, when going from a situation with one stable attractor to a
situation with two competing attractors, with a jump between the two allowed either under the
effect of external noise or due to internal chaotic fluctuations. In such a case, two time scales are
present: a short one related to transitive dynamics within an attracting component and a long
one corresponding to intermittent jumps from one to the other component. The fluctuations and
their extreme are then of a different nature over the two time scales: over the long time scale,
some extremes correspond to noisy excursions directed toward the saddle-state and gain a
global status, as they can trigger jumps from one to the other component. The probability
increases as the observable visits correspond to ‘anomalous’ values associated to these global
extremes during a time series of length s, and the tail of the parent distribution becomes large.
Through the bifurcation, we are thus in a situation where the parent distribution goes from
bounded fluctuations (with extreme converging to a Weibull law) to fluctuations with fat tails
(with extreme converging to a Fréchet distribution). The shape parameter κ then changes
through the bifurcation from κ < 0 to κ > 0, which enables a precise definition of the threshold
as the value at which the zero crossing of κ happens. Physical observables will display
deviations of greater amplitude in the direction of the state the system is doomed to tumble—
that is, the basin of attraction observed after the transition—than in, the opposite direction;
therefore, one expects to observe this switching either in the maxima or in the minima.
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2. Experimental setup

Here we focus on the VKS experiment, consisting of a von Kármán swirling flow of liquid
sodium. The dynamo is generated in a cylinder of radius =R 2890 mm by the motion of two
coaxial discs of radius =R 154.5imp mm, counter-rotating at a frequency F. We define the
magnetic Reynolds number as: πμ σ=Rm R R F2 imp0 0 , where σ = ×9.6 106 Ω · −m 1 is the
sodium electrical conductivity and μ0 the permeability of vacuum. In the sequel, we use data
from the eight configurations obtained by changing the material of the impellers and of the
cylinder as shown in figure 2 and described in [12]. Magnetic fields are recorded using four
arrays of 10 three-axis Hall effect sensors inserted in radial shafts, as shown in figure 1. Two
arrays are inserted in the mid-plane of the vessel within long probe shafts (labeled b and d in

Figure 1. Experimental setup showing the location of the Hall probes, where x is the
axial coordinate directed from impeller 1 to impeller 2.

Figure 2. Schematic representation of the studied VKS configurations. Gray stands for
stainless steel, yellow for copper, and red for soft iron.
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figure 1); the other two are inserted closer to the impellers within shorter probe shafts (labeled a
and c in figure 1). These magnetic field at the sensors are recorded at a rate of 2000Hz, with
accuracy ±0.1 G. Overall, the probes provide measurements of the three components of the
magnetic field ⃗B t( ) as a function of time t.

3. Application to VKS data

We present the results for the detection of the dynamo threshold Rm* by using as observable the
modulus of the magnetic field | ⃗ |B t( ) measured by the 40 different detectors (Hall probes).

The method can be described as follows. First of all, the extremes of the magnetic field are
extracted by using the so called block maxima approach, which consists in dividing the series
| ⃗ | =B t t s( ) , 1, 2 ,..., into n bins, each containing m observations (s = nm) and thus selecting the
maximum (minimum) Mj in each bin. The series of =M j n, 1 ,...,j is then fitted to the GEV
distribution via the L-moment procedure described in [23]. In order to sample proper extreme
values, one must consider a bin length longer than the correlation time τ. For each of the sensors
we have computed τ as the first zero of the autocorrelation function, finding that 0.42 s τ< < 1 s
lags, depending on the cases considered. This value is similar to the magnetic diffusion time
found in [24]. By choosing a bin duration longer than 1 s (or, equivalently, a number of samples
m in each bin larger than 2000) and repeating the fit until the shape parameter κ is not changing
appreciably, one can establish the convergence to the GEV model [18]. In our experiments we
found that reliable estimates can be generally obtained for >m 4000. Being the length of each
series < < ·s10 3 105 5, for any choice of >m 4000, no more than n = 100 maxima can be
extracted. Such a value of n is one order of magnitude smaller than the one prescribed in
[25, 26] for avoiding biased fits to the GEV model. In order to overcome this problem, we have
grouped sensors located at the same radial position. The sensors of the four arrays of Hall effect
sensors are not installed at the same radial distance (see figure 1 for a visual explanation).
However, an effective radial grouping can be obtained by adding to the n extremes of the sensor
al the ones of +b c,l l2 and =+d l, 1 ,..., 8l 2 , thus obtaining eight different series with a sufficient
number of maxima to perform the fit. The choice of grouping the sensors by their radial location
is justified by checking that the shape of the distribution, which enters in the computation of the
shape parameter κ, does not change substantially for sensors located at the same radial position.
In order to do so, we have computed the skewness and the kurtosis for the time series of the
magnetic field, finding small variations for sensors located at the same radial position. By
analyzing the cross-correlation function of different sensors, we also checked that the maxima
extracted by combining the series are independent. For example, for sensors a and b, the cross-
correlation function is defined as:

∑τ̃ = − −
=

−

+( )( )h
n

M a M a M b M b( )
1

( ) ( ) ( ) ( ) .M a M b

i

n h

j j
j

j h j
j

( ), ( )

1

Here, the notation 〈 · 〉 j indicates the expectation value taken over the j index. The results of
this analysis are shown in figure 3 for maxima in the case ≃Rm 33.8, sensors index 5, in the R
configuration. The plots on the left refer to m = 1000, the ones on the right to m = 4000. From
top to bottom we represent τ̃ h( ) respectively for h = 0, = +h 5, and = −h 5. The case h = 0
corresponds to sensors located at the same radial position, which we grouped in our study. One
can observe that although the correlation is non-zero, it is relatively small (about 0.5 for
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neighboring probes and smaller than 0.2 for non-neighbouring probes), which validates our
grouping of the sensors to increase our statistics. In addition, for sensors located at different
radial positions, the decorrelation is total (see the example at = ±h 5 in figure 3; note that the
decorrelation already starts at = ±h 1). This indicates that the different series we show are
totally independent.

Due to the different size of the fluctuations, extremes have been renormalized using the
following, rather standard, definition:

˜ =
−

−

( )
M a

M a M a

M a M a
( )

, ( )

( ) ( )
.j l

j l l j

j l l j j

The same normalization applies for the sensors b c d, , . There are less trivial ways of
normalizing the extremes; e.g., by choosing other location indicators than the expected value,
such as the median or the mode (the most probable value). We thus replaced the mean with such
indicators and checked that the results do not change in an appreciable way.

Figure 3. Cross correlation τ̃ λ μ h( )M M( ), ( ) for m = 1000 (left panels) and m = 4000 (right
panels) λ = a b c d{ , , , }, μ = a b c d{ , , , }. From top to bottom panels: h = 0, h = 5,

= −h 5. R configuration, ≃Rm 33.8.
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4. Results

We begin the analysis by computing the dynamo threshold Rm* in the experiments performed
with the configuration R, featuring soft iron impellers. This configuration produces a well-
documented stationary dynamo at ≈Rm 44, thereby providing a fair test of our method [27]. In
the run we analyse, the Reynolds magnetic number is increased monotonically from ≃Rm 26
up to ≃Rm 54. By monitoring the value of | ⃗|B as a function of Rm, represented in the upper
panel of figure 4, one observes a sudden increase of the magnetic field amplitude around the
value ≈Rm 44, leading to a first definition of the threshold parameter as =*Rm 44.

The observation of variations of | ⃗|B provides interesting information about the detection of
the threshold through the EVL method. Indeed, since beyond the dynamo threshold Rm* the
values of | ⃗|B are significantly higher, we expect to detect the transition by the change of sign of
the maxima distribution, whereas the minima shape parameter should remain negative even
across the transition. Results are shown in figure 4 for the shape parameter of the maxima
(central panel) and of the minima (lower panel). Each color represents the curve of κ obtained
by grouping the sensors located at the same radial position, whereas the thick lines respectively

Figure 4. Upper panel: bifurcation in terms of the magnetic field averaged over all the
sensors. Central panel: shape parameters for the maxima versus magnetic Reynolds
number for the eight groups of sensors (each in a different color), 〈 〉k l (thick black line),
and Gumbel law κ = 0 (dashed line) in the R configuration. Lower panel: same as the
central panel but for the minima.
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represent an average over l (solid black line) and the Gumbel law (dashed black line). When Rm
is approaching 47, the average shape parameter for the distribution of maxima first decreases
then increases and changes sign at Rm = 47, whereas for the minima it remains negative. We
therefore set the threshold value ≃*Rm 47. The decrease before the change of sign might be a
signature of earth-field expulsion before dynamo onset. The change of sign, characteristic of
dynamo onset, is associated with a change in the nature of distribution of maxima of the
magnetic field, as expected from EVL theory. Indeed, we have plotted in figure 5 two
histograms for the maxima distribution: one for a value of Rm far from the transition (left plot)
and one for Rm close to the bifurcation (right plot). Whereas in the first case the distribution of
maxima is bounded above, in the second case the largest values of M̃ will eventually trigger the
transition and are responsible for the change of sign of κ. One may note in figure 4 that, contrary
to the transition presented in [14], here there is an evident effect also on the minima shape
parameter, which tends to more negative values for > *Rm Rm .

We see from this example that the threshold determination using the EVL provides a value
about 7 percent higher than the value based on | ⃗|B . We may note that, due to the ferromagnetic
nature of the disk material, the dynamo bifurcation is naturally imperfect. This results in a
smoothing of the variation of | ⃗|B near the threshold that may lead to an underestimation of the
perfect threshold. In contrast, the threshold computed using the EVL is obtained via topological
change of the attracting basins and may point to a value that is closer to the perfect threshold.
To quantify this, we may first resort to a statistical analysis of our results, using the different
sensor locations. By analyzing the results obtained at low frequencies of rotations, the fit for
each group of sensors returns a shape parameter statistically dispersed around the average, with
no radial dependence. On the contrary, for > *Rm Rm , the shape parameter crosses zero for
increasing values of Rm as the radial location of the sensors increases. This effect is even more
pronounced for sensors outside the flow (i.e., sensor 9 and 10 of probes a and c, not shown in
figure 4, since at these radial locations only two sensors were available instead of four). This
means that the threshold detection based only on external sensors is likely to overestimate the
threshold. This has, of course, great implications for the detection of the threshold of magnetic
fields from planetary observation, as we are likely to observe only an equivalent of the outer

Figure 5. Two histograms for the normalized maxima M̃ of the sensors 6 (black
markers) and correspondent fits to the GEV distribution (red lines). Left: ≃Rm 27 the
maxima are bounded: κ = − 0.21. Right: ≃Rm 48, some maxima are detached with
respect to the bulk statistics. These events trigger the transition of κ towards positive
values: κ = + 0.01.
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sensors. Nevertheless, this analysis confirms a posteriori the reasonableness of grouping the
sensors at the same radial position and provides an error bar on our threshold determination.

To estimate the error bar of the threshold with respect to the perfect threshold, we may
follow [14] and apply the technique on a simple theoretical model that captures the main
features of dynamo transition. As discussed in [4], the dynamo transition in a turbulent medium
may be seen as a bifurcation with a multiplicative noise. To further model the experimental
noise and fluctuations caused by induction of the magnetic field present in the building where
the experiment is performed, we further introduce an additive noise term and consider the
following simple stochastic model:

ϵξ ηψ= + − +dB dt Rm t B B t( ( )) ( ), (2)3

where ξ and ψ are normal identically distributed variables, ϵ and η are respectively the variances
of the multiplicative and the additive noise, and Rm is the control parameter such that
instabilities appear for >Rm 1. We then perform the same analysis as for the experimental data
and analyse time series, each taken at a different Rm with < <Rm0.95 1.05, consisting of 106

observations. Other parameters are fixed as: ξ ψ= = 0.01, dt = 1, and =B (0) 0.1 as initial
condition. Results are robust with respect to changes in the parameters and initial conditions, as
we tested. For each of the Reynolds magnetic numbers Rm, the shape parameter κ is represented
in figure 6. As for the real dynamo experiment, the shape parameter for the maxima changes
sign from negative to positive at =κRm 1.005c

( ) , resulting in an overestimation of the threshold
by a factor 5 per thousand. For all the Rm considered, κ for the minima remains negative. For
higher values of ψ and ξ, we get even better precision for the threshold estimate, as larger
fluctuations increase the probability of observing extremes directed towards the dynamo
attracting state. Including imperfection to the transition does not change this conclusion. This

Figure 6. Upper panel: average magnetic field | |B for the model introduced in
equation (2). Lower panel: Shape parameter κ for the maxima of the minima of B, as
obtained by integrating equation (2) with an Euler scheme at ξ ψ= = 0.01, dt = 1, and

=B (0) 0.1 as initial condition.
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simple model therefore indicates that the threshold determination via the EVL is robust and
provides the critical Rm with good precision. Based on this, we conclude that the critical
magnetic Reynolds number for the dynamo in this VKS experiment is around ≃*Rm 47 and
that the lower value =*Rm 44c is probably an underestimate due to imperfection effects. Note
that in the theoretical model with multiplicative and additive noise, κ again attains negative
values for >Rm 1.02 as a consequence of the solution falling in a new attraction basin with
bounded fluctuations. In the experiment, we do not observe such an effect, since κ remains
positive within the explored range of Rm. A first explanation could be that the range of Rm
explored is not wide enough; therefore we still have not yet reached the new attraction state.
Another more likely explanation is that the one-dimensional model fails to capture the
complexity of the dynamo attractor that may be multidimensional.

Hysteresis has been previously reported in the VKS experiment [10, 27] and was also
observed in the R configuration under scrutiny here: in order to shut down the dynamo, one has
to decrease the magnetic Reynolds number to values smaller than Rm*. This is presumably an
effect of the residual magnetization of the iron impellers. This hysteresis is a good test for
further validation of the results obtained via the extreme value based technique, since the curve
of the shape parameter should be able to detect some hysteretic behavior. If we redefine the
dynamo activation threshold found in the previous analysis as =*Rm 47f , f indicating the first
passage in the forward direction of the experiment, we expect to find a dynamo deactivation
threshold <* *Rm Rmb f , b indicating the backward experiment obtained by decreasing Rm from

≃Rm 55 to Rm = 30. We have then analysed a run in which the magnetic Reynolds number is
first increased monotonically from ≃Rm 26 up to ≃Rm 54, then decreased monotonically
from ≃Rm 54 up to ≃Rm 26. The results shown in figure 7 for the maxima average shape
parameter κ〈 〉 =l 1 ,... 8l clearly indicate the presence of a hysteresis cycle in agreement with
expectation. We have already commented on the forward part of the experiment repeated in
figure 7 for clarity and represented by the right arrows. When the frequency is instead
decreased, a Fréchet EVL is observed until ≃ <* *Rm Rm37b f . At this value, the shape
parameter crosses the Gumbel law and approaches again the Weibull distribution of the
maxima. Note also that the shape parameter for the minima (not shown here) remains always
negative even in the backward transition, as expected by the theory described so far.

Table 1. Dynamo threshold for various configuration in the VKS experiment, obtained
through various techniques. | ⃗|Rm B : from the increase of the magnetic field amplitude | ⃗|B
[10, 11]; *Rm f and *Rmb : forward and backward threshold obtained from the extreme
value technique, with zero crossing detection (this paper); Rme: from the extreme value
technique, with cubic extrapolation to detect zero crossing (this paper); Rmd: from decay
time divergency extrapolation [12]; Rmi: from induction increase extrapolation.

Run | ⃗|Rm B
*Rm f

*Rmb Rme Rmd Rmi

P — — — — — —

Q — — — — — 200
Q’ — — — 85 ± 10 350 125
R 44 46 37 — 51 56
S — — — 150 ± 25 — —

T — — — 100 ± 25 250 205
U 70 75 66 — 58 100
V 66 67 45 — 71 93
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The same analysis has been carried out for all the configurations shown in figure 1. The
corresponding *Rm f and *Rmb are reported in table 1. For comparison, we have included in the
table values, estimated via three other techniques: from the increase of the magnetic field
amplitude | ⃗|B (denoted | ⃗|Rm B ) [10, 11], from decay time divergence Rmd[12], and via induction
Rmi [12]. The value of the shape parameter remains negative for both the maxima and the
minima in the configurations P, Q, Q’, S, T where dynamos have not been observed, whereas
the method is able to detect the dynamo and the hysteretic behavior for the U and V setup.
These results are in agreement with [12]. For the configurations for which the dynamo (run P,
Q, Q’, S, T) is not observed within the range of accessible Rm, it is interesting to follow [12]
and try to estimate the possible dynamo threshold by extrapolation techniques. Indeed, in the
Q’, S, and T, we observed that the values of κ increase monotonically for at least the three
consecutive highest Rm. An example is shown for the Q’ configuration in figure 8. An
extrapolate threshold value Rme can then be found by applying a polynomial fit of the κ〈 〉 l curve
and detecting the location of the zero crossing. Of course, as seen in figure 8, the value of Rme

depends on the order of the polynomial fit; e.g., the value of Rme obtained by a linear and a
quadratic fit is larger than what is obtained through higher polynomial order fits. We then turned
back to configurations R, U, V and found that a cubic fit of the κ〈 〉 l values such that < *Rm Rm
provides an extrapolated threshold value Rme that is close to the *Rm determined via real data.
We thus run this cubic extrapolation technique to Q’, S, and T and obtain values of Rme that are
reported in the table. The extrapolated values found here are generally smaller than the one
found by Miralles et al [12], but in both cases the extrapolation presents great uncertainty.

In this article, we have tested a methodology for the detection of the dynamo threshold
based on EVT, using datasets produced in the VKS experiment. This technique, applied here for
the first time to an experimental dataset, confirms the theoretical expectations of [14] and allows
for detecting hysteretic behaviors. The main advantage of the technique is to provide a precise
and unambiguous estimate of the thresholds on a probabilistic basis, providing the direction of
the shift (towards the maxima or the minima). The analysis is affordable with every home PC,

Figure 7. Diagram of κ〈 〉 l (blue line) and Gumbel law κ = 0 (dashed black line) versus
magnetic Reynolds number in the R configuration. The arrows indicate the direction of
variation of Rm in the experiment.
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and many software packages contain the routine necessary for performing the fit of the GEV
distribution. In light of the possibility of extracting the magnetic field data from exoplanetary
radio emissions, one could exploit the technique described in this article for studying the
properties of exoplanetary magnetospheres, thus defining a criterion for the classification of
planetary dynamos based on the detected threshold values. Moreover, since hysteretic
behaviours are encountered in many other scientific fields, e.g., thermohaline circulation
reversibility [28] in climate sciences or economical crisis behavior [29], we consider the method
to be applicable to a more general class of problems featuring critical transitions.
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